Chapter 6

Magnetic Fields in Matter

6.1 Magnetization

6.1.1 Diamagnets, Paramagnets, Ferromagnets

If you ask the average person what “magnetism” is, you will probably be told about horse-
shoe magnets, compass needles, and the North Pole—none of which has any obvious
connection with moving charges or current-carrying wires. Yet all magnetic phenomena
are due to electric charges in motion, and in fact, if you could examine a piece of magnetic
material on an atomic scale you would find tiny currents: electrons orbiting around nuclei
and electrons spinning about their axes. For macroscopic purposes, these current loops are
so small that we may treat them as magnetic dipoles. Ordinarily, they cancel each other
out because of the random orientation of the atoms. But when a magnetic field is applied,
a net alignment of these magnetic dipoles occurs, and the medium becomes magnetically
polarized, or magnetized.

Unlike electric polarization, which is almost always in the same direction as E, some
materials acquire a magnetization parallel to B (paramagnets) and some opposite to B
(diamagnets). A few substances (called ferromagnets, in deference to the most common
example, iron) retain their magnetization even after the external field has been removed—
for these the magnetization is not determined by the present field but by the whole magnetic
“history” of the object. Permanent magnets made of iron are the most familiar examples
of magnetism, though from a theoretical point of view they are the most complicated;
I'll save ferromagnetism for the end of the chapter, and begin with qualitative models of
paramagnetism and diamagnetism.

6.1.2 Torques and Forces on Magnetic Dipoles

A magnetic dipole experiences a torque in a magnetic field, just as an electric dipole does
in an electric field. Let’s calculate the torque on a rectangular current loop in a uniform
field B. (Since any current loop could be built up from infinitesimal rectangles, with all
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Figure 6.1

the “internal” sides canceling, as indicated in Fig. 6.1, there is no actual loss of generality
in using this shape; but if you prefer to start from scratch with an arbitrary shape, see
Prob. 6.2.) Center the loop at the origin, and tilt it an angle § from the z axis towards the v
axis (Fig. 6.2). Let B point in the z direction. The forces on the two sloping sides cancel
(they tend to stretch the loop, but they don’t rotate it). The forces on the “horizontal” sides
are likewise equal and opposite (so the net force on the loop is zero), but they do generate
a torque:

N =aFsinfx.
The magnitude of the force on each of these segments is

F =1bB,

and therefore
N =TIabBsin0X =mBsinf X,

@ (®)

Figure 6.2



6.1. MAGNETIZATION 257

or

@

where m = Iab is the magnetic dipole moment of the loop. Equation 6.1 gives the
exact torque on any localized current distribution, in the presence of a uniform field; in a
nonuniform field it is the exact torque (about the center) for a perfect dipole of infinitesimal
size.

Notice that Eq. 6.1 is identicgl in form to the electrical analog, Eq. 4.4: N=p x E. In
particular, the torque is again in such a direction as to line the dipole up parallel to the field. It
is this torque that accounts for paramagnetism. Since every electron constitutes a magnetic
dipole (picture it, if you wish, as a tiny spinning sphere of charge), you might expect
paramagnetism to be a universal phenomenon. Actually, the laws of quantum mechanics
(specifically, the Pauli exclusion principle) dictate that the electrons within a given atom
lock together in pairs with opposing spins, and this effectively neutralizes the torque on the
combination. As a result, paramagnetism pormally occurs in atoms or molecules with an
odd number of electrons, where the “extra” unpaired member is subject to the magnetic
torque. Even here the alignment is far from complete, since random thermal collisions tend
to destroy the order.

In a uniform field, the net force on a current loop is zero:

lef(dle)zl(%dl)sz&

the constant B comes outside the integral, and the net displacement § dl around a closed
loop vanishes. In a nonuniform field this is no longer the case. For example, suppose a
circular wire of radius R, carrying a current /, is suspended above a short solenoid in the
“fringing” region (Fig. 6.3). Here B has a radial component, and there is a net downward
force on the loop (Fig. 6.4):

F =2nIRBcosb. (6.2)
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For an infinitesimal loop, with dipole moment m, in a field B, the force is

F=V(m-B) 6.3)

(see Prob. 6.4). Once again the magnetic formulais identical to its electrical “twin,” provided
we agree to write the latter in the form F = V(p - E).

If you’re starting to get a sense of déja vu, perhaps you will have more respect for those
early physicists who thought magnetic dipoles consisted of positive and negative magnetic
“charges” (north and south “poles,” they called them), separated by a small distance, just
like electric dipoles (Fig. 6.5(a)). They wrote down a “Coulomb’s law” for the attraction
and repulsion of these poles, and developed the whole of magnetostatics in exact analogy
to electrostatics. It’s not a bad model, for many purposes—it gives the correct field of a
dipole (at least, away from the origin), the right torque on a dipole (at least, on a stationarv
dipole), and the proper force on a dipole (at least, in the absence of external currents). But
it’s bad physics, because there s no such thing as a single magnetic north pole or south pole.
If you break a bar magnet in half, you don’t get a north pole in one hand and a south pole
in the other; you get two complete magnets. Magnetism is nor due to magnetic monopoles.
but rather to moving electric charges; magnetic dipoles are tiny current loops (Fig. 6.5(c)).
and it’s an extraordinary thing, really, that the formulas involving m bear any resemblance
at all to the corresponding formulas for p. Sometimes it is easier to think in terms of
the “Gilbert” model of a magnetic dipole (separated monopoles) instead of the physically
correct “Ampere” model (current loop). Indeed, this picture occasionally offers a quick
and clever solution to an otherwise cumbersome problem (you just copy the corresponding
result from electrostatics, changing p to m, 1/ to g, and E to B). But whenever the
close-up features of the dipole come into play, the two models can yield strikingly different
answers. My advice is to use the Gilbert model, if you like, to get an intuitive “feel” for a
problem, but never rely on it for quantitative results.

(a) Magnetic dipole (b} Electric dipole  (a) Magnetic dipole
(Gilbert model) (Ampére model)

Figure 6.5
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Problem 6.1 Calculate the torque exerted on the square loop shown in Fig. 6.6, due to the
circular loop (assume r is much larger than a or b). If the square loop is free to rotate, what
will its equilibrium orientation be?

Figure 6.6

Problem 6.2 Starting from the Lorentz force law, in the form of Eq. 5.16, show that the torque
on any steady current distribution (not just a square loop) in a uniform field Bism x B.

Problem 6.3 Find the force of attraction between two magnetic dipoles, m; and mj, oriented
as shown in Fig. 6.7, a distance r apart, (a) using Eq. 6.2, and (b) using Eq. 6.3.

&

my my

Figure 6.7 ‘ Figure 6.8

Problem 6.4 Derive Eq. 6.3. [Here's one way to do it: Assume the dipole is an infinitesimal
square, of side e (if it’s not, chop it up into squares, and apply the argument to each one).
Choose axes as shown in Fig. 6.8, and calculate F = I [(d] x B) along each of the four sides.
Expand B in a Taylor series—on the right side, for instance,

oB
B=B(0.€.2) = B(0.0.2) + e — .
¥ 10,0.2)

For a more sophisticated method, see Prob. 6.22.]
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Problem 6.5 A uniform current density J = JyZ fills a slab straddling the yz plane, from
x = —a tox = +a. A magnetic dipole m = mg X is situated at the origin.

(a) Find the force on the dipole, using Eq. 6.3.
{(b) Do the same for a dipole pointing in the y direction: m = mgy.

(¢) In the electrostatic case the expressions F = V(p-E) and F = (p - V)E are equivalent
(prove it), but this is not the case for the magnetic analogs (explain why). As an example.
calculate (m - V)B for the configurations in (a) and (b).

6.1.3 Effect of a Magnetic Field on Atomic Orbits

Electrons not only spin; they also revolve around the nucleus—for simplicity, let’s assume
the orbit is a circle of radius R (Fig. 6.9). Although technically this orbital motion does not
constitute a steady current, in practice the period T = 27 R /v is so short that unless you
blink awfully fast, it’s going to look like a steady current:

e ev

I=—= .
T 2nR

Accordingly, the orbital dipole moment (I R?) is
1 .
m = _Eesz' (6.4)

(The minus sign accounts for the negative charge of the electron.) Like any other magnetic
dipole, this one is subject to a torque (m x B) when the atom is placed in a magnetic field.
But it’s a lot harder to tilt the entire orbit than it is the spin, so the orbital contribution to
paramagnetism is small. There is, however, a more significant effect on the orbital motion:

Figure 6.9
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Figure 6.10

The electron speeds up or slows down, depending on the orientation of B. For whereas the
centripetal acceleration v2/R is ordinarily sustained by electrical forces alone,’

1 €2 v? ©.5)
—_—— =m,—, y
4rmeg R? ¢

in the presence of a magnetic field there is an additional force, —e(v x B). For the sake of

argument, let’s say that B is perpendicular to the plane of the orbit, as shown in Fig. 6.10;

then
1 2 =2

v
— +evB =m,—. (6.6)
Under these conditions, the new speed v is greater than v:
i} Me _» 5 Mg _ _
VB=—@W" —v)= —@W4+v)(v—1),
e R )= W+ )

or, assuming the change Av = v — v is small,

eRB
v= . 6.7)
2m,
When B is turned on, then, the electron speeds up.”
A change in orbital speed means a change in the dipole moment (6.4):
1 . &2 R?
Am = ——e(AV)RZ = — (6.8)
2 4m,

Notice that the change in m is opposite to the direction of B. (An electron circling the other
way would have a dipole moment pointing upward, but such an orbit would be slowed

1To avoid confusion with the magnetic dipole moment m, Il write the electron mass with subscript: m,.

2] said earlier (Eq. 5.11) that magnetic fields do no work, and are incapable of speeding a particle up. I stand
by that. However, as we shall see in Chapter 7, a changing magnetic field induces an electric field, and it is the
latter that accelerates the electrons in this instance.
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down by the field, so the change is still opposite to B.) Ordinarily, the electron orbits are
randomly oriented, and the orbital dipole moments cancel out. But in the presence of a
magnetic field, each atom picks up a little “extra” dipole moment, and these increments
are all antiparallel to the field. This is the mechanism responsible for diamagnetism. It
is a universal phenomenon, affecting all atoms. However, it is typically much weaker than
paramagnetism, and is therefore observed mainly in atoms with even numbers of electrons.
where paramagnetism is usually absent.

In deriving Eq. 6.8 T assumed that the orbit remains circular, with its original radius R. 1
cannot offer a justification for this at the present stage. If the atom is stationary while the field
is turned on, then my assumption can be proved—this is not magnetostatics, however, and
the details will have to await Chapter 7 (see Prob. 7.49). If the atom is moved into the field.
the situation is enormously more complicated. But never mind—I’'m only trying to give
you a qualitative account of diamagnetism. Assume, if you prefer, that the velocity remains
the same while the radius changes—the formula (6.8) is altered (by a factor of 2), but the
conclusion is unaffected. The truth is that this classical model is fundamentally flawed
(diamagnetism is really a quantum phenomenon), so there’s not much point in refining the
details.> What is important is the empirical fact that in diamagnetic materials the induced
dipole moments point opposife to the magnetic field.

6.1.4 Magnetization

In the presence of a magnetic field, matter becomes magnetized; that is, upon microscopic
examination it will be found to contain many tiny dipoles, with a net alignment along some
direction. We have discussed two mechanisms that account for this magnetic polarization:
(1) paramagnetism (the dipoles associated with the spins of unpaired electrons experience a
torque tending to line them up parallel to the field) and (2) diamagnetism (the orbital speed
of the electrons is altered in such a way as to change the orbital dipole moment in a direction
opposite to the field). Whatever the cause, we describe the state of magnetic polarization
by the vector quantity

M = magnetic dipole moment per unit volume. 6.9

M is called the magnetization; it plays a role analogous to the polarization P in elec-
trostatics. In the following section, we will not worry about how the magnetization gor
there—it could be paramagnetism, diamagnetism, or even ferromagnetism—we shall take
M as given, and calculate the field this magnetization itself produces.

Incidentally, it may have surprised you to learn that materials other than the famous
ferromagnetic trio (iron, nickel, and cobalt) are affected by a magnetic field ar all. You
cannot, of course, pick up a piece of wood or aluminum with a magnet. The reason is that
diamagnetism and paramagnetism are extremely weak: It takes a delicate experiment and
a powerful magnet to detect them at all. Tf you were to suspend a piece of paramagnetic

38. L. O’Dell and R. K. P, Zia, Am. J. Phys. 54, 32, (1986); R. Peierls, Surprises in Theoretical Phvsics.
Section 4.3 (Princeton, N.J.: Princeton University Press, 1979); R. P. Feynman, R. B. Leighton, and M. Sand-.
The Feynman Lectures on Physics, Vol. 2, Sec. 34-36 (New York: Addison-Wesley, 1966).
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material above a solenoid, as in Fig. 6.3, the induced magnetization would be upward, and
hence the force downward. By conttrast, the magnetization of a diamagnetic object would be
downward and the force upward. In general, when a sample is placed in a region of nonuni-
form field, the paramagnet is attracted into the field, whereas the diamagnet is repelled
away. But the actual force$ are pitifully weak—in a typical experimental arrangement the
force on a comparable sample of iron would be 10% or 10° times as great. That’s why it
was reasonable for us to calculate the field inside a piece of copper wire, say, in Chapter 5,
without worrying about the effects of magnetization.

Problem 6.6 Of the following materials, which would you expect to be paramagnetic and which
diamagnetic? Aluminum, copper, copper chloride (CuCly), carbon, lead, nitrogen (N»), salt
(NaCl), sodium, sulfur, water. (Actually, copper is slightly diamagnetic; otherwise they’re all
what you’d expect.)

6.2 The Field of a Magnetized Object

6.2.1 Bound Currents

Suppose we have a piece of magnetized material; the magnetic dipole moment per unit
volume, M, is given. What field does this object produce? Well, the vector potential of a
single dipole m is given by Eq. 5.83:

A(r)zﬂmxa

6.10
4r 22 ( )

In the magnetized object, each volume element dz’ carries a dipole moment M dt’, so the
total vector potential is (Fig. 6.11)

dr'. 6.11)

Figure 6.11
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That does it, in principle. But as in the electrical case (Sect. 4.2.1), the integral can be
cast in a more illuminating form by exploiting the identity

S| &

Vi
2

A@) = i"—;/ [M(r’) x (V’%)} dr'.

Integrating by parts, using product rule 7, gives

Ar) = Z—;j {/ %[V’ x M(r)]d7’ —/V’ X {M(r’)] dr’}.

2

With this,

Problem 1.60(b) invites us to express the latter as a surface integral,
1 1
Ar =X f SV x M@)]de + X % JIM(r) x da']. (6.12)
A | 2 Az J 2

The first term looks just like the potential of a volume current,

Jp =V xM,] (6.13)

while the second looks like the potential of a surface current,

K, =M x A, (6.14)

where 1i is the normal unit vector. With these definitions,

/ /
A(r) = ﬂ/ Mdrurﬂyﬁ Ko) 4o, 6.15)
A fy 2 47 Js 2

What this means is that the potential (and hence also the field) of a magnetized object is
the same as would be produced by a volume current J, = V x M throughout the material.
plus a surface current K;, = M x i, on the boundary. Instead of integrating the contributions
of all the infinitesimal dipoles, as in Eq. 6.11, we first determine these bound currents, and
then find the field they produce, in the same way we would calculate the field of any other
volume and surface currents. Notice the striking parallel with the electrical case: there the
field of a polarized object was the same as that of a bound volume charge p, = —V - P plus
a bound surface charge o, = P - n.

Example 6.1

Find the magnetic field of a uniformly magnetized sphere.

Solution: Choosing the z axis along the direction of M (Fig. 6.12), we have

Jb=VxM=0, K,=Mxh=Msiné.
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Figure 6.12

Now, a rotating spherical shell. of uniform surface charge o, corresponds to a surface current
density

K=0v=0wRsin6 4.
It follows, therefore, that the field of a uniformly magnetized sphere is identical to the field of

a spinning spherical shell, with the identification ¢ Rw — M. Referring back to Ex. 5.11, I
conclude that

2
B= §MOM’ (6.16)
inside the sphere, whereas the field outside is the same as that of a pure dipole,

4
m= -7 R°M.
3
Notice that the internal field is uniform, like the electric field inside a uniformly polarized
sphere (Eq. 4.14), although the actual formulas for the two cases are curiously different (% in

place of —%). The external fields are also analogous: pure dipole in both instances.

Problem 6.7 An infinitely long circular cylinder carries a uniform magnetization M parallel
to its axis. Firid the magnetic field (due to M) inside and outside the cylinder.

Problem 6.8 A long circular cylinder of radius R carries a magnetization M = ks2 43, where &
is a constant, s is the distance from the axis, and ¢ is the usual azimuthal unit vector (Fig. 6.13).
Find the magnetic field due to M, for points inside and outside the cylinder.

Problem 6.9 A short circular cylinder of radius a and length L carries a “frozen-in" uniform
magnetization M parallel to its axis. Find the bound current, and sketch the magnetic field
of the cylinder. (Make three sketches: one for L > a, one for L « a, and one for L ~ a.)
Compare this bar magnet with the bar electret of Prob. 4.11.
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Figure 6.13 Figure 6.14

Problem 6.10 An iron rod of length L and square cross section (side a), is given a uniform
longitudinal magnetization M, and then bent around into a circle with a narrow gap (width w).
as shown in Fig. 6.14. Find the magnetic field at the center of the gap, assuming w < a < L.
[Hint: treatit as the superposition of a complete torus plus a square loop with reversed current.]

6.2.2 Physical Interpretation of Bound Currents

In the last section we found that the field of a magnetized object is identical to the field
that would be produced by a certain distribution of “bound” currents, J, and K. I want to
show you how these bound currents arise physically. This will be a heuristic argument—the
rigorous derivation has already been given. Figure 6.15 depicts a thin slab of uniformly
magnetized material, with the dipoles represented by tiny current loops. Notice that all the
“internal” currents cancel: every time there is one going to the right, a contiguous one is
going to the left. However, at the edge there is no adjacent loop to do the canceling. The
whole thing, then, is equivalent to a single ribbon of current / flowing around the boundary
(Fig. 6.16).
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M

N

Figure 6.15 Figure 6.16

What is this current, in terms of M? Say that each of the tiny loops has area a and
thickness ¢ (Fig. 6.17). In terms of the magnetization M, its dipole moment is m = Mat.
In terms of the circulating current 7, however, m = Ia. Therefore I = M¢, so the surface
currentis Kp = I/t = M. Using the outward-drawn unit vector i (Fig. 6.16), the direction
of Kj, is conveniently indicated by the cross product:

K, =M x n.

(This expression also records the fact that there is no current on the top or bottom surface
of the slab; here M is parallel to fi, so the cross product vanishes.)

M

~a' -
=
Figure 6.17

This bound surface current is exactly what we obtained in Sect. 6.2.1. It is a peculiar
kind of current, in the sense that no single charge makes the whole trip—on the contrary,
each charge moves only in a tiny little loop within a single atom. Nevertheless, the net
effect is a macroscopic current flowing over the surface of the magnetized object. We call
it 2 “bound” current to remind ourselves that every charge is attached to a particular atom,
but it’s a perfectly genuine current, and it produces a magnetic field in the same way any
other current does.

When the magnetization is nonuniform, the internal currents no longer cancel. Figure
6.18a shows two adjacent chunks of magnetized material, with a larger arrow on the one
to the right suggesting greater magnetization at that point. On the surface where they join
there is a net current in the x-direction, given by

M-
I = [M:(y +dy) — M(y)]dz = W dydz.
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¢ M(y + dy) ¢
¥
M(y) T M Mz + d2)
T T dZ[
dz J—>
dy dy
y y
X (@) X (b)
Figure 6.18

The corresponding volume current density is therefore
M,
dy

By the same token, a nonuniform magnetization in the y-direction would contribute an
amount —dM,, /0z (Fig. 6.18b), so

(Jp)x =

oM, oM,
Jp)x = - —,
( b)x 3y 3z
In general, then,
Jp =V xM,

consistent, again, with the result of Sect. 6.2.1. Incidentally, like any other steady current.
Jp should obey the conservation law 5.31:

V.J,=0.

Does it? Yes, for the divergence of a curl is always zero.

6.2.3 The Magnetic Field Inside Matter

Like the electric field, the actual microscopic magnetic field inside matter fluctuates wildly
from point to point and instant to instant. When we speak of “the” magnetic field in matter.
we mean the macroscopic field: the average over regions large enough to contain many
atoms. (The magnetization M is “smoothed out” in the same sense.) It is this macroscopic
field one obtains when the methods of Sect. 6.2.1 are applied to points inside magnetized
material, as you can prove for yourself in the following problem.

Problem 6.11 In Sect, 6.2.1, we began with the potential of a perfect dipole (Eq. 6.10).
whereas in fact we are dealing with physical dipoles. Show, by the method of Sect. 4.2.3, that
we nonetheless get the correct macroscopic field.
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6.3 The Auxiliary Field H

6.3.1 Ampere’s law in Magnetized Materials

In Sect. 6.2 we found that the effect of magnetization is to establish bound currents J, =
V x M within the material and K; = M x n on the surface. The field due to magnetization
of the medium is just the field produced by these bound currents. We are now ready
to put everything together: the field attributable to bound currents, plus the field due to
everything else—which I shall call the free current. The free current might flow through
wires imbedded in the magnetized substance or, if the latter is a conductor, through the
material itself. In any event, the total current can be written as

I=Jy+1y. (6.17)

There is no new physics in Eq. 6.17; it is simply a convenience to separate the current into
these two parts because they got there by quite different means; the free current is there
because somebody hooked up a wire to a battery—it involves actual transport of charge; the
bound current is there because of magnetization—it results from the conspiracy of many
aligned atomic dipoles.

In view of Egs. 6.13 and 6.17, Ampére’s law can be written

1
%(VXB)ZJ:Jf+Jh=J_f+(VXM),

or, collecting together the two curls:

V x (LB—M>=Jf.
Ho

The quantity in parentheses is designated by the letter H:

H

fil

B-M. (6.18)

1
Ho

In terms of H, then, Ampére’s law reads

o)

7{ H-dl=1g,, (6.20)

or, in integral form,

where Iy, is the total free current passing through the Amperian loop.

H plays a role in magnetostatics analogous to D in electrostatics: Just as D allowed us
to write Gauss’s law in terms of the free charge alone, H permits us to express Ampere’s
law in terms of the free current alone—and free current is what we control directly. Bound
current, like bound charge, comes along for the ride—the material gets magnetized, and
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this results in bound currents; we cannot turn them on or off independently, as we can free
currents. In applying Eq. 6.20 all we need to worry about is the free current, which we know
about because we put it there. In particular, when symmetry permits, we can calculate H
immediately from Eg. 6.20 by the usual Ampére’s law methods. (For example, Probs. 6.7
and 6.8 can be done in one line by noting that H = 0.)

Example 6.2
A long copper rod of radius R carries a uniformly distributed (free) current I (Fig. 6.19). Find
H inside and outside the rod.

Solution: Copper is weakly diamagnetic, so the dipoles will line up opposiie to the field. This
results in a bound current running antiparallel to I within the wire and parallel to I along the
surface (see Fig. 6.20). Just how grear these bound currents will be we are not yet in a position

Amperian loop

Figure 6.19 Figure 6.20
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to say—but in order to calculate H it is sufficient to realize that all the currents are longitudinal,
s0 B, M, and therefore also H, are circumferential. Applying Eq. 6.20 to an Amperian loop of
radius s < R,

dmsy=Ip =175
HQ2ns) = Jene = ﬂRz’
50
H=-' 4 (<p) (6.21)
=5 s . .
2w R? -
within the wire. Meanwhile, outside the wire
I A
H=->—¢ (2R). (6.22)
2ms

In the latter region (as always, in empty space) M = 0, so
I 4
B=uH=224 (=nr)
27

the same as for a nonmagnetized wire (Ex. 5.7). Inside the wire B cannot be determined at this
stage, since we have no way of knowing M (though in practice the magnetization in copper is
so slight that for most purposes we can ignore it altogether).

As it turns out, H is a more useful quantity than D. In the laboratory you will frequently
hear people talking about H (more often even than B), but you will never hear anyone speak
of D (only E). The reason is this: To build an electromagnet you run a certain (free) current
through a coil. The current is the thing you read on the dial, and this determines H (or at any
rate, the line integral of H); B depends on the specific materials you used and even, if iron is
present, on the history of your magnet. On the other hand, if you want to set up an electric
field, you do not plaster a known free charge on the plates of a parallel plate capacitor;
rather, you connect them to a battery of known voltage. 1t’s the potential difference you
read on your dial, and that determines E (or at any rate, the line integral of E); D depends
on the details of the dielectric you're using. If it were easy to measure charge, and hard
to measure potential, then you’d find experimentalists talking about D instead of E. So the
relative familiarity of H, as contrasted with D, derives from purely practical considerations;
theoretically, they're all on equal footing.

Many authors call H, not B, the “magnetic field” Then they have to invent a new
word for B: the “flux density,” or magnetic “induction” (an absurd choice, since that term
already has at least two other meanings in electrodynamics). Anyway, B is indisputably the
fundamental quantity, so I shall continue to call it the “magnetic field,” as everyone does in
the spoken language. H has no sensible name: just call it “H”.*

4For those who disagree, I quote A. Sommerfeld's Electrodynamics (New York: Academic Press, 1952), p.
45: “The unhappy term ‘magnetic field” for H should be avoided as far as possible. It seems to us that this term
has led into error none less than Maxwell himself ... "
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Problem 6.12 An infinitely long cylinder, of radius R, carries a “frozen-in” magnetization.
parallel to the axis,

M =ks1z,

where k is a constant and s is the distance from the axis; there is no free current anywhere.
Find the magnetic field inside and outside the cylinder by two different methods:

(a) As in Sect. 6.2, locate all the bound currents, and calculate the field they produce.

(b) Use Ampere’s law (in the form of Eq. 6.20) to find H, and then get B from Eq. 6.18. (Notice
that the second method is much faster, and avoids any explicit reference to the bound currents.)
Problem 6.13 Suppose the field inside a large piece of magnetic material is By, so that Hy =

(1/no)Bo — M.

(a) Now a small spherical cavity is hollowed out of the material (Fig. 6.21). Find the field at
the center of the cavity, in terms of By and M. Also find H at the center of the cavity, in terms
of Hy and M.

(b) Do the same for a long needle-shaped cavity running parallel to M.

(¢) Do the same for a thin wafer-shaped cavity perpendicular to M.

(a) Sphere  (b) Needle (c) Wafer

Figure 6.21
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Assume the cavities are small enough so that M, By, and Hy, are essentially constant. Com-
pare Prob. 4.16. [Hint: Carving out a cavity is the same as superimposing an object of the
same shape but opposite magnetization.]

6.3.2 A Deceptive Parallel

Equation 6.19 looks just like Ampere’s original law (5.54), only the fotal current is replaced
by the free current, and B is replaced by woH. As in the case of D, however, I must warn
you against reading too much into this correspondence. It does not say that uoH is “just
like B, only its source is J ¢ instead of J.” For the curl alone does not determine a vector
field—you must know the divergence as well. And whereas V - B = 0, the divergence of
H is not, in general, zero. In fact, from Eq. 6.18

V.H=-V-M. (6.23)

Only when the divergence of M vanishes is the parallel between B and o H faithful.

If you think I'm being pedantic, consider the example of the bar magnet—a short cylinder
of iron that carries a permanent uniform magnetization M parallel to its axis. (See Probs. 6.9
and 6.14.) In this case there is no free current anywhere, and a naive application of Eq. 6.20
might lead you to suppose that H = 0, and hence that B = 1oM inside the magnet and
B = 0 outside, which is nonsense. It is quite true that the curl of H vanishes everywhere,
but the divergence does not. (Can you see where V - M = 0?) Advice: When you are asked
to find B or H in a problem involving magnetic materials, first look for symmetry. If the
problem exhibits cylindrical, plane, solenoidal, or toroidal symmetry, then you can get H
directly from Eq. 6.20 by the usual Ampere’s law methods. (Evidently, in such cases V- M
is automatically zero, since the free current alone determines the answer.) If the requisite
symmetry is absent, you’ll have to think of another approach, and in particular you must
not assume that H is zero just because you see no free current.

6.3.3 Boundary Conditions

The magnetostatic boundary conditions of Sect. 5.4.2 can be rewritten in terms of H and
the free current, From Eq. 6.23 it follows that

H_L

above

1 1 1
- Hbelow = _(Mabove - Mbelow)’ (6.24)

while Eq. 6.19 says
g

below

o

above

=K/ x A. (6.25)
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In the presence of materials these are sometimes more useful than the corresponding bound-
ary conditions on B (Eqs. 5.72 and 5.73):

Bioe — Bimiow = 0, (6.26)

above

and
_gl

below

B!

above

= po(K x n). (6.27)
You might want to check them, for Ex. 6.2 or Prob. 6.14.

Problem 6.14 For the bar magnet of Prob. 6.9, make careful sketches of M, B, and H, assuming
L is about 2a. Compare Prob. 4.17.

Problem 6.15 If J y = 0 everywhere, the curl of H vanishes (Eq. 6.19), and we can express H
as the gradient of a scalar potential W:

H=-VW.

According to Eq. 6.23, then,

VW = (V- M),
so W obeys Poisson’s equation, with V - M as the “source.” This opens up all the machinery
of Chapter 3. As an example, find the field inside a uniformly magnetized sphere (Ex. 6.1) by
separation of variables. [Hint: V - M = 0 everywhere except at the surface (r = R), so W
satisfies Laplace’s equation in the regions » < R and r > R; use Eq. 3.65, and from Eq. 6.24
figure out the appropriate boundary condition on W]

6.4 Linear and Nonlinear Media

6.4.1 Magnetic Susceptibility and Permeability

In paramagnetic and diamagnetic materials, the magnetization is sustained by the field; when
B is removed, M disappears. In fact, for most substances the magnetization is proportional
to the field, provided the field is not too strong. For notational consistency with the electrical
case (Eq. 4.30), I should express the proportionality thus:

M= L)(mB (incorrect!). (6.28)
Mo
But custom dictates that it be written in terms of H, instead of B:
M = x,H. (6.29)
The constant of proportionality x,, is called the magnetic susceptibility; it is a dimen-

sionless quantity that varies from one substance to another—positive for paramagnets and
negative for diamagnets. Typical values are around 1073 (see Table 6.1).
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Material Susceptibility | Material Susceptibility
Diamagnetic: Paramagnetic:

Bismuth —1.6 x 107* | Oxygen 1.9 x 1076
Gold —-3.4 x 107 | Sodium 8.5 x 1076
Silver —24x 107> | Aluminum 2.1 x 1073
Copper —9.7 x 107° | Tungsten 7.8 x 1077
Water —9.0 x 1076 | Platinum 2.8 x10°*
Carbon Dioxide —1.2 x 1078 | Liquid Oxygen (—200° C) 3.9 %1073
Hydrogen —2.2 x 107 | Gadolinium 4.8 x 107!

Table 6.1 Magnetic Susceptibilities (unless otherwise specified, values are for
1 atm, 20° C). Source: Handbook of Chemistry and Physics, 67th ed.
(Boca Raton: CRC Press, Inc., 1986).

Materials that obey Eq. 6.29 are called linear media. In view of Eq. 6.18,
B = pno(H +M) = po(1 + xm)H, (6.30)
for linear media. Thus B is also proportional to H:’
B = uH, 6.31)

where
w= po(l + xm). (6.32)

w is called the permeability of the material.® In a vacuum, where there is no matter to
magnetize, the susceptibility x,, vanishes, and the permeability is po. That’s why ug is
called the permeability of free space.

Example 6.3
An infinite solenoid (n turns per unit length, current 7) is filled with linear material of suscep-
tibility ;. Find the magnetic field inside the solenoid.

Solution: Since B is due in part to bound currents (which we don’t yet know), we cannot
compute it directly. However, this is one of those symmetrical cases in which we can get H
from the free current alone, using Ampere’s law in the form of Eq. 6.20:

H=nlz

3 Physically, therefore, Eq. 6.28 would say exactly the same as Eq. 6.29, only the constant Xm would have a
different value. Equation 6.29 s a little more convenient, because experimentalists find it handier to work with H
than B.

o1f you factor out 19, what’s left is called the relative permeability: u, = 1+ x; = pu/ - By the way,
formulas for H in terms of B (Eq. 6.31, in the case of linear media) are called constitutive relations, just like
those for D in terms of E.
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Figure 6.22

(Fig. 6.22). According to Eq. 6.31, then,

B = uo(l + ymnl z.

If the medium is paramagnetic, the field is slightly enhanced; if it’s diamagnetic, the field i~
somewhat reduced. This reflects the fact that the bound surface current

Kb:Mxﬁ=Xm(H><ﬁ)=anl$

is in the same direction as I, in the former case (X > 0), and opposite in the latter (x,, < 0.

You might suppose that linear media avoid the defect in the parallel between B and H:
since M and H are now proportional to B, does it not follow that their divergence, like B's.
must always vanish? Unfortunately, it does not; at the boundary between two materials of
different permeability the divergence of M can actually be infinite. For instance, at the end
of a cylinder of linear paramagnetic material, M is zero on one side but not on the other.
For the “Gaussian pillbox” shown in Fig. 6.23, § M - da # 0, and hence, by the divergence
theorem, V - M cannot vanish everywhere within.

Gaussian pillbox

M=0
Vacuum

Figure 6.23
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Incidentally, the volume bound current density in a homogeneous linear material is
proportional to the free current density:

b=V XM=V x (H) = yuds. (6.33)

In particular, unless free current actually flows through the material, all bound current will
be at the surface.

Problem 6.16 A coaxial cable consists of two very long cylindrical tubes, separated by linear
insulating material of magnetic susceptibility y,,. A current [ flows down the inner conductor
and returns along the outer one; in each case the current distributes itself uniformly over the
surface (Fig. 6.24). Find the magnetic field in the region between the tubes. As a check,
calculate the magnetization and the bound currents, and confirm that (together, of course, with
the free currents) they generate the correct field.

Figure 6.24

Problem 6.17 A current / flows down a long straight wire of radius a. If the wire is made of
linear material (copper, say, or aluminum) with susceptibility x, and the current is distributed
uniformly, what is the magnetic field a distance s from the axis? Find all the bound currents.
What is the net bound current flowing down the wire?

Problem 6.18 A sphere of linear magnetic material is placed in an otherwise uniform magnetic
field By. Find the new field inside the sphere. [Hint: See Prob. 6.15 or Prob. 4.23.]

Problem 6.19 On the basis of the naive model presented in Sect. 6.1.3, estimate the magnetic
susceptibility of a diamagnetic metal such as copper. Compare your answer with the empirical
value in Table 6.1, and comment on any discrepancy.
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6.4.2 Ferromagnetism

In a linear medium the alignment of atomic dipoles is maintained by a magnetic field im-
posed from the outside. Ferromagnets—which are emphatically nor linear’—require no
external fields to sustain the magnetization; the alignment is “frozen in.” Like paramag-
netism, ferromagnetism involves the magnetic dipoles associated with the spins of unpaired
electrons. The new feature, which makes ferromagnetism so different from paramagnetism.
is the interaction between nearby dipoles: In a ferromagnet, each dipole “likes” to point in
the same direction as its neighbors. The reason for this preference is essentially quantum
mechanical, and I shall not endeavor to explain it here; it is enough to know that the cor-
relation is so strong as to align virtually 100% of the unpaired electron spins. If you could
somehow magnify a piece of iron and “see” the individual dipoles as tiny arrows, it would
look something like Fig. 6.25, with all the spins pointing the same way.

Figure 6.25

Butif that is true, why isn’t every wrench and nail a powerful magnet? The answer is that
the alignment occurs in relatively small patches, called domains. Each domain contains
billions of dipoles, all lined up (these domains are actually visible under a microscope.
using suitable etching techniques—see Fig. 6.26), but the domains themselves are randomly
oriented. The household wrench contains an enormous number of domains, and their
magnetic fields cancel, so the wrench as a whole is not magnetized. (Actually, the orientation
of domains is not completely random; within a given crystal there may be some preferential
alignment along the crystal axes. But there will be just as many domains pointing one way
as the other, so there is still no large-scale magnetization. Moreover, the crystals themselves
are randomly oriented within any sizable chunk of metal.)

How, then, would you produce a permanent magnet, such as they sell in toy stores? If
you put a piece of iron into a strong magnetic field, the torque N = m x B tends to align
the dipoles parallel to the field. Since they like to stay parallel to their neighbors, most of
the dipoles will resist this torque. However, at the boundary between two domains, there

In this sense it is misleading to speak of the susceptibility or permeability of a ferromagnet. The terms are
used for such materials, but they refer to the proportionality factor between a differential increase in H and the
resulting differential change in M (or B); moreover, they are not constants, but functions of H.
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Ferromagnetic domains. (Photo courtesy of R. W. DeBlois)

Figure 6.26

are competing neighbors, and the torque will throw its weight on the side of the domain
most nearly parallel to the field; this domain will win over some converts, at the expense
of the less favorably oriented one. The net effect of the magnetic field, then, is to move the
domain boundaries. Domains parallel to the field grow, and the others shrink. If the field
is strong enough, one domain takes over entirely, and the iron is said to be “saturated.”

It turns out that this process (the shifting of domain boundaries in response to an external
field) is not entirely reversible: When the field is switched off, there will be some return to
randomly oriented domains, but it is far from complete—there remains a preponderance of
domains in the original direction. The object is now a permanent magnet.

A simple way to accomplish this, in practice, is to wrap a coil of wire around the object
to be magnetized (Fig. 6.27). Run a current I through the coil; this provides the external
magnetic field (pointing to the left in the diagram). As you increase the current, the field
increases, the domain boundaries move, and the magnetization grows. Eventually, you
reach the saturation point, with all the dipoles aligned, and a further increase in current has
no effect on M (Fig. 6.28, point b).

Now suppose you reduce the current. Instead of retracing the path back to M = 0,
there is only a partial return to randomly oriented domains. M decreases, but even with the
current off there is some residual magnetization (paint ¢). The wrench is now a permanent
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A\

Figure 6.27

magnet. If you want to eliminate the remaining magnetization, you’ll have to run a current
backwards through the coil (a negative ). Now the external field points to the right, and as
you increase I (negatively), M drops down to zero (point d). If you turn I still higher, you
soon reach saturation in the other direction-—all the dipoles now pointing to the right (e). At
this stage switching off the current will leave the wrench with a permanent magnetization to
the right (point f). To complete the story, turn I on again in the positive sense: M returns
to zero (point g), and eventually to the forward saturation point ().

The path we have traced out is called a hysteresis loop. Notice that the magnetization
of the wrench depends not only on the applied field (that is, on I), but also on its previous
magnetic “history.”® For instance, at three different times in our experiment the current
was zero (a, ¢, and f), yet the magnetization was different for each of them. Actually, it is
customary to draw hysteresis loops as plots of B against H, rather than M against I. (If our
coil is approximated by a long solenoid, with # turns per unit length, then H = nl, so H
and I are proportional. Meanwhile, B = po(H + M), but in practice M is huge compared
to H, so to all intents and purposes B is proportional to M.)

M

(Saturation)
¢ b

(Permanent
Magnet)

d a /g 7
! (Permanent
Magnet)

e
(Saturation)

Figure 6.28

gEtymologically, the word hysteresis has nothing to do with the word history—nor with the word hysteria. It
derives from a Greek verb meaning “to lag behind.”
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To make the units consistent (teslas), I have plotted (o H) horizontally (Fig. 6.29);
notice, however, that the vertical scale is 10* times greater than the horizontal one. Roughly
speaking, uoH is the field our coil would have produced in the absence of any iron; B is
what we actually got, and compared to poH it is gigantic. A little current goes a long way
when you have ferromagnetic materials around. That’s why anyone who wants to make a
powerful electromagnet will wrap the coil around an iron core. It doesn’t take much of an
external field to move the domain boundaries, and as soon as you’ve done that, you have
all the dipoles in the iron working with you.

B
157}
1+

/lb 15 20 (UH X 10%)

Figure 6.29

One final point concerning ferromagnetism: It all follows, remember, from the fact that
the dipoles within a given domain line up parallel to one another. Random thermal motions
compete with this ordering, but as long as the temperature doesn’t get too high, they cannot
budge the dipoles out of line. It’s not surprising, though, that very high temperatures do
destroy the alignment. What is surprising is that this occurs at a precise temperature (770°
C, for iron). Below this temperature (called the Curie point), iron is ferromagnetic; above,
itis paramagnetic. The Curie point is rather like the boiling point or the freezing point in that
there is no gradual transition from ferro- to para-magnetic behavior, any more than there is
between water and ice. These abrupt changes in the properties of a substance, occurring at
sharply defined temperatures, are known in statistical mechanics as phase transitions.

Problem 6.20 How would you go about demagnetizing a permanent magnet (such as the
wrench we have been discussing, at point ¢ in the hysteresis loop)? That is, how could you
restore it to its original state, with M = 0 at I = O?

Problem 6.21

(a) Show that the energy of a magnetic dipole in a magnetic field B is given by

U=—-m-B. (6.34)
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/11_1% 6, r =m2 0,

Figure 6.30

[Assume that the magnitude of the dipole moment is fixed, and all you have to do is move it into
place and rotate it into its final orientation. The energy required to keep the current flowing i
a different problem, which we will confront in Chapter 7.] Compare Eq. 4.6.

(b) Show that the interaction energy of two magnetic dipoles separated by a displacement r i~
given by

o 1 - N <
U= 3 [m; -my —3(my - r)(m> - r)]. (6.35)
4 r

Compare Eq. 4.7.

(c) Express your answer to (b) in terms of the angles 61 and 6, in Fig. 6.30, and use the result
to find the stable configurationh two dipoles would adopt if held a fixed distance apart, but lett
free to rotate.

(d) Suppose you had a large collection of compass needles, mounted on pins atregular interval~
along a straight line. How would they point (assuming the earth’s magnetic field can be
neglected)? [A rectangular array of compass needles also aligns itself spontaneously, and this
is sometimes used as a demonstration of “ferromagnetic” behavior on a large scale. It's a bit
of a fraud, however, since the mechanism here is purely classical, and much weaker than the
quantum mechanical exchange forces that are actually responsible for ferromagnetism.]

More Problems on Chapter 6

Problem 6.22 In Prob. 6.4 you calculated the force on a dipole by “brute force.” Here’s a more
elegant approach. First write B(r) as a Taylor expansion about the center of the loop:

B(r) = B(ro) + [(r —rp) - VolB(rp),

where r is the position of the dipole and V¢ denotes differentiation with respect to rg. Put
this into the Lorentz force law (Eq. 5.16) to obtain

F=1I 7§ dl x [(r - Vo)B(ro)].

Or, numbering the Cartesian coordinates from 1 to 3:

Fi=1I

€ijk {y{ r dlj} [Vo, Bk (ro)] .

3
k=1
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where ¢;;y is the Levi-Civita symbol (+1 if ijk = 123, 231, or 312; —1 if ijk = 132,
213, or 321; 0 otherwise), in terms of which the cross-product can be written (A x B); =
Z;,kzl €;jkA jBr. Use Eq. 1.108 to evaluate the integral. Note that

3

Z €ijk€ljm = 8il8km — SimOki,
=1

where 8;; is the Kronecker delta (Prob. 3.45).

Problem 6.23 Notice the following parallel:

V:-D=0, VXE=0, ¢E=D-P, (no free charge);
V-B=0, VxH=0, uoH=B - pugM, (no free current).

Thus, the transcription D — B, E — H, P — 1M, €9 — ug turns an electrostatic problem
into an analogous magnetostatic one. Use this observation, together with your knowledge of
the electrostatic results, to rederive

(a) the magnetic field inside a uniformly magnetized sphere (Eq. 6.16);
(b) the magnetic field inside a sphere of linear magnetic material in an otherwise uniform
magnetic field (Prob. 6.18);

(c) the average magnetic field over a sphere, due to steady currents within the sphere (Eq. 5.89).

Problem 6.24 Compare Egs. 2.15, 4.9, and 6.11. Notice that if p, P, and M are uniform, the
same integral is involved in all three:
[
—dt'.
72

Therefore, if you happen to know the electric field of a uniformly charged object, you can
immediately write down the scalar potential of a uniformly polarized object, and the vector
potential of a uniformly magnetized object, of the same shape. Use this observation to obtain V
inside and outside a uniformly polarized sphere (Ex. 4.2), and A inside and outside a uniformly
magnetized sphere (Ex. 6.1).

Problem 6.25 A familiar toy consists of donut-shaped permanent magnets (magnetization
parallel to the axis), which slide frictionlessly on a vertical rod (Fig. 6.31). Treat the magnets
as dipoles, with mass mg and dipole moment m.

(a) If you put two back-to-back magnets on the rod, the upper one will “float”—the magnetic
force upward balancing the gravitational force downward. At what height (z) does it float?

(b) If you now add a third magnet (parallel to the bottom one), what is the ratio of the two
heights? (Determine the actual number, to three significant digits.)
[Answer: (a) [3M0m2/27tmdg]1/4; (b) 0.8501]

Problem 6.26 At the interface between one linear magnetic material and another the magnetic
field lines bend (see Fig. 6.32). Show that tan 6>/ tan 6 = u, /i1, assuming there is no free
current at the boundary. Compare Eq. 4.68.
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Problem 6.27 A magnetic dipole m is imbedded at the center of a sphere (radius R) of linear
magnetic material (permeability ). Show that the magnetic field inside the sphere (0 < r < R)
is

2(pug — p)m }

Quo+ wR3

" 1 A
5{,—3[3(“”)'—'““

What is the field outside the sphere?

Problem 6.28 You are asked to referee a grant application, which proposes to determine
whether the magnetization of iron is due to “Ampére” dipoles (current loops) or “Gilbert”
dipoles (separated magnetic monopoles). The experiment will involve a cylinder of iron (radius
R and length L = 10R), uniformly magnetized along the direction of the axis. If the dipoles
are Ampere-type, the magnetization is equivalent to a surface bound current K, = M & if
they are Gilbert-type, the magnetization is equivalent to surface monopole densities o5, = =M
at the two ends. Unfortunately, these two configurations produce identical magnetic fields, at
exterior points. However, the interior fields are radically different—in the first case B is in the
same general direction as M, whereas in the second it is roughly opposite to M. The applicant
proposes to measure this internal field by carving out a small cavity and finding the torque on
a tiny compass needle placed inside.

Assuming that the obvious technical difficulties can be overcome, and that the question itself
is worthy of study, would you advise funding this experiment? If so, what shape cavity would
you recommend? If not, what is wrong with the proposal? [Hint: refer to Probs. 4.11, 4.16,
6.9, and 6.13.]




