Q.1. Verify Rolle's theorem for the function : $f(x) = e^{2x} (\sin 2x - \cos 2x)$, defined in the interval [$\pi/8$, $5\pi/8$].

Solution: 1

We have , $f(x) = e^{2x}(\sin^{2x} - \cos^{2x}) \times \varepsilon [\pi/8, 5\pi/8]$

(1) As sine, cosine and exponential function are always continuous, hence given function

f(x) is continuous in $[\pi/8,\,5\pi/8]$.

(2) $f'(x) = e^{2x} \times 2 (\sin^{2x} - \cos 2x) + e^{2x} (2 \cos^{2x} + 2 \sin^{2x})$

 $= 2 e^{2x} (\sin^{2x} - \cos^{2x} + \cos^{2x} + \sin^{2x})$

 $= 2 e^{2x}(2 \sin^{2x}) = 4 e^{2x} \sin^{2x}$.

Thus derivatives exists in the given interval and function is differentiable.

(3)
$$f(\pi/8) = e^{\pi/4} (\sin \pi/4 - \cos \pi/4) = e^{\pi/4} \times 0 = 0$$
.
 $f(5\pi/8) = e^{5\pi/4} (\sin 5^{\pi/4} - \cos 5^{\pi/4}) = e^{5\pi/4} \times 0 = 0$.
Therefore, $f(\pi/8) = f(5\pi/8)$
Now $f'(c) = 0$
Or, $4 e^{2c} \sin 2c = 0$
Or, $\sin 2c = 0$ [As $e^{2c} \neq 0$] Hence, $2c = 0$, π , 2π , 3π
Or, $c = 0$, $\pi/2$, π , $3\pi/2$

Therefore , $\pi/2 \epsilon (\pi/8, 5\pi/8)$.

Hence Rolle's theorem is verified.

Q.2. Examine the validity and conclusion of Rolle's theorem for the function : $f(x) = ex \cdot sin^{x}$, for all $x \in [0, \pi]$.

Solution: 2

We have , $f(x) = ex \sin x$, for all $x \in [0, \pi]$

(1) As exponential function and trigonometric function are continuous , hence their product is also continuous in $[0, \pi]$ i.e. f(x) is continuous in the given interval.

(2) $f(x) = e^{x} \sin x$

Hence, $f'(x) = e^x \sin x + e^x \cos x$.

Clearly f(x) exists in the open interval $(0, \pi)$.

(3) $f(0) = e^{\mathbf{0}}$. sin 0 = 0; $f(\pi) = e\pi$.sin $\pi = 0$.

Since $f(0) = f(\pi) = 0$.

Hence all condition of Rolle's theorem is satisfied. Hence there exist 'c' , in $0 < c < \pi$ such that f'(c) = 0

Or, $e^{\mathbf{c}}$ (sin c + cos c) = 0

Or, sin c + cos c = 0 [As, $e^{c} \neq 0$]

Or, $\tan c = -1 = \tan 3\pi/4$.

As , $3\pi/4 \epsilon [0, \pi]$, Rolle's theorem is verified.

Q.3. Verify Rolle's theorem for the function $f(x) = \log [(x^2 + ab)/\{x (a + b)\}], x \in [a, b]$ and $x \neq 0$.

Solution: 3

(1) $f(x) = \log [(x^2 + ab)/\{x(a + b)\}] = \log (x^2 + ab) - \log(a + b) - \log x$

Therefore , f(x) is continuous in $a \le x \le b$.

(2)
$$f'(x) = 2x/(x^2 + ab) - 1/x$$

= $(2x^2 - x^2 - ab)/\{x(x^2 + ab)\}$
= $(x^2 - ab)/\{x (x^2 + ab)\}$, which exist in a < x < b.
(3) $f(a) = \log (a^2 + ab) - \log (a + b) - \log a$

= $\log a + \log (a + b) - \log (a + b) - \log a = 0$ f(b) = $\log (b^2 + ab) - \log (a + b) - \log b$ = $\log b + \log (a + b) - \log (a + b) - \log b = 0$ Hence , f(a) = f(b) . Hence , there exist c ϵ [a, b] , such that f'(c) = 0 , Or, f'(c) = $(c^2 - ab)/\{c(c^2 + ab)\} = 0$ Or, c² - ab = 0 => c² = ab => c = $\sqrt{(ab)}$. As, c = $\sqrt{(ab)} \epsilon$ [a, b] , **Rolle's theorem is verified.**

Q.4. Taking the function $f(x) = (x - 3) \log x$, prove that there is at least one value of x in (1, 3) which satisfies x log x = 3 - x.

Solution: 4

(1) As both (x - 3) and log x are continuous functions , hence f(x) is also a continuous in [1, 3].

(2) $f'(x) = (x - 3)/x + \log x$ which exist in (1, 3).

(3) f(1) = 0 = f(3). Therefore , f(x) satisfies all three conditions. Rolle's theorem is applicable. As such there is at least one value of x in (1, 3) for which f'(x) = 0.

Or, $(x - 3)/x + \log x = 0 = x \log x = 3 - x$.

Or, one of the roots of x log x = 3 - x will be in the interval (1, 3). [Proved.]

Q.5. Apply Rolle's theorem to find point (or points) on the curve $y = -1 + \cos x$ where the tangent is parallel to the x-axis in [0, 2n].

Solution: 5

 $y = f(x) = -1 + \cos x$ -----(1)

As , cosine function is continuous function for all values of , f(x) is continuous in $[0,\,2\pi]$ and differentiable in $(0,\,2\pi)$.

Also $f(0) = 0 - 1 + \cos 0 = -1 + 1 = 0$; $f(2\pi) = -1 + 1 = 0$.

Hence, $f(0) = f(2\pi)$.

Thus all the three conditions of Rolle's theorem are satisfied by f(x) in $[0, 2\pi]$.

Hence , by Rolle's theorem there exist at least one real number x in (0, 2π) such that f'(x) = 0.

Now, $f'(x) = -\sin x$, and $f'(x) = 0 = -\sin x = 0$.

When $x = \pi$, (i) $y = -1 + \cos \pi = -1 - 1 = -2$. So, there exist a point (π , -2) on the given curve $y = -1 + \cos x$, where the tangent is parallel to the x-axis.

Q.6. Verify Rolle's theorem for the function $f(x) = x^3 - 7x^2 + 16x - 12$ in the interval [2, 3].

Solution: 6

We have $f(x) = x^3 - 7x^2 + 16x - 12$ in [2, 3].

The function being a polynomial is continuous in [2, 3] and differentiable in (2, 3). Also $f(2) = 23 - 7 \times 22 + 16 \times 2 - 12 = 0 = f(3)$.

Therefore , all the conditions of Rolle's theorem are satisfied , hence there exist at least one value c ϵ [2, 3] such that f'(c) = 0.

Now $f'(x) = 3x^2 - 14x + 16$.

And $f'(x) = 0 = 3x^2 - 14x + 16 = 0$.

Or, (x - 2)(3x - 8) = 0

Or, x = 2, 8/3.

Clearly $c = 8/3 \epsilon (2, 3)$ and f'(c) = 0.

Hence , Rolle's theorem is verified.

Q.7. It is given that Rolle's theorem holds good for the function : $f(x) = x^3 + ax^2 + bx$, x ϵ [1, 2] at the point x = 4/3. Find the values of a and b.

Solution : 7

We have, $f(x) = x^3 + ax^2 + bx$, $x \in [1, 2]$ Then f(1) = 1 + a + b = 0; f(2) = 8 + 4a + 2b = 0Adding the two we get, 3a + b + 7 = 0 ------ (i) Differentiating we get, $f'(x) = 3x^2 + 2ax + b = 0$ And $f'(4/3) = 3(4/3)^2 + 2a(4/3) + b = 0$ Or, 16/3 + 8a/3 + b = 0Or, 8a + 3b + 16 = 0 ------ (ii) Solving (i) and (ii) we get, a = -5, b = 8.