Chemical Bonding and Molecular Structure

Chemical bond:

Chemical bond is the attractive force, which holds various constituents (such as atoms, ions) together in different chemical species.

Octet rule:

Atoms tend to gain, lose, or share electrons so as to have eight electrons in their valence shells.

Lewis dot Structure:

Representation of molecules and ions in terms of the shared pairs of electrons and the octet rule

Formal charge:

 $HNO_3 \rightarrow$

Lewis structure of
$$O_3 \rightarrow 0$$

$$\begin{bmatrix} \text{Formal charge (F.C)} \\ \text{on an atom in a} \\ \text{Lewis structure} \end{bmatrix} = \begin{bmatrix} \text{Total number of} \\ \text{valence electrons} \\ \text{in the free atom} \end{bmatrix} - \begin{bmatrix} \text{Total number of} \\ \text{nonbonding (lone} \\ \text{pair electrons)} \end{bmatrix} - \frac{1}{2} \begin{bmatrix} \text{Total number of} \\ \text{bonding (shared} \\ \text{electrons)} \end{bmatrix}$$

F.C. on the O⁻¹ =
$$6 - 2 - \frac{1}{2}(6) = +1$$

F.C. on the O⁻² = $6 - 4 - \frac{1}{2}(4) = 0$
F.C. on the O⁻³ = $6 - 6 - \frac{1}{2}(2) = -1$

Limitations of the octet rule:

• Incomplete octet of the central atom

• Odd electron molecules

E.g. NO, NO₂

$$\ddot{N} = \ddot{Q}$$
 $\ddot{Q} = \ddot{N} - \ddot{Q}\ddot{Q}$

Expanded octet

E.g. PF₅, SF₆, H₂SO₄

- Some other drawbacks:
- 1. It is based upon chemical inertness of noble gases. However, some noble gases can combine to form compounds such as XeF₂, KrF₂, XeOF₂, etc.
- 2. Does not account for the shape of molecules
- 3. Does not explain the relative stability of molecules

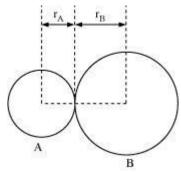
Conditions for Formation of Covalent Bond

- Presence of four or more electrons in the outermost shell of an atom (exception H, Be, B and Al)
- High electronegativity of both the atoms
- High electron affinity for both the atoms
- High ionisation energy of both the atoms
- Electronegativity difference between combining atoms should be zero or very low

Ionic or Electrovalent Bond: Formation of ionic compound depends upon ease of formation of positive and negative ions

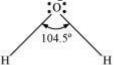
and also on arrangement of positive and negative ions.

Ionisation enthalpy ($\Delta_i H$) and electron gain enthalpy ($\Delta_{eg} H$):

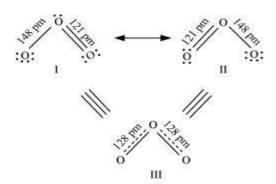

The ionisation enthalpy is the enthalpy change when a gas phase atom in its ground state loses an electron and the electron gain enthalpy is the enthalpy change when a gas phase atom in its ground state gains an electron.

Lattice enthalpy:

The energy required to separate completely one mole of a solid ionic compound into gaseous constituent ions is called the lattice enthalpy of the solid.


Bond parameters:

• Bond length → Equilibrium distance between the nuclei of two bonded atoms in a molecule



Bond length (R) = $r_A + r_B$

- Bond angle \rightarrow Angle between the bonds around the central atom in a molecule/complex ion

- Bond enthalpy → Energy required to break one mole of a particular type of bond between two atoms in gaseous state
- Bond order → Number of bonds between two atoms in a molecule
- Resonance structures → Equivalent Lewis structures (example: ozone)

Here, I and II are resonance structures while III is the resonance hybrid.

Polarity of bonds →
 Dipole moment (μ) = Charge (Q) × Distance of separation (r)
 Dipole moment is usually expressed in Debye units (D).
 1D = 3.33564 × 10⁻³⁰ C m

VSEPR Theory:

The repulsive interaction of electron pairs decrease in the order:

Lone pair (lp) – Lone pair (lp) – Bond pair (bp) – Bond pair (bp) – Bond pair (bp)

Valence bond theory:

It considers the formation of a chemical bond by the overlapping of atomic orbitals of the participating atoms.

Types of overlapping and nature of covalent bonds:

There are two types of covalent bonds – Sigma (σ) and Pi (Π) .

Sigma (σ) bond (formed by head-on overlapping)
 s-s overlapping

$$s$$
 - orbital s - orbital s - s overlapping

• *s*–*p* overlapping

$$s$$
 – orbital p – orbital s – p overlapping

• *p-p* overlapping

$$p$$
 - orbital p - orbital p - p overlapping

• Pi (II) bond (formed by sidewise overlapping)

$$p$$
 - orbital p - orbital p - p overlapping


Sigma (σ) bond is stronger than Pi (Π) bond.

Hybridisation: Process of intermixing of the orbitals of slightly different energies

Hybridisation type	Shape of molecules/ions	Example
sp	Linear	BeCl ₂
sp ²	Trigonal planar	BCl ₃
sp ³	Tetrahedral	CH4
dsp ²	Square planar	[Ni(CN) ₄] ²⁻
sp³d	Trigonal bipyramidal	PCl ₅
sp^3d^2	Square pyramidal	BrF ₅
d^2sp^3	Octahedral	SF ₆

Molecular orbital theory

Linear combination of Atomic Orbitals (LCAO)

Energy levels for molecular orbitals -

- Increasing order of energies of various molecular orbitals for O₂ and F₂: $\sigma 1s < \sigma^* 1s < \sigma 2s < \sigma^* 2s < \sigma 2p_z < (\pi 2p_x = \pi 2p_y) < (\pi^* 2p_x = \pi^* 2p_y) < \sigma^* 2p_z$
- Increasing order of energies of various molecular orbitals for Li₂, Be₂, B₂, C₂, and N₂: $\sigma 1s < \sigma^* 1s < \sigma 2s < \sigma^* 2s < (\pi 2p_x = \pi 2p_y) < \sigma 2p_z < (\pi^* 2p_x = \pi^* 2p_y) < \sigma^* 2p_z$ Where,

N_b= Number of electrons occupying bonding orbitals

N_a= Number of electrons occupying antibonding orbitals.

Integral bond order values of 1, 2 or 3 correspond to single, double or triple bonds respectively.

- The bond length decreases as bond order increases.
- If all the molecular orbitals in the molecule are doubly occupied, then the molecule is diamagnetic; and if one or more of the molecular orbitals are singly occupied, then the molecule is paramagnetic.

Hydrogen Molecule (H2)

Bond order
$$=\frac{N_b - N_a}{2} = \frac{2 - 0}{2} = 1$$

Helium Molecule (He₂)

Bond order =
$$\frac{N_b - N_a}{2} = \frac{2 - 2}{2} = 0$$

Lithium Molecule (Li₂)

$$\frac{N_b - N_a}{2} = \frac{4 - 2}{2} = 1$$

Bond order =

Beryllium Molecule (Be2)

$$\frac{N_b - N_a}{2} = \frac{4 - 4}{2} = 0$$

Bond order =

Carbon Molecule (C2)

$$\frac{N_b - N_a}{2} = \frac{8 - 4}{2} = 2$$

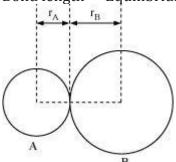
Bond order =

Oxygen Molecule (O₂)

Bond order
$$\frac{N_b - N_a}{2} = \frac{10 - 6}{2} = 2$$

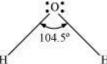
Ionic or Electrovalent Bond: Formation of ionic compound depends upon ease of formation of positive and negative ions and also on arrangement of positive and negative ions.

Ionisation enthalpy ($\Delta_{i}H$) and electron gain enthalpy ($\Delta_{eg}H$):

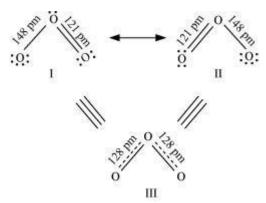

The ionisation enthalpy is the enthalpy change when a gas phase atom in its ground state loses an electron and the electron gain enthalpy is the enthalpy change when a gas phase atom in its ground state gains an electron.

Lattice enthalpy:

The energy required to separate completely one mole of a solid ionic compound into gaseous constituent ions is called the lattice enthalpy of the solid.


Bond parameters:

Bond length → Equilibrium distance between the nuclei of two bonded atoms in a molecule



Bond length (R) = $r_A + r_B$

• Bond angle \rightarrow Angle between the orbitals containing bonding electron pairs around the central atom in a molecule/complex ion

- Bond enthalpy → Energy required to break one mole of a particular type of bond between two atoms in gaseous state
- Bond order → Number of bonds between two atoms in a molecule
- Resonance structures → Equivalent Lewis structures (example: ozone)

Here, I and II are resonance structures while III is the resonance hybrid.

Polarity of bonds →

Dipole moment (μ) = Charge (Q) × Distance of separation (r) Dipole moment is usually expressed in Debye units (D). 1D = 3.33564 × 10⁻³⁰ C m