Chapter 8. Hydrogen

Question-1

Classify the following hydrides into covalent, ionic and interstitial hydrides.

Solution:

NH₃, ZrH₂, CaH₂, NaH, B₂H₆

Covalent = $NH_3 B_2H_6$

Ionic = NaH, CaH₂ Interstitial = ZrH_2 .

Question-2

How is H₂O₂ manufactured?

Solution:

Industrially H_2O_2 is prepared by the auto oxidation of 2 hydroxy anthraquinols. It involves a cycle of reactions. The net reaction is to catalyst union of H_2 and O_2 to yield H_2O_2

2 - ethylanthraquinol
$$\underbrace{\begin{array}{c} O_2 \text{ air} \\ H_2/Pd \end{array}}$$
 (oxidizied product) + H_2O_2

It is concentrated by careful distillation under low pressure.

Question-3

What is the use of Zeolite / per mutit?

Solution:

Zeolite or permutit is a sodium aluminium silicate. Na Al SiO $_4$.3H $_2$ O. When hard water, which contains Ca $^{2+}$ / Mg $^{2+}$ ions, is passed through Zeolite / permutit, Na $^+$ ion in the silicate gets exchanged for Ca $^+$ / Mg $^{2+}$ in hard water. Thus hard water is softened.

Question-4

What is meant by 100-volume of Hydrogen peroxide?

Solution:

Each milliliter of 100-volume H_2O_2 will liberate 100 volumes of oxygen at STP. It may be 30% solution H_2O_2 .

Question-5

Give examples for electron deficient, electron-precise and electron rich molecular hydrides.

Solution:

Electron deficient: B₂H₆ (has less number of electrons to write Lewis structure)

Electron - precise: CH4

Electron – rich: NH_3 and H_2O (N and O have lone pairs of electrons).

Question-6

Why HF, H₂O and NH₃ have higher boiling points, and aggregation?

Solution:

Fluorine, oxygen and nitrogen are electronegative elements: They have lone pairs of electron in HF, H₂O and NH₃, electron rich hydride.

Question-7

Solution:

 $2KMnO_4 + 3H_2SO_4 + 5H_2O_2 \rightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 5O_2$

KMnO₄ is converted into MnSO₄: Oxidation number of Mn is changed from +7 to +2 by H_2O_2 . That is H_2O_2 acts as a reducing agent, giving electrons to manganese. H_2O_2 is changed to O_2 by KMnO₄. Oxidation number of oxygen in H_2O_2 is changed from -1 to 0 in oxygen molecule. Hence KMNO₄ removes electron from oxygen of H_2O_2 . Hence H_2O_2 is oxidized by KMNO₄ to H_2O_3 .

$$2PbS(s) + H_2O_2 \rightarrow PbSO_4(s) + 4H_2O(l)$$

 S^{2-} in PbS is oxidized to SO_4 ; oxidation number of S in Pbs (-2) changed to (+6) in PbSO₄. Electrons are removed from Pbs by H_2O_2 to convert PbS to PbSO₄. Hence H_2O_2 is an oxidizing agent.

 H_2O_2 is converted into H_2O : Oxidation number (-1) in H_2O_2 is changed into (-2) in H_2O . Hence H_2O_2 is reduced by PbS.

Question-8

How is H₂O₂ concentrated?

Solution:

Aqueous H_2O_2 solutions spontaneously decompose to give H_2O and O_2 . Hence $1\%\ H_2O_2$, formed during preparation cannot be concentrated by distillation under atmospheric pressure. Hence H_2O_2 solution is concentrated to 30% by distillation under reduced pressure. This further concentrated to 85% by careful distillation under low pressure. The remaining water is frozen out to give pure H_2O_2 .

Question-9

What is nascent hydrogen? How is its reactivity?

Solution:

The hydrogen at the time of its production (new born) is much more reactive and is called nascent hydrogen. It is in a atomic state at the moment of its formation.

E.g. H₂ molecule does not reduce KMnO₄. But, Zn and HCl reduces KMnO₄. Decolourise KMnO₄ .

Zn +
$$H_2SO_4 \rightarrow ZnSO_4 + 2(H)$$
; - 2KMnO₄ + $3H_2SO_4 + 10H \rightarrow K_2SO_4 + 2MnSO_4 + 8H_2O$

Question-10

What is the reaction involved using H₂O₂ for renovating old painting?

Solution:

Old paintings rendered black PbS by the atmospheric H_2S . Black PbS in painting is oxidized by H_2O_2 to white PbSO₄

$$H_2O_2 \rightarrow H_2O + (O)$$

PbS + 4(O) \rightarrow PbSO₄