Q.1. Solve the differential equation : $(x^2 + y^2) dx - 2xydy = 0$, given that y = 0, when x = 1.

Solution: 1

We have $(x^2 + y^2) dx - 2xy dy = 0 \& y = 0$ when x = 1.

The equation may be written as -

 $dy/dx = (x^2 + y^2)/2xy$.

This is homogeneous equation . Put y = vx

Then dy/dx = v + x dv/dx

The equation reduces to ,

 $v + x dv/dx = (x^2 + v^2 x^2)/2x^2v = (1 + v^2)/2v$

Or, x dv/dx = $(1 + v^2)/2v - v = (1 - v^2)/2v$

Or, $2v/(1 - v^2) dv = dx/x$

Integrating both sides , we get

 $\int [2v/(1 - v^{2})] dv = \int dx/x$ Or, $-\log [1 - v^{2}] = \log x + c$ Or, $-\log [1 - (y/x)^{2}] = \log x + c$ Putting x = 1 and y = 0, we get c = 0. Then $1/[1 - y^{2}/x^{2}] = x$ Or, x = x² - y².

Q.2. Solve the differential equation : $x dy/dx - y = \sqrt{x^2 + y^2}$.

Solution: 2

We have x dy/dx - y = $\sqrt{(x^2 + y^2)}$ Or, dy/dx - y/x = $\sqrt{\{(x^2 + y^2)/x^2\}}$ ------ (1) Let y = vx => dy/dx = v + dv/dx Putting in (1) we get v + xdv/dx - v = $\sqrt{(x^2 + v^2x^2)/x}$ Or, xdv/dx = $\sqrt{(1 + v^2)}$ Integrating we get , $\int dv/\sqrt{(1 + v^2)} = \int dx/x + const.$ Or, log [v + $\sqrt{(1 + v^2)} = \log x + \log c$ Or, log[y/x + $\sqrt{(x^2 + y^2)/x}$] = log x + log c Or, log[{y + $\sqrt{(x^2 + y^2)}/x^2}$] = log c Or, [y + $\sqrt{(x^2 + y^2)}$] = cx².

Q.3. Solve the differential equation : $2dy/dx = y/x + y^2/x^2$ by substituting y = vx.

Solution: 3

We have, $2 dy/dx = y/x + y^2/x^2$ ------ (1) Putting y = vx, we get dy/dx = v + dv/dx Putting in (1), we get $2(v + dv/dx) = v + v^2$ Or, $2dv/dx = v + v^2 - 2v = v^2 - v$ Integrating both sides, we get $\int 1/(v^2 - v) dv = 1/2 \int dx/x$ Or, $\int dv/(v^2 - v + 1/4 - 1/4) = 1/2 \int dx/x$ Or, $\int dv/[(v - 1/2)^2 - (1/2)^2] = 1/2 \int dx/x$ Or, $\int dv/[(v - 1/2)^2 - (1/2)^2] = 1/2 \int dx/x$

Or,
$$\log [(v - 1)/v] = 1/2 \log x$$

Or, $\log [(y - x)/y] = 1/2 \log x + c$.

Q.4. Solve :
$$x dy/dx - y = \sqrt{(x^2 + y^2)}$$
.

Solution: 4

We are given $x dy/dx - y = \sqrt{x^2 + y^2}$ Or, $dy/dx = y/x + {\sqrt{x^2 + y^2}}/x$ Or, $dy/dx = y/x + \sqrt{\{(x^2 + y^2/x^2)\}}$ Or, $dy/dx = y/x + \sqrt{\{1 + (y/x)^2\}}$ Putting y = vx we get dy/dx = v + x dv/dxand our equation reduces to $v + x dv/dx = v + \sqrt{(1 + v^2)}$ Or, $x dv/dx = \sqrt{1 + v^2}$ Or, $dv/\sqrt{1 + v^2} = dx/x$ Integrating both sides we get $\int dv/\sqrt{1 + v^2} = \int dx/x$ Or, $\log [v + \sqrt{(1 + v^2)}] = \log x + \log c$ Or, $\log[y/x + \sqrt{1 + (y/x)^2}] = \log x + \log c$ Or, $\log[y + \sqrt{(x^2 + y^2)}] - \log x = \log x + \log c$ Or, $\log [y + \sqrt{x^2 + y^2}] = 2 \log x + \log c$ Or, $\log [y + \sqrt{x^2 + y^2}] = \log x^2 + \log c$ Or, $\log [y + \sqrt{(x^2 + y^2)}] = \log cx^2$ Therefore, $y + \sqrt{(x^2 + y^2)} = cx^2$.

Q.5. Solve : $x(x - y) dy + y^2 dx = 0$.

Solution: 5

We are given, $x(x - y) dy + y^2 dx = 0$ Or, $dy/dx = -y^2/(x^2 - xy) = y^2/(xy - x^2)$ Putting y = v x, we get dy/dx = v + xdv/dxOr, $v + xdv/dx = v^2 x^2/(x v - x^2) = v^2 x^2/(v x^2 - x^2)$ Or, $v + xdv/dx = v^2/(v - 1)$ Or, $x dv/dx = v^2/(v - 1) - v = (v^2 - v^2 + v)(v - 1)$ Or, x dv/dx = v/(v - 1)Or, [(v - 1)/v]dv = (1/x) dxIntegrating, we get $\int (1 - 1/v) dv = \int (1/x) dx + c$ Or, $v - \log v = \log x + c$ Or, $y/x - \log(y/x) = \log x + c$ $Or, y/x - [\log y/x + \log x] = c$ $Or, y/x - [\log y - \log x + \log x] = c$ Or, $y/x - \log y = c$ Or, $y = x \log y = c x$.