IAS Mains Botany 2002

Paper-II

Section-A

- 1. Answer any three of the following. Each part should be answered in not more than 200 words. $20 \times 3 = 60$
 - a. What is micro-propagation? List the various ways this technique can be used to practical advantage.
 - b. What determines a sex-linked trait? Give two examples.
 - c. Explain 'test of significance' and comment on its application in Botanical Research.
 - d. Briefly review the methods adopted for determining distance between two genes on a chromosome.
- 2. Describe the extra cellular matrix of a plant cell. What is the relationship of plasmodesmata to the extracellular matrix? 60
- 3. How is recombinant DNA produced? What applications have been found for recombinant DNA? 60
- 4. Distinguish between: $20 \times 3 = 60$
 - a. Transcription and translation
 - b. Spontaneous and induced mutations
 - c. Binomial Distribution and Poisson Distribution.

Section-B

- 5. Answer any three of the following. Each part should be answered in not more than 200 words. $20 \times 3 = 60$
 - a. What is oxidative phosphorylation? What is its significance?
 - b. Define phototropism. What pigment (s) function as the photoreceptor for phototropism? Give evidence to support your conclusion.
 - c. What are cytokinins? Give an account of roles they play n plant growth and development.
 - d. What are biomes? Explain, will examples, how climate determines what biome occurs in a region.
- 6. Review the Crassylacean acid metabolism (CAM). In what significant way does CAM differ from C4 metabolism? 60
- 7. Describe how plants may be injured by water stress. In what way are freezing stress and salt stress similar to water stress?
- 8. Give concise answers to the following: $20 \times 3 = 60$
 - a. Explain why temperate forests and woodlands are less productive and diverse than tropical forests.
 - b. How are endangered species listed in the Red Data Books?

c. What is the function of leg hemog	c. What is the function of leg hemoglobin in symbiotic nitrogen fixation?				