Fastrack Revision

- ► Triangle: It is closed figure formed by three intersecting lines. A triangle has three sides, three angles and three vertices. In ΔABC, AB, BC and CA are sides; ∠A, ∠B and ∠C are angles; A, B and C are vertices.
- Congruence of Triangles: B Congruent means equal in all aspects or the figures with same shapes and sizes. The two triangles are said to be congruent, if the sides and angles of one triangle are equal to the corresponding sides and angles of the other triangle. Congruence is denoted by the symbol '\(\vec{}\).
- ► Criteria for Congruence of Triangles:
 - SSS (Side-Side) Congruence: If three sides of a triangle are equal to the three sides of another triangle, then the two triangles satisfy the SSS congruency.
 - 2. SAS (Side-Angle-Side) Congruence: If two sides and the included angle of one triangle are equal to the two sides and the included angle of the other triangle, then the two triangles satisfy the SAS congruency.
 - ASA (Angle-Side-Angle) Congruence: If two
 angles and the included side of one triangle are
 equal to the two angles and the included side of
 the other triangle, then the triangles satisfy the
 ASA congruency.
 - RHS (Right-Hand-Side) Congruence: If the hypotenuse and one side of one triangle are

equal to the hypotenuse and one side of the other triangle, then the two triangles satisfy the RHS congruency.

- Some Properties of a Triangle:
 - 1. The sum of three angles of a triangle is 180°.
 - Angles opposite to equal sides of a triangle are equal
 - **3.** Sides opposite to equal angles of a triangle are equal.
 - 4. Each angle of an equilateral triangle is of 60°.
 - **5.** The altitude drawn from vertex, it bisects perpendicularly the base of an equilateral and isosceles triangle.

Knowledge BOOSTER -

- 1. If $\triangle ABC$ and $\triangle PQR$ are congruent, then we have to careful for writing in symbol i.e., $\triangle ABC \cong \triangle PQR$, hence we do not write as $\triangle ABC \cong \triangle QPR$ or $\triangle ACB \cong \triangle PQR$ etc.
- 2. CPCT is a short form of writing corresponding parts of congruent triangles.
- 3. Two geometric figures are said to be congruent, if they are equal in all respects.
- 4. Every triangle is congruent to itself.
- If any two pairs of angles and one pair of corresponding sides are equal, then the two triangles are congruent. This may be called as AAS congruence rule.
- 6. The medians of an equilateral triangle are equal.

Practice Exercise

Multiple Choice Questions >

- Q1. Which of the following is not a criterion for congruence of triangles?
 - a. SAS
- b. ASA
- c. SSA
- d. SSS
- **Q 2.** If AB = QR, BC = RP and CA = PQ, then:
 - a. $\triangle ABC \cong \triangle PQR$
- b. $\triangle CBA \cong \triangle PRQ$
- c. $\triangle BAC \cong \triangle RPQ$
- d. $\triangle PQR \cong \triangle BCA$

Q 3. In the given figure, $AB \perp BE$ and $EF \perp BE$. Also BC = DE and AB = EF. Then:

- a. $\triangle ABD \cong \triangle EFC$
- b. ΔABD ≅ ΔCEF
- c. ∆ABD ≅ ∆FEC
- d. ∆ABD ≅ ∆CMD

Q 4. It is given that $\triangle ABC \cong \triangle FDE$ and AB = 5 cm, $\angle A + \angle B + \angle C = 180^{\circ}$, $\angle B = 40^{\circ}$ and $\angle A = 80^{\circ}$. Then which of the following is true?

a. DF = 5 cm, \angle F = 60°

- b. DF = 5 cm, \angle E = 60°
- c. DE = 5 cm, \angle E = 60°
- d. DE = 5 cm, $\angle D = 40^{\circ}$
- Q5. In triangles ABC and DEF, AB = FD and $\angle A = \angle D$. The two triangles will be congruent by SAS axiom if:

a. BC = EF

- b. AC = DE
- c. AC = EF
- d. BC = DE
- **Q 6.** If \triangle ABC; D, E and F are the mid-points of BC, CA and AB respectively; then $\triangle DEF$ is not congruent to the following triangle:
 - a. ABC
- b. BDF
- c. AFE
- d. CDE
- **Q7.** In $\triangle ABC$, AB = AC and $\angle B = 50^{\circ}$. Then $\angle C$ is equal to:
 - a. 40°
- b. 50°
- c. 80°
- d. 130°
- Q 8. In $\triangle ABC_2 \angle A + \angle B + \angle C = 180^\circ$, BC = AB and $\angle B = 80^{\circ}$. Then $\angle A$ is equal to:
 - a. 80°
- b. 40°
- c. 50°
- d. 100°
- Q 9. In $\triangle PQR$, $\angle R = \angle P$ and QR = 4 cm and PR = 5 cm. Then the length of PQ is:
 - a. 4 cm
- b. 5 cm
- c. 2 cm
- d. 2.5 cm
- Q 10. In the given figure, AB =AC, AD is the median and its bisect $\angle A$, then $\angle BAD$ is equal to: (use $\angle A + \angle B + \angle C$

- $= 180^{\circ}$)
- a. 15°
- b. 30°
- c. 20°
- d. 40°
- Q 11. In triangles ABC and PQR, AB = AC, $\angle C = \angle P$ and $\angle B = \angle Q$. The two triangles are:
 - a. isosceles but not congruent
 - b. isosceles and congruent
 - c. congruent but not isosceles
 - d. neither congruent nor isosceles
- Q 12. In the adjoining figure, ABC is an isosceles triangle whose side AC is produced to E. Through C, CD is drawn parallel to BA. The value of x is: (Use the sum of all angles of a triangle is 180°).

₹60°

- a. 56°
- b. 120°
- c. 122°
- d. 76°

Q 13. In the given figure, the ratio of $\angle PQS : \angle PRS$ is:

- a. 1:1
- c. 2:1
- d. 1:3
- **Q 14**. In the adjoining figure, *x* and *y* are:

- a. $x = 30^{\circ}, y = 65^{\circ}$
- b. $x = 35^{\circ}$, $y = 60^{\circ}$
- c. $x = 35^{\circ}$, $y = 65^{\circ}$
- d. $x = y = 45^{\circ}$

Assertion & Reason Type Questions >

- a. Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).
- b. Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A).
- c. Assertion (A) is true but Reason (R) is false.
- d. Assertion (A) is false but Reason (R) is true.
- Q 15. Assertion (A): If we draw two triangles with angles 40°, 60° and 80° and the length of the sides of one triangle be different than that of the corresponding sides of the other triangle, then two triangles are not congruent.

Reason (R): If two triangles are constructed which have all corresponding angles equal but have unequal corresponding sides, then two triangles cannot be congruent to each other.

Q 16. Assertion (A): In triangles ABC and PQR, if $\angle A = \angle P$, $\angle C = \angle R$ and AC = PR, then the two triangles are congruent by ASA congruence.

> Reason (R): If two angles and included side of a triangle are equal to the corresponding angles and side of the other triangle, then the triangles are congruent by ASA congruence.

Q 17. Assertion (A): In $\triangle PQR$, PQ = QR and $\angle R = 75^{\circ}$, then $\angle P$ is 52°.

Reason (R): In a triangle, angles opposite to equal sides are equal.

Q 18. Assertion (A): In $\triangle ABC$, P is the mid-point of BC. If PQ \perp AB and PR \perp AC, such that PQ = PR, then BQ = CR.

Reason (R): If two angles and the included side of one triangle are equal to two angles and the included side of other triangle, then two triangles are congruent by ASA rule.

Q19. Assertion (A): In a quadrilateral PQRS, PQ = PS and PR bisects ∠P by SAS congruence rule.

Reason (R): Two triangles are congruent if one hypotenuse side and one of the perpendicular side of triangle is equal to the corresponding one hypotenuse side and one of the perpendicular side of the other triangle.

Fill in the Blanks Type Questions \(\)

- Q 23. In right triangles ABC and DEF, if hypotenuse AB = EF and side AC = DE, then $\triangle ABC \cong \dots$.
- **Q 24.** In $\triangle ABC$, if $\angle C = \angle A$, then $AB = \dots$

True/False Type Questions >

- **Q 25.** If $\triangle ABC \cong \triangle PQR$, then $\angle B = \angle Q$ and AC = PR.
- Q 26. If ABC is isosceles triangle with AB = AC and BD, CE are its two medians, then BD = CE.
- **Q 27.** In $\triangle ABC$, if $AB \perp BC$ and $\angle A = \angle C$, then $AB \neq AC$.
- Q 28. Every triangle is not congruent to itself.
- Q 29. The bisectors of two equal angles of a trinagle are equal.

Solutions

- 1. (c) SSA
- 2. (b) Given AB = QR, BC = PR and CA = PQ

- \triangle \triangle CBA \cong \triangle PRQ
- (c) In ΔABD and ΔFEC,

AB = EF [Given] BC = DE [Given]

 \Rightarrow BC + CD = DE + CD

 \Rightarrow BD = CE and \angle ABD = \angle CEF = 90°

TR!CK-

Two sides and the included angle of one triangle are equal to the two sides and the included angle of the other triangle, use SAS congruence rule.

- ▼ ______ 4. (b) Given. A
 - 4. (b) Given, $\triangle ABC \cong \triangle FDE$, AB = 5 cm, $\angle B = 40^{\circ}$ and $\angle A = 80^{\circ}$

$$\therefore \qquad \angle A + \angle B + \angle C = 180^{\circ}$$

$$\Rightarrow$$
 80° + 40° + \angle C = 180° \Rightarrow \angle C = 60°

Since ΔABC

ΔFDE or ΔFDE

ΔABC

$$FD = AB = 5 \text{ cm}$$

5. (b) In given \triangle ABC and \triangle DFE,

$$AB = FD$$

$$/A = /D$$

If we consider AC = DE, then we say that

 $\triangle ABC \cong \triangle DFE$ by SAS axiom.

COMMON ERRUR -

Students are very careful for writing the congruency of two triangles (i.e., $\triangle ABC \cong \triangle PQR$). In this case we write all the angles corresponding to the equal angles, otherwise this will be wrong. So adequate practice is required.

6. (a) Since triangles, ΔDEF , ΔAFE , ΔCDE and ΔBDF are all congruents.

Hence, ΔDEF is not congruent to ΔABC .

7. (b) In given $\triangle ABC$, AB = AC and $\angle B = 50^{\circ}$ Since, AB = AC

Angles opposite to equal sides of a triangle are equal.

8. (c) In given $\triangle ABC$, $\angle B = 80^{\circ}$

$$BC = AB$$

 $\angle A = \angle C$

[.. Angles opposite to equal sides of a triangle are equal]

$$\Rightarrow \qquad 2\angle A = 100^{\circ}$$

9. (a) In given
$$\triangle PQR$$
, $\angle R = \angle P$ and $QR = 4$ cm and $PR = 5$ cm.

Since,
$$\angle R = \angle P$$

Sides opposite to equal angles of a triangle are equal.

$$\Rightarrow$$
 PQ = QR
= 4 cm

10. (b) Given
$$AB = AC$$
,

$$\Rightarrow$$
 $\angle C = \angle B$ [: Angles opposite to equal sides of a triangle are equal]

$$\therefore$$
 $\angle A + \angle B + \angle C = 180^{\circ}$

$$\Rightarrow \qquad \angle A + 60^{\circ} + 60^{\circ} = 180^{\circ}$$

$$\therefore \angle BAD = \frac{1}{2} \angle A \quad [\because AD \text{ is the bisector of } \angle A]$$

$$=\frac{60^{\circ}}{2}=30^{\circ}$$

11. (a) In given $\triangle ABC$ and $\triangle PQR$

$$AB = AC$$
, $\angle C = \angle P$ and $\angle B = \angle Q$

Since AB = AC, therefore $\triangle ABC$ is an isosceles triangle.

$$\angle C = \angle B$$

$$\Rightarrow \angle P = \angle Q$$

 \Rightarrow \triangle PQR is an isosceles triangle.

But it is clear that \triangle ABC is not congruent to \triangle RQP.

12. (a) In ∆ABC,

Angles opposite to equal sides of a triangle are equal.

In $\triangle ABC$, use the sum of all angles of a triangle is 180°

$$\angle A + \angle B + \angle ACB = 180^{\circ}$$

$$\Rightarrow \qquad x + 62^{\circ} + 62^{\circ} = 180^{\circ}$$

$$\Rightarrow \qquad x = 180^{\circ} - 124^{\circ} = 56^{\circ}$$

13. (a) In the given figure, join PS.

In ΔPQS and ΔPRS,

$$\Rightarrow \angle PQS = \angle PRS$$

$$\Rightarrow \frac{\angle PQS}{\angle PRS} = \frac{1}{1}$$

and

14. (b) In ΔABD and ΔACD,

$$AB = AC \qquad [Given]$$

$$BD = CD \qquad [Given]$$

$$AD = AD \qquad [Common]$$

$$AABD \cong \triangle ACD \qquad [By SSS]$$

$$BDA = \angle CDA \qquad [By CPCT]$$

$$y = 60^{\circ}$$
and
$$\angle BAD = \angle CAD \qquad [By CPCT]$$

$$35^{\circ} = x$$
or
$$x = 35^{\circ}$$

15. (a) Assertion (A): There is no rule of congruency when both triangles have equal corresponding angle but sides are different. So, these two triangles are not congruent.

Therefore, Assertion (A) is true.

Reason (R): It is also true.

Hence, both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).

16. (a) Assertion (A): It is true to say that two angles and the including sides of two triangles are equal then they are congruent by ASA rule.

Reason (R): It is also true.

Hence, both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).

17. (d) Assertion (A): In ΔPQR,

$$PQ = QR$$

$$\Rightarrow$$
 $\angle R = \angle P = 75^{\circ}$

So, Assertion (A) is false.

Reason (R): It is true to say that angles opposite to equal sides of triangle are equal.

Hence, Assertion (A) is false but Reason (R) is true.

18. (b) Assertion (A): In $\triangle PQB$ and $\triangle PRC$,

$$BP = PC$$
 [: P is the mid-point of BC]

$$\angle Q = \angle R = 90^{\circ}$$

[: Angles opposite to equal sides are equal]

and
$$PQ = PR$$
 [Given]

∴
$$\triangle PQB \cong \triangle PRC$$
 [by RHS congruence]
⇒ $BQ = CR$ [By CPCT]

So, Assertion (A) is true.

Reason (R): It is also true.

Hence, both Assertion (A) and Reason (R) are true and Reason (R) is not the correct explanation of Assertion (A).

19. (b) Assertion (A): In $\triangle PQR$ and $\triangle PSR$,

$$PQ = PS$$
 [Given]
$$\angle RPQ = \angle RPS$$
 [:: PR bisects $\angle P$]
$$PR = PR$$
 [Common]

 $\Delta POR \cong \Delta PSR$ [by SAS congruence rule] So, Assertion (A) is true.

Reason (R): It is also true.

Hence, both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A).

20. congruent.

21. Given △ABC ≅ △PQR

$$\Rightarrow$$
 BC = QR [By CPCT]

22. In given $\triangle ABC$, AB = AC and $\angle A = 50^{\circ}$ Since AB = AC

Angles opposite to equal sides of a triangle are equal.

23. Δ EFD

24. In a $\triangle ABC$, if $\angle C = \angle A$, then sides opposite to equal angles are equal.

$$\therefore$$
 AB = BC

25. True,

Given
$$\triangle ABC \cong \triangle PQR$$
,

$$\therefore \angle B = \angle Q$$
 and $AC = PR$

[By CPCT]

Given, AABC is isosceles.

$$\angle A = \angle A$$
 [Common]
AB = AC [Given]

$$AD = AF$$

$$\therefore$$
 AD = DC and AE = BE

Also
$$AB = AC \Rightarrow AE = AD$$

$$\therefore \Delta BAD \cong \Delta CAE \qquad [Bv S]$$

$$\Rightarrow$$
 BD = CE

[By CPCT]

COMMON ERR(!)R .

Students make error while applying the congruence rule. So, please be careful.

27. True,

In a right angled triangle, hypotenuse is always greater than any of the remaining sides.

28. False

Case Study 1

29. True

Case Study Based Questions >

One day, a geometry teacher came in the class and she decided to teach students about the triangle. She was considering a Mathematic problem for students; in ΔABC, β AD is the perpendicular bisector of BC.

She asked the following questions from the

On the basis of the above information, solve the following questions.

Q 1. \triangle ADB is congruent to \triangle ADC by:

- a. AAS axiom
- b. ASA axiom
- c. RHS axiom
- d. SAS axiom

Q 2. \triangle ABC is a/an:

- a. right angled triangle
- b. isosceles triangle
- c. equilateral triangle
- d. isosceles right angled triangle

Q 3. In given figure, length of AB in \triangle ABC is:

- a. 6 m
- b. 4 m
- c. 5 m
- d. 7 m

Q 4. The area of $\triangle ABC$ is:

- b. 10 m²
- a. 9 m² c. 12 m²

Q 5. Which of the following axiom is not satisfy the condition of congruency?

- a. RHS
- b. ASA
- c. SSS
- d. SSA

Solutions

1. (d) In ΔADB and ΔADC

[Common]

Perpendicular bisector divides the line in two equal parts.

$$BD = DC$$

[: AD is perpendicular bisector of BC]

and
$$\angle ADB = \angle ADC = 90^{\circ}$$

So, option (d) is correct.

2. (b) ∴ ΔADB ≅ ΔADC,

$$\therefore$$
 AB = AC

[By CPCT]

Hence, $\triangle ABC$ is an isosceles triangle.

So, option (b) is correct.

3. (c) In right angled ΔADB, use Pythagoras theorem

$$AB = \sqrt{(BD)^2 + (AD)^2} = \sqrt{(4)^2 + (3)^2}$$

$$\Box BD = DC = \frac{8}{2} = 4 \text{ m}$$

[Common side]

$$=\sqrt{16+9}=\sqrt{25} = 5 \text{ m}$$

So, option (c) is correct.

4. (c) Area of
$$\triangle ABC = \frac{1}{2} \times BC \times AD$$

$$= \frac{1}{2} \times 8 \times 3 = 12 \text{ m}^2$$

So, option (c) is correct.

5. (d) SSA axiom is not the condition of congruency.

Case Study 2

Red Pyramid (or North Pyramid) is the largest pyramid in cairo Egypt's capital. It is a rusty red pyramid made up of red limestones. The height of the pyramid is 105 m and its base is 220 m.

It is also believed that it was Egyptians first successfuly attempt at constructing a smooth side pyramid. It can be seen that two triangles $\triangle PQR$ and Δ STU have been marked

in the images of pyramid, such that ST II PQ and TU || PR and $\angle P = \angle T$.

On the basis of the above information, solve the following questions.

Q1. Which of the following is not a criteria for congruency?

- a. SSS
- b. SSA
- c. ASA
- d. RHS

Q 2. If
$$\angle$$
TSU = 40° and TS = TU, then \angle STU is:

- a. 100°
- b. 110°
- c. 120°
- d. 130°

Q 3. If
$$\angle QPR = 50^{\circ}$$
 and $QP = PR$, then $\angle PQR$ is:

- a. 65°
- b. 70°
- c. 75°
- d. 80°

Q 4. If hypotenuse and one side of one triangle are equal to the hypotenuse and one side of the other triangle then the two triangles are congruent by axiom.

- a. SSS
- b. RHS
- c. SAS
- d. ASA

Q 5. Area of two congruent figures is:

- a. equal
- b. not equal
- c. (a) or (b)
- d. do not say anything

Solutions

- 1. (b) SSA is not a criteria for congruency. So, option (b) is correct.
- 2. (a) In ΔTSU,

 \Rightarrow

$$\angle U = \angle S = 40^{\circ}$$

(Angles opposite to equal sides are equal)

$$\angle T + \angle S + \angle U = 180^{\circ}$$

$$\angle T + 40^{\circ} + 40^{\circ} = 180^{\circ}$$

So, option (a) is correct.

$$QP = PR$$

[Given]

Angles opposite to equal sides of a triangle are equal.

$$\angle R = \angle Q$$

$$\therefore$$
 $\angle P + \angle Q + \angle R = 180^{\circ}$

$$50^{\circ} + 2\angle Q = 180^{\circ}$$

$$\Rightarrow \qquad 2\angle Q = 130^{\circ} \Rightarrow \angle Q = 65^{\circ}$$

So, option (a) is correct.

- 4. (b) RHS
 - So, option (b) is correct.
- 5. (a) Area of two congruent figures is always equal. So, option (a) is correct.

Case Study 3

Sunil is a farmer who is having a triangular plot. As the land is limited with him, so he decided to divide his land in four parts so that he can use multiple cropping method in which fields are growing with different seads. The field is divided as shown below.

In this figure, △ABC and ΔDBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC. Line AD is extended to

BC, which intersect at point E.

On the basis of the above information, solve the following questions.

- Q1. If Sunil decides to grow crop in $\triangle ABD$, then which of the other triangle is of exact shape and size?
 - a. △ABD ≅ △ACD
- b. △ABD ≅ △BDE
- c. $\triangle ABD \cong \triangle ACE$
- d. △ACD ≅ △AEB
- **Q 2.** In $\triangle BDC$, if $\angle B + \angle D + \angle C = 180^{\circ}$, $\angle D = 70^{\circ}$, then $\angle B$ is equal to:
 - a. 70°
- b. 60°
- c. 55°
- d. 80°
- Q 3. If Sunil decides to grow multiple crop in $\triangle BDE$, then which of the other triangle is of exact shape and size?
 - a. $\triangle BDE \cong \triangle CDE$
- b. $\triangle BDE \cong \triangle CED$
- c. ∆BED ≅ ∆CDE
- d. △CED ≅ △EBD
- Q 4. Which of the following pair is congruent?
 - a. ΔABE and ΔADC
- b. ΔABE and ΔACE
- c. ΔAEC and ΔADB
- d. ΔABE and ΔABD
- Q5. Two circles with same radii but different centres, then they are:
 - a. not always congruent
 - b. always congruent
 - c. congruent in some special cases
 - d. congruent when areas are different

Solutions

(a) In ΔABD and ΔACD

BD = DC

[Given]

[Given]

AD = AD

[Common]

Hence, $\triangle ABD \cong \triangle ACD$. So, option (a) is correct. [By SSS rule]

2. (c) Given $\angle D = 70^{\circ}$

(c) Given
$$\angle D = 70^{\circ}$$

$$\therefore \qquad \angle B + \angle D + \angle C = 180^{\circ}$$

[:
$$BD = DC \Rightarrow \angle C = \angle B$$
]

So, option (c) is correct.

3. (a) In ΔBDE and ΔCDE,

$$BD = CD$$
 [Given]

and
$$BE = EC$$
 (Given)

TR!CK-

Three sides of a triangle are equal to the three sides of another triangle, use SSS congruence rule.

[By SSS rule]

So, option (a) is correct.

(b) In ΔABE and ΔACE,

$$AB = AC$$

BE = EC

and AE = AE

[Common] [By SSS rule]

 $\triangle ABE \cong \triangle ACE$ So, option (b) is correct.

5. (b) Two circles with same radii but different centres are always congruent. So, option (b) is correct.

Case Study 4

John recently read a Mathematics experiment. He was keen to perform it on its own. He choosed a long building whose height he want to know, he placed a mirror at ground. He is standing at some distance to the building as well as mirror. John height is 5 m and the distance of John from mirror is 12 m and distance of building from mirror is also 12 m and its height 5 m.

On the basis of the above information, solve the following questions.

- Q1. Write two congruent triangles formed in the given figure.
- Q 2. Find the distance between top of building and mirror.

- **03**. Find the area of \triangle AED.
- Q4. In the given figures, find the measure of $\angle B'A'C'$.

Solutions

In ΔAED and ΔBCD,

$$AD = BD = 12 \text{ m}$$

 $AE = BC = 5 \text{ m}$

 $\angle A = \angle B = 90^{\circ}$

and ...

[By SAS rule]

2. In right angled ΔEAD, use Pythagoras theorem,

ED =
$$\sqrt{(AE)^2 + (AD)^2}$$

= $\sqrt{(5)^2 + (12)^2} = \sqrt{25 + 144}$
= $\sqrt{169} = 13$ m.

Hence, the distance between top of building and mirror is 13 m.

- 3. Area of $\triangle AED = \frac{1}{2} \times AD \times AE$ $=\frac{1}{2}\times12\times5=30 \text{ m}^2$
- 4. In ΔABC and ΔA'B'C'

AB = A'B' = 5 cm [Given]

$$\angle B = \angle B' = 60^{\circ}$$
 [Given]
and BC = B'C' = 5 cm
 $\therefore \triangle ABC \cong \triangle A'B'C'$ [By SAS congruence]
 $\Rightarrow \angle BAC = \angle B'A'C'$ [By CPCT]
 $\Rightarrow Ax = 3x + 15^{\circ}$
 $\Rightarrow x = 15^{\circ}$
 $\therefore \angle B'A'C' = 3x + 15^{\circ}$
 $= 3 \times 15^{\circ} + 15^{\circ} = 60^{\circ}$

Case Study 5

Kushal is a property dealer. He has been in this business from past 12 yr. He bought a triangular shaped plot. It divides the plot into four parts which is shown in the figure.

On the basis of the above information, solve the following questions.

- Q1. If Sunil decides to sell two plots, then show that two triangles $\triangle PQR$ and $\triangle PSR$ have exact shape and size?
- **Q 2.** In \triangle QRS, \angle RQS = 50°, then find \angle QSR.
- **Q 3.** If \angle QPS = 60°, then find \angle QPT.

Solutions

In ΔPQR and ΔPSR,

and

 $\Delta PQR \cong \Delta PSR$ ÷.

[By SSS congruency]

2. In \triangle QRS, \angle RQS = 50°

Since
$$QR = RS$$

$$\Rightarrow \angle QSR = \angle RQS = 50^{\circ}$$

[: angles opposite to equal sides are equal]

In ΔQPT and ΔSPT,

$$PQ = PS$$
 [Given]

PT = PT

[Common]

and $\angle QTP = \angle STP = 90^{\circ}$

TR!CK-

The hypotenuse and one side of one triangle are equal to the hypotenuse and one side of the other triangle, use RHS congruence rule.

- $\Delta QPT \cong \Delta SPT$ [By RHS Congruence rule] ...
- $\angle QPT = \angle SPT$ \Rightarrow

[By CPCT]

- $\angle OPS = 60^{\circ}$ • •
- $2\angle QPT = 60^{\circ}$
- $\Rightarrow \angle QPT = 30^{\circ}$

Very Short Answer Type Questions 🔰

- **Q1.** It is given that $\triangle ABC \cong \triangle DEF$. Is it true to say that AB = EF? Justify your answer.
- Q2. In triangle ABC and PQR, $\angle A = \angle Q$ and \angle B = \angle R. Which side of \triangle PQR should be equal to side AB of \triangle ABC so that two triangles are congruent? Give reason for your answer.
- Q 3. E and F are respectively the mid-points of equal sides AB and AC of \triangle ABC, show that BF = CE.
- Q 4. In the figure, if AB = DC, $\angle ABD = \angle CDB$ which congruence rule would you apply to prove $\triangle ABD \cong \triangle CDB$?

- Q 5. $\triangle PQR \cong \triangle ABC$, if $\angle P + \angle Q + \angle R = 180^{\circ}$, PQ = 5 cm, \angle Q = 40° and \angle P = 80°, calculate the value of $\angle C$.
- Q 6. In \triangle ABC, \angle C = \angle A and BC = 6 cm. If AC = 5 cm, then find the length of AB.
- Q7. In $\triangle PQR$, PE is the perpendicular bisector of \angle QPR, then prove that PQ = PR.

Q 8. In $\triangle PQR$, $\angle P + \angle Q + \angle R = 180^\circ$, $\angle P = 70^\circ$ and $\angle R = 30^\circ$. Which angle of this triangle is the longest?

Short Answer Type-I Questions >

Q1. In the figure, △ABC and △DBC are two isosceles triangles on the same base BC. Prove that ∠ABD=∠ACD.

Q 2. In the figure, if $\angle ABD = \angle ACE$, then prove that AB = AC.

Q 3. In given figure, AD = BC and BD = AC, prove \angle DAB = \angle CBA.

Q 4. In given figure, if $\angle 1 = \angle 2$ and $\angle 3 = \angle 4$, then prove that BC = CD.

Q 5. In figure, XP = BP and AX || BY, prove that \triangle APX \cong \triangle YPB.

- Q 6. In the figure, OA = OB and OD = OC. Show that
 - (i) $\triangle AOD \cong \triangle BOC$
 - (ii) AD = BC

Q7. In triangle ABC, D is mid-point of side AC such that $BD = \frac{1}{2}AC$ and $\angle A + \angle B + \angle C = 180^{\circ}$.

Show that $\angle ABC$ is right angle.

Q 8. In figure, ABCD is a square and P is the mid-point of AD. BP and CP are joined. Prove that \angle PCB = \angle PBC.

- Q 9. PS is an altitude of an isosceles triangle PQR in which PQ = PR. Show that PS bisects \angle P.
- Q 10. In the given figure, ABC is an isosceles triangle in which AB = AC and LM is parallel to BC. If ∠A = 50°, ∠A+∠B+∠C=180° find ∠ABC.

Q 11. Two lines *l* and *m* intersect at point O and P is a point on line *n* passing through point O such that P is equidistant from *l* and *m*. Prove that *n* is the bisector of the angle formed by *l* and *m*.

Short Answer Type-II Questions \

- (i) $\triangle APB \cong \triangle AQB$.
- (ii) BP = BQ or B is equidistant from the arms of $\angle A$.

Q 2. In the given figure, BA \perp CA, RP \perp QP, AB = PQ and BR = CQ. Prove that PR = AC.

Q 3. In the given figure, BM and DN are both parallel and perpendicular to AC such that AC bisects BD and BM = DN. Prove that MR = NR.

- Q 4. In the given figure, PQRS is a square and SRT is an equilateral triangle prove that:
 - (i) PT = QT
 - (ii) $\angle TQR = 15^{\circ}$

- Q 5. In a right-angled triangle, if one acute angle is double the other, then prove that the hypotenuse is double the smallest side.
- Q 6. In $\triangle ABC$, altitudes BE and CF are equal.

- (i) $\triangle ABE \cong \triangle ACF$
- (ii) AB = AC

Q7. In the given figure, ABC is an isosceles triangle with AB = AC, D and E are points on BC such that BE = CD. Show that ADE is an isosceles triangle.

- Q 8. ABCD is a square. M is the mid-point of AB and PQ \perp CM, PQ meets AD at P, CB produced at Q. Prove that:
 - (i) PA = BQ
 - (ii) CP = AB + PA

Q 9. Triangle ABC is an isosceles triangle such that AB = AC. Side BA is produced to D such that AD = AB. Show that ∠BCD is a right angle.

Long Answer Type Questions 🔰

Q1. In the given figure, if AC = BC, $\angle DCA = \angle ECB$ and $\angle DBC = \angle EAC$, then prove that AE = BD.

- Q 2. In a rhombus ABCD, O is any interior point such that OA = OC. Then prove that D, O and B are collinear.
- Q 3. In the figure, OA = OB, OC = OD and \angle AOB = \angle COD. Prove that AC = BD.

- Q 4. If the bisector of an angle of a triangle bisects the opposite side, prove that the triangle is isosceles.
- Q 5. If two isosceles triangle have a common base prove that the line joining their vertices bisects them at right angles.

- Q 6. In the given figure, ABCD is a square, EF is parallel to diagonal BD, $\angle 1 = \angle 2$, $\angle 3 = \angle 4$ and EM = FM. Prove that:
 - (i) DF = BE.
 - (ii) AM bisects ∠BAD.

- Q7. ΔABC and ΔDBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC. If AD is extended to intersect BC at P, show that:
 - (i) $\triangle ABD \cong \triangle ACD$
 - (ii) $\triangle ABP \cong \triangle ACP$

(iii) AP bisects ∠A as well as ∠D.

- Q 8. Line segment joining mid-point M and N of parallel sides AB and DC, respectively of a trapezium ABCD is perpendicular to both the sides AB and DC. Prove that AD = BC.
- Q 9. In the given figure, OA = OD and $\angle 1 = \angle 2$. Prove that \triangle OCB is an isosceles triangle.

Solutions

(Given)

[Given]

Very Short Answer Type Questions

- No, AB and EF are not corresponding sides in triangles ABC and DEF but AB corresponds to DE. So, AB = DE.
- 2. In ΔABC and ΔQRP,

If AB = QR, then,

 \triangle ABC will be congruent to \triangle QRP.

 $\angle A = \angle Q$

ie., ∆ABC ≅ ∆QRP

[By ASA congruence]

In ΔABF and ΔACE,

$$AB = AC$$
 [Given]
 $\angle A = \angle A$ [Common]
 $AF = AE$

 $\triangle ABF \cong \triangle ACE$

[By SAS congruence]

⇒ BF = CE

[By CPCT]

In ΔABD and ΔCDB,

$$AB = DC$$
 [Given]
 $\angle ABD = \angle CDB$ [Given]
 $BD = BD$ [Common]

... By SAS congruence,

5. Given, PQ = 5 cm,
$$\angle Q$$
 = 40° and $\angle P$ = 80°.

$$\therefore$$
 $\angle P + \angle Q + \angle R = 180^{\circ}$

$$\angle R = 180^{\circ} - (\angle P + \angle Q)$$

⇒
$$\angle R = 180^{\circ} - (80^{\circ} + 40^{\circ})$$

⇒ $\angle R = 60^{\circ}$
∴ $\triangle PQR \cong \triangle ABC$ [Given]
∴ $\angle R = \angle C = 60^{\circ}$ [By CPCT]

6. In $\triangle ABC$, $\angle C = \angle A$

$$\Rightarrow$$
 AB = BC
 \Rightarrow AB = BC = 6 cm [Given]
Hence, the length of AB is 6 cm.

7. In ΔPEQ and ΔPER,

 $\angle PEQ = \angle PER$

[Each 90°]

PE = PE

[Common]

∠QPE == ∠RPE

[Given]

TR!CK-

Two angles and the included side of one triangle are equal to the two angles and the included side of the other triangle, use ASA congruence rule.

∴
$$\triangle PEQ \cong \triangle PER$$

Thus, $PQ = PR$

[By ASA congruence]

[By CPCT]

Hence proved

8. Given, in ΔPQR,

$$\angle P = 70^{\circ}$$
 and $\angle R = 30^{\circ}$

 $\angle P + \angle Q + \angle R = 180^{\circ}$ \Rightarrow $\angle Q = 180^{\circ} - (70^{\circ} + 30^{\circ}) = 80^{\circ}$

Hence, $\angle Q$ is greatest.

Short Answer Type-I Questions

1. Join AD in the figure.

In ΔABD and ΔACD,

AB = AC

[Given]

BD = CD

[Given]

AD = AD

[Common]

ΔABD ≅ ΔACD Thus, $\angle ABD = \angle ACD$ [By SSS congruence] [By CPCT]

Hence proved

2. From figure, ∠ABD + ∠ABE = 180°

[Linear pair] ...(1)

∠ACE + ∠ACD = 180° Also, [Linear pair] ...(2)

 $\angle ABD = \angle ACE$ [Given] ...(3)

From eqs. (1), (2) and (3), we get

 $\angle ABE = \angle ACD$

 $\angle ABC = \angle ACB$ or

Sides opposite to equal angles of a triangle are equal.

AC = AB

Hence proved

3. In \triangle DAB and \triangle CBA,

AD = BC(Given)

BD - AC [Given]

AB = AB[Common]

ΔDAB ≅ ΔCBA [By SSS congruence]

Thus, $\angle DAB = \angle CBA$ [By CPCT]

Hence proved

In ΔABC and ΔADC,

 $\angle 1 = \angle 2$ (Given) AC = AC[Common]

 $\angle 3 = \angle 4$ [Given]

∴ ∆ABC ≅ ∆ADC [by ASA congruence]

Thus, BC = CD [By CPCT]

Hence proved

5. Given, AX || BY

In ΔAPX and ΔYPB,

PX = BP [Given]

 $\angle PXA = \angle PBY = 30^{\circ}$

 $\angle XPA = \angle BPY$ [Vertically opposite angles]

∴ ∆APX ≅ ∆YPB

Hence proved

(i) In ΔAOD and ΔBOC,

OA = OB[Given]

∠AOD = ∠BOC [Vertically opposite angles]

OD = OC

[Given]

∴ ΔAOD ≅ ΔBOC [By SAS congruence]

(ii) : $\triangle AOD \cong \triangle BOC$

.. AD = BC

[By CPCT]

Hence proved

7. In ΔABC, D is mid-point of AC.

∴
$$AD = CD = \frac{1}{2}AC$$
 ...(1)

BD =
$$\frac{1}{2}$$
AC [Given] ...(2)

From eqs. (1) and (2), we get

AD = BD and CD = BD

Angles opposite to equal sides of a triangle are equal.

$$\Rightarrow$$
 $\angle 2 = \angle 4$ and $\angle 1 = \angle 3$...(3)

In AABC.

 $\angle ABC + \angle ACB + \angle CAB = 180^{\circ}$

 $\angle 1 + \angle 2 + \angle 3 + \angle 4 = 180^{\circ}$

 $\angle 1 + \angle 2 + \angle 1 + \angle 2 = 180^{\circ}$ [From eq. (3)]

 $2(\angle 1 + \angle 2) = 180^{\circ}$

 $\angle 1 + \angle 2 = 90^{\circ}$

∠ABC = 90°

So, \triangle ABC is a right angle. Hence proved In ΔPAB and ΔPDC,

[Given]	PA = PD
[Sides of a square]	AB = CD
[Each 90°]	∠PAB ∞ ∠PDC
[By SAS congruence]	$\triangle PAB \cong \triangle PDC$
[By CPCT]	Thus, $PB = PC$

 $\Rightarrow \angle PCB = \angle PBC$ [Angles opposite to equal sides of a triangle are equal]

Hence proved

9. In ΔPQS and ΔPRS,

PS = PS $\angle PSQ = \angle PSR = 90^{\circ}$

[Common] [PS is altitude]

TR!CK-

The hypotenuse and one side of one triangle are equal to the hypotenuse and one side of the other triangle, use RHS congruence rule.

$$\triangle PQS \cong \triangle PRS$$

Thus, $\angle QPS = \angle RPS$

[By RHS congruence] [By CPCT]

Hence, PS bisects ∠P.

Hence proved

10. In \triangle ABC, AB = AC

[Given]

[Given]

 $\angle C = \angle B$

[Angles opposite to equal sides are equal]

$$\therefore \angle A + \angle B + \angle C = 180^{\circ}$$

$$\Rightarrow$$
 50° + \angle B + \angle C = 180°

$$\Rightarrow$$
 50° + 2 \angle B = 180°

$$\Rightarrow \qquad \angle B = \frac{180^{\circ} - 50^{\circ}}{2} = 65^{\circ}$$

$$\angle B = \angle C = 65^{\circ}$$

Hence, ∠ABC = 65°

11.

In \triangle OQP and \triangle ORP,

$$\angle PQO = \angle PRO$$
 [Each 90°]
 $OP = OP$ [Common]
 $PQ = PR$ [Given]

ΔOQP ≥ ΔORP

[By RHS congruence]

Thus, $\angle POQ = \angle POR$ Hence, n is the bisector of $\angle QOR$.

Hence proved

[Given]

[By CPCT]

Short Answer Type-II Questions

1. Given: l bisects $\angle A$, $BQ \perp AQ$ and $BP \perp AP$.

To Prove: (i) $\triangle APB \cong \triangle AQB$

(ii) BP = BQ or B is equidistant from the arms of $\angle A$.

Proof: (i) In \triangle APB and \triangle AQB,

∠PAB ∞ ∠QAB [l is the bisector of $\angle A$] ∠APB = ∠AQB [Each 90°]

AB = AB [Common]

 $\triangle APB \cong \triangle AQB$ [By AAS congruence]

(ii) :: ΔAPB ≅ ΔAQB

BP = BQ[By CPCT]

or B is equidistant from the arms of $\angle A$.

Hence proved

2. Given: BA \perp CA, RP \perp QP, AB = PQ and BR = CQ.

To Prove: AC = PR **Proof:** Since BR = CQ

Adding BQ on both sides, we get

$$BR + BQ = CQ + BQ$$

$$\Rightarrow$$
 QR = BC ...(1)

Now, in $\triangle QPR$ and $\triangle BAC$

PQ = AB [Given] $\angle P = \angle A$ [Each 90°] QR = BC[From eq. (1)] ΔQPR ≅ ΔBAC [By RHS congruence]

Thus. PR = AC[By CPCT]

Hence proved

3. Given: BM \perp AC, DN \perp AC and BM = DN.

To Prove: AC bisects BD. **Proof:** In \triangle BMR and \triangle DNR,

 $\angle N = \angle M$ [Each 90°]

BM = DN[Given]

BR = DR [: BD is a bisector of AC]

 $\Delta BMR \cong \Delta DNR$ [By RHS congruence]

MR - NR [By CPCT]

4. Given: PQRS is a square and SRT is an

equilateral triangle.

To Prove: (i) PT = QT

(ii) $\angle TQR = 15^{\circ}$

Proof: (i) : PQRS is a square and SRT is an

equilateral triangle.

$$\angle$$
 PSR = 90° and \angle TSR = 60°

∠PSR + ∠TSR = 150°

Similarly, $\angle QRT = 150^{\circ}$

In ΔPST and ΔQRT,

PS = QR[Sides of a square] \angle PST = \angle QRT = 150° [Proved above]

ST = RT

[Sides of an equilateral triangle]

[By SAS congruence] $\Delta PST \cong \Delta QRT$

Thus, PT = QT [By CPCT] Hence proved

(ii) In ΔTPQ,	\Rightarrow BD + DE = DE + EC
PT = QT [Proved above]	\Rightarrow BD = EC
\Rightarrow $\angle PQT = \angle QPT = 75^{\circ}$	In \triangle ABD and \triangle ACE,
Since PQRS is a square.	AB = AC [Given]
Therefore,	$\angle B = \angle C$ [Proved above]
∠PQR = 90°	$BD = EC \qquad [Proved above]$
$\Rightarrow \angle PQT + \angle TQR = 90^{\circ}$	
	$\triangle ABD \cong \triangle ACE \text{ [By SAS congruence]}$
$\Rightarrow 75^{\circ} + \angle TQR = 90^{\circ}$	Thus, $\angle ADB = \angle AEC$ [By CPCT]
\Rightarrow $\angle TQR = 15^{\circ}$	Also, $\angle ADB + \angle ADE = \angle AEC + \angle AED = 180^{\circ}$
Let us consider a right-angled △ABC right-angled	[Linear pair]
at B.	\Rightarrow $\angle ADE = \angle AED [\because \angle ADB = \angle AEC]$
Let $\angle CAB = x$ and $\angle ACB = 2x$.	Thus, \triangle ADE is an isosceles triangle. Hence proved
Produce CB to D such that BD = BC	8. Given: ABCD is a square. M is the mid-point of
Â	AB and PQ \perp CM.
	To Prove: (i) PA = BQ
	(ii) CP = AB + PA
	Proof:
	(i) In ΔAMP and ΔBMQ
/ H \	$\angle PAM = \angle QBM$ [Each 90°]
Ć B D	AM = BM [: M is mid-point of AB]
In ΔABC and ΔABD,	ZAMP = ZBMQ
AB = AB [Common]	100 Television
BC = BD [Produced]	[Vertically opposite angles]
$\angle ABC = \angle ABD$ [Each 90°]	$\triangle AMP \cong \triangle BMQ$ [By ASA congruence]
	Thus, $PM = QM$ and $PA = BQ$ [By CPCT]
∴ $\triangle ABC \cong \triangle ABD$ [By SAS congruence] ∴ $AC = AD$ and $\angle CAB = \angle DAB$ [by CPCT]	Hence proved
	(ii) In ΔCMP and ΔCMQ,
	CM = CM [Common]
\Rightarrow $\angle CAD = \angle ACB$	$\angle PMC = \angle QMC$ [Each 90°]
TiP	PM = QM [Proved above]
des opposite to equal angles of a triangle are equal.	\triangle \triangle CMP \cong \triangle CMQ [By SAS congruence]
	Thus, $CP = CQ$ [By CPCT]
\therefore AD = CD	\Rightarrow CP = CB + BQ
or $AD = 2BC$	\Rightarrow CP = AB + BQ [: CB = AB]
\Rightarrow AC = 2BC	\Rightarrow CP = AB + PA [: BQ = PA]
Hence, hypotenuse AC is double the smallest side	Hence proved
BC.	9. Given: In $\triangle ABC$, $AB = AC$ and $AD = AB$.
Given: In $\triangle ABC$, BE \perp AC, CF \perp AB and BE = CF	Construction: Join CD
To Prove: (i) $\triangle ABE \cong \triangle ACF$ (ii) $AB = AC$	To Prove: ∠BCD is a right angle. 4:
Proof: (i) In ΔABE and ΔACF,	Proof: In $\triangle ABC$, $AC = AB$
∠AEB = ∠AFC = 90°	∴ ∠1 = ∠2(1) ×
$\angle BAE = \angle CAF$ [Common angle]	[angles opposite to equal sides are
	equal] 1 2
CONTRACTOR OF THE CONTRACTOR O	In $\triangle ADC$, $AB = AD$
∴ ΔABE ≅ ΔACF [By AAS congruence]	$AC = AD \qquad [:: AB = AC]$
(ii) Since $\triangle ABE \cong \triangle ACF$	∠4 ⊑ ∠3(2)
AB = AC [By CPCT]	In ΔBCD,
Hence proved	[Angles opposite to equal sides are equal]
Given: In \triangle ABC, AB = AC and BE = CD.	Now, $\angle 1 + (\angle 2 + \angle 3) + \angle 4 = 180^{\circ}$
To Prove: ΔADE is an isosceles triangle.	[Angle sum property of a triangle]
Proof: In ∆ABC,	$\Rightarrow \angle 2 + (\angle 2 + \angle 3) + \angle 3 = 180^{\circ}$
AB = AC [Given]	[From eq. (1) and eq. (2)]
$\angle C = \angle B$ [Angles opposite to	$\Rightarrow 2(\angle 2 + \angle 3) = 180^{\circ}$
equal sides of a triangle)	⇒ ∠2 + ∠3 = 90°
BE = CD [Given]	BCD is a right angled. Hence proved

[Given]

BE = CD

Hence proved

 \angle BCD is a right angled.

5.

6.

7.

Long Answer Type Questions

1. Given: AC = BC, $\angle DCA = \angle ECB$ and $\angle DBC = \angle EAC$.

To Prove: BD = AE

Proof: Since $\angle DCA = \angle ECB$

Adding ZDCE on both sides, we get

$$\angle$$
 DCA + \angle DCE = \angle ECB + \angle DCE

$$\Rightarrow$$
 $\angle ECA = \angle DCB$

In ΔACE and ΔBCD,

 $\angle ECA = \angle DCB$ [Proved above]

 $\angle EAC = \angle DBC$ [Given]

AC = BC[Given]

 \triangle ACE \cong \triangle BCD [by ASA congruence]

Thus. AE = BD[By CPCT]

Hence proved

2. Given: In rhombus ABCD, OA = OC

To Prove: D. O and B are collinear.

Construction: Join OD and OB.

Proof: In ΔAOB and ΔCOB,

AO = CO[Given]

OB = OB[Common]

AB = BC[: ABCD is a rhombus]

ΔAOB ≅ ΔCOB [By SSS congruence]

 $\angle AOB = \angle COB$ Thus, ...(1) [By CPCT]

Similarly, $\triangle AOD \cong \triangle COD$

Thus, ∠AOD = ∠COD ...(2) [By CPCT]

But $\angle AOD + \angle COD + \angle COB + \angle AOB = 360^{\circ}$

[Complete angle]

 $2(\angle AOD + \angle AOB) = 360^{\circ}$

[From eqs. (1) and (2)]

 $\angle AOD + \angle AOB = 180^{\circ}$

D, O and B are collinear. Hence proved

3. Given: OA = OB, OC = OD and $\angle AOB = \angle COD$.

To Prove: AC = BD

Proof: Since $\angle AOB = \angle COD$

Subtracting ∠COB on both sides, we get

 $\angle AOB - \angle COB = \angle COD - \angle COB$

 $\angle AOC = \angle BOD$

Now, in AAOC and ABOD,

AO = OB[Given]

 $\angle AOC = \angle BOD$ [Proved above]

OC = OD[Given]

TR!CK-

Two sides and the included angle of one triangle are equal to the two sides and the included angle of the other triangle, use SAS congruence rule.

 $\triangle AOC \cong \triangle BOD$ [By SAS congruence] Thus, AC = BD[By CPCT]

Hence proved

4. Let us consider a △ABC where AD bisects ∠A and side BC.

To Prove: ΔABC is isosceles triangle.

Construction: Produce AD to E such that AD = DE and then join CE.

Proof: In ΔABD and ΔECD.

BD = CD [Given]

 $\angle ADB = \angle EDC$ [Vertically opposite angles]

AD = ED

[By construction]

∴ ΔABD ≅ ΔECD

[By SAS congruence]

Thus, AB = CE

[By CPCT] ...(1) [By CPCT] ...(2)

 $\angle BAD = \angle CED$ ∠BAD = ∠CAD

[Given] ...(3)

From eqs. (2) and (3), we get

$$EC = AC$$
 ...(4

[sides opposite to equal angles are equal]

From eqs. (1) and (4), we get

$$AB = AC$$

So, the triangle is isosceles. Hence proved

5. Let us consider two isosceles triangles ABC and BDC with common base BC.

To Prove: AD bisects BC at right angles.

Proof: In $\triangle ABD$ and $\triangle ACD$,

AB - AC [Given]

AD = AD[Common]

BD = CD[Given]

ΔABD ≅ ΔACD [By SSS congruence] .. Thus, ∠1 m ∠2 [By CPCT]

Now, in $\triangle ABE$ and $\triangle ACE$,

AB = AC(Given)

 $\angle 1 = \angle 2$ [Proved above]

AE = AE [Common]

ΔΑΒΕ ₪ ΔΑCΕ [By SAS congruence]

BE = CEThus,

..

	and	$\angle 3 = \angle 4$	[By CPCT]
		-∠4 = 180°	[Linear pair]
	⇒ .	2∠3 = 180°	
	\Rightarrow	∠3 = 90°	
		∠3 = ∠4 = 90°	
	Hence, Al	D bisects BC at righ	t angles.
			Hence proved
6.	Given: A	BCD is a square, El	$F \parallel BD$ and $EM = FM$.
	To Prove	: (i) DF = BE.	
		(ii) AM bisects ∠ E	BAD.
	Proof:		
	(i) Since	EF BD	[Given]
	\Rightarrow \angle	$\angle 1 = \angle 2$ and $\angle 3$	= ∠4 [Given]
		$\angle 2 = \angle 4$	[Each 45°]
	\Rightarrow	$\angle 1 = \angle 3$	
	5.60	CE = CF [Si	des opposite to equal
		angles o	f a triangle are equal]
	\Rightarrow	BC - CE = BC - CF	[Subtracting from BC
			both sides]
	\Rightarrow	BC - CE = CD - CF	
		[:: BC =	CD, sides of a square)
	\Rightarrow	BE = DF	
	or	DF = BE	Hence proved
		$DF = BE$ DF and ΔABE ,	Hence proved
			Hence proved [Sides of a square]
		DF and \triangle ABE,	
		DF and $\triangle ABE$, $AD = AB$	[Sides of a square]
	(ü) In ΔAI	DF and $\triangle ABE$, $AD = AB$ $\angle D = \angle B$	[Sides of a square] [Each 90°]
	(ii) In ΔΑΙ ∴	DF and $\triangle ABE$, $AD = AB$ $\angle D = \angle B$ $DF = BE$	[Sides of a square] [Each 90°] [Proved above] [By SAS congruence]
	(ii) In ΔAI ∴ Thus,	DF and $\triangle ABE$, $AD = AB$ $\angle D = \angle B$ $DF = BE$ $\triangle ADF \cong \triangle ABE$	[Sides of a square] [Each 90°] [Proved above] [By SAS congruence]
	(ii) In ΔAI ∴ Thus,	DF and \triangle ABE, $AD = AB$ $\angle D = \angle B$ $DF = BE$ $\triangle ADF \cong \triangle ABE$ $AF = AE \text{ and } \angle S = ABBE$	[Sides of a square] [Each 90°] [Proved above] [By SAS congruence]
	(ii) In ΔAI ∴ Thus,	DF and \triangle ABE, $AD = AB$ $\angle D = \angle B$ $DF = BE$ $\triangle ADF \cong \triangle ABE$ $AF = AE \text{ and } \angle S = AF$ $AF = AE$ $AF = AE$ $AM = AM$	[Sides of a square] [Each 90°] [Proved above] [By SAS congruence] ∠6 [By CPCT](1) [From eq. (1)] [Common]
	(ii) In ΔAI ∴ Thus,	DF and \triangle ABE, AD = AB $\angle D = \angle B$ DF = BE \triangle ADF \cong \triangle ABE $AF = AE$ and $\angle S = AF$ MF and \triangle AME, AF = AE AM = AM AM = BM	[Sides of a square] [Each 90°] [Proved above] [By SAS congruence] ∠6 [By CPCT](1) [From eq. (1)] [Common] [Given]
	ii) In ΔAI .: Thus, In ΔA	DF and \triangle ABE, AD = AB $\angle D = \angle B$ DF = BE \triangle ADF \cong \triangle ABE $AF = AE$ and $\angle S = AE$ AF = AE AF = AE AM = AM AM = EM $AMF \cong \triangle$ AME	[Sides of a square] [Each 90°] [Proved above] [By SAS congruence] ∠6 [By CPCT](1) [From eq. (1)] [Common] [Given] [By SSS congruence]
	ii) In ΔAI Thus, In ΔA Thus,	DF and \triangle ABE, AD = AB $\angle D = \angle B$ DF = BE \triangle ADF \cong \triangle ABE $AF = AE$ and $\angle S = AE$ AF = AE AM = AM FM = EM \triangle AMF \cong \triangle AME $\angle 7 = \angle 8$	[Sides of a square] [Each 90°] [Proved above] [By SAS congruence] ∠6 [By CPCT](1) [From eq. (1)] [Common] [Given] [By SSS congruence](2)
	(ii) In ΔAI ∴ Thus, In ΔA ∴ Thus, Addin	DF and \triangle ABE, AD = AB $\angle D = \angle B$ DF = BE \triangle ADF \cong \triangle ABE $AF = AE$ and $\angle S = AE$ AF = AE AM = AM FM = EM \triangle AMF \cong \triangle AME $\angle 7 = \angle 8$ ABE	[Sides of a square] [Each 90°] [Proved above] [By SAS congruence] 2 6 [By CPCT](1) [From eq. (1)] [Common] [Given] [By SSS congruence](2) we get
	(ii) In ΔAI ∴ Thus, In ΔA ∴ Thus, Addin	DF and \triangle ABE, AD = AB $\angle D = \angle B$ DF = BE \triangle ADF \cong \triangle ABE $AF = AE$ and $\angle S = AE$ AF = AE AM = AM FM = EM \triangle AMF \cong \triangle AME $\angle 7 = \angle 8$ AB = AB AB	[Sides of a square] [Each 90°] [Proved above] [By SAS congruence] 2 6 [By CPCT](1) [From eq. (1)] [Common] [Given] [By SSS congruence](2) we get
	ii) In ΔAI Thus, In ΔA Thus, Addin	DF and \triangle ABE, AD = AB $\angle D = \angle B$ DF = BE \triangle ADF \cong \triangle ABE $AF = AE$ and $\angle S = AE$ AF = AE AM = AM FM = EM \triangle AMF \cong \triangle AME $\angle 7 = \angle 8$ AF = AE AF = AF AF = AE AF	[Sides of a square] [Each 90°] [Proved above] [By SAS congruence] 26 [By CPCT](1) [From eq. (1)] [Common] [Given] [By SSS congruence](2) we get
7	ii) In ΔAI ∴ Thus, In ΔA ∴ Thus, Addin ∠ ∴ AM	DF and \triangle ABE, AD = AB $\angle D = \angle B$ DF = BE \triangle ADF \cong \triangle ABE $AF = AE$ and $\angle S = AE$ AF = AE AM = AM AM = EM \triangle AMF \cong \triangle AME $\angle 7 = \angle 8$ A = AE A = AM A =	[Sides of a square] [Each 90°] [Proved above] [By SAS congruence] 2 6 [By CPCT](1) [From eq. (1)] [Common] [Given] [By SSS congruence](2) we get 8 Hence proved
7.	ii) In ΔAI ∴ Thus, In ΔA ∴ Thus, Addin ∴ AM Given:	DF and \triangle ABE, AD = AB $\angle D = \angle B$ DF = BE \triangle ADF \cong \triangle ABE $AF = AE$ and $\angle S = AE$ AF = AE AM = AM FM = EM \triangle AMF \cong \triangle AME $\angle 7 = \angle 8$ AF = AE AF	[Sides of a square] [Each 90°] [Proved above] [By SAS congruence] ∠6 [By CPCT](1) [From eq. (1)] [Common] [Given] [By SSS congruence](2) we get 8 Hence proved are two isosceles
7.	ii) In ΔAI Thus, In ΔA Thus, Addin AM Given: triangles,	DF and △ABE, AD = AB ∠D = ∠B DF = BE △ADF ≅ △ABE AF = AE and ∠5 = MF and △AME, AF = AE AM = AM FM = EM △AMF ≅ △AME ∠7 = ∠8 Ig eqs. (1) and (2), ∠5 + ∠7 = ∠6 + ∠ ∠DAM = ∠BAM bisects ∠BAD. △ABC and △DBC in which AB = AC	[Sides of a square] [Each 90°] [Proved above] [By SAS congruence] ∠6 [By CPCT](1) [From eq. (1)] [Common] [Given] [By SSS congruence](2) we get 8 Hence proved are two isosceles
7.	ii) In ΔAI Thus, In ΔA Thus, Addin AM Given: triangles, To Prove	DF and \triangle ABE, $AD = AB$ $\angle D = \angle B$ $DF = BE$ $\triangle ADF \cong \triangle ABE$ $AF = AE \text{ and } \angle S = AE$ $AF = AE \text{ and } \triangle AME,$ $AF = AE$ $AM = AM$ $FM = EM$ $\triangle AMF \cong \triangle AME$ $\angle 7 = \angle 8$ $E = EM$ EM EM EM EM EM EM EM	[Sides of a square] [Each 90°] [Proved above] [By SAS congruence] ∠6 [By CPCT](1) [From eq. (1)] [Common] [Given] [By SSS congruence](2) we get ### Hence proved are two isosceles and BD = DC.
7.	Thus, In ΔAI Thus, Addin ∴ AM Given: triangles, To Prove (i) ΔAB	DF and $\triangle ABE$, $AD = AB$ $\angle D = \angle B$ $DF = BE$ $\triangle ADF \cong \triangle ABE$ $AF = AE \text{ and } \angle S = AE$ $AF = AE$ $AM = AM$ $FM = EM$ $\triangle AMF \cong \triangle AME$ $\angle 7 = \angle 8$ $AF = AE$ $AM = AM$ $AMF \cong \triangle AME$	[Sides of a square] [Each 90°] [Proved above] [By SAS congruence] ∠6 [By CPCT](1) [From eq. (1)] [Common] [Given] [By SSS congruence](2) we get ### Hence proved are two isosceles and BD = DC. AABP AACP
7.	iii) In ΔΑΙ Thus, In ΔΑ Thus, Addin AM Given: triangles, To Prove (i) ΔΑΒ (iii) ΑΡΕ	DF and \triangle ABE, $AD = AB$ $\angle D = \angle B$ $DF = BE$ $\triangle ADF \cong \triangle ABE$ $AF = AE \text{ and } \angle S = AE$ $AF = AE \text{ and } \triangle AME,$ $AF = AE$ $AM = AM$ $FM = EM$ $\triangle AMF \cong \triangle AME$ $\angle 7 = \angle 8$ $E = EM$ EM EM EM EM EM EM EM	[Sides of a square] [Each 90°] [Proved above] [By SAS congruence] ∠6 [By CPCT](1) [From eq. (1)] [Common] [Given] [By SSS congruence](2) we get 8 Hence proved are two isosceles and BD = DC. ② △ABP ➡ △ACP as ∠D.

AB = AC

BD = DC

AD = AD

ΔABD ≅ ΔACD

and

...

(ii) In ΔABP and ΔACP, AB = AC(Given) AP = AP[Common side] $\angle PAB = \angle CAP$ [As △ABD ≅ △ACD] and $\angle BAD = \angle CAD$ \Rightarrow $\triangle ABP \cong \triangle ACP$ [By SAS congruence] .. (iii) As prove above, ΔABD ≅ ΔACD ...(1) $\angle BAD = \angle CAD$ [By CPCT] \Rightarrow and $\triangle ABP \cong \triangle ACP$...(2) On subtracting eq. (1) from eq. (2), ΔABP - ΔABD ≅ ΔACP - ΔACD $\Delta BDP \cong \Delta CDP$ \Rightarrow $\angle BDP = \angle CDP$ [By CPCT] Hence, AP bisects $\angle A$ as well as $\angle D$. Hence proved 8. Given: In trapezium ABCD, AB | DC, M and N are mid-points of AB and DC respectively. To Prove: AD = BC Construction: Join AN, MN and BN, **Proof:** In ΔAMN and ΔBMN, AM m MB [M is the mid-point of AB] $\angle 3 = \angle 4$ [Each 90°] MN = MN[Common] $\Delta AMN \cong \Delta BMN$ [By SAS congruence] ... $\angle 1 = \angle 2$ and AN = BN Thus, [By CPCT] Subtracting both the sides from 90°, we get 90° - ∠1 = 90° - ∠2 [:: MN \ DC] \Rightarrow $\angle AND = \angle BNC$...(1) In \triangle ADN and \triangle BCN, AN BN [Proved above] $\angle AND = \angle BNC$. [From eq. (1)] [:: N is mid-point of CD] DN = NCΔADN ≅ ΔBCN [By SAS congruence]

9. Given: OA = OD and $\angle 1 = \angle 2$

AD = BC

Thus,

[Given]

[Given]

[Common side]

[By SSS congruence]

[By CPCT] Hence proved

To Prove: ΔOCB is an isosceles triangle.

Proof: From figure,

$$\angle 1 + \angle CAB = 180^{\circ}$$
 [Linear pair]
and $\angle 2 + \angle BDC = 180^{\circ}$ [Linear pair]

$$\therefore$$
 $\angle 1 + \angle CAB = \angle 2 + \angle BDC$

But
$$\angle 1 = \angle 2$$
 [Given]

$$\angle CAB = \angle BDC$$

In $\triangle OAC$ and $\triangle ODB$, $\angle CAB = \angle BDC \qquad [Proved above]$ $OA = OD \qquad [Given]$ $\angle AOC = \angle DOB \qquad [Vertically opposite angles]$ $\therefore \quad \triangle OAC \cong \triangle ODB \qquad [By ASA congruence]$ Thus, $OC = OB \qquad [By CPCT]$ $\therefore \triangle OCB \text{ is an isosceles triangle.} \qquad \textbf{Hence proved}$

Chapter Test

Multiple Choice Questions

Q1. In the following figures, measure of $\angle B'A'C'$ is:

- Q 2. In triangles ABC and RQP, if AB = AC, \angle C = \angle P and \angle B = \angle Q, then two triangles are:
 - a. isosceles but not necessarily congruent
 - b. isosceles and congruent
 - c. congruent but not isosceles
 - d. neither congruent nor isosceles.

Assertion and Reason Type Questions

Directions (Q. Nos. 3-4) In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct option:

- a. Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).
- b. Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A).
- c. Assertion (A) is true but Reason (R) is false.
- d. Assertion (A) is false but Reason (R) is true.
- Q 3. Assertion (A): In $\triangle ABC$, if AB = AC and $\angle B = 75^{\circ}$, then $\angle C = 75^{\circ}$.

Reason (R): In a triangle, angles opposite to equal sides are equal.

Q 4. Assertion (A): In the given figure, if AB = CF, EF = BD and \angle AFE = \angle CBD, then \triangle AFE \cong \triangle CBD by SAS rule.

Reason (R): If two sides and included angle of one triangle is equal to the two sides and

included angle of the other triangle then triangles are congruent by SAS rule.

Fill in the Blanks

- Q 5. The number of triangles that can be drawn with the measure of each angle less than 60°, is

True/False

- Q7. The medians of an equilateral triangle are equal.
- Q 8. ABC is an isosceles triangle such that AB = AC and AD is the median to base BC.

Then $\angle BAD = 50^{\circ}$

Case Study Based Questions

Q 9. Aryan is studying in class
IX. He observe two equal height of poles of equal length AB = CD = 6m.
These poles are 8m apart from each other and O is

the point of intersection of the lines joining the top of each pole to the foot of opposite poles.

On the basis of the above information, solve the following questions.

- (i) In which congruent rule, $\triangle ABC \cong \triangle CDA$?
- (ii) Find the length of BC.

OR

What is the area of $\triangle ACD$?

(iii) Prove that $\triangle ABO \cong \triangle DCO$.

Very Short Answer Type Questions

- Q 10. In $\triangle ABC$ and $\triangle PQR$, it is given that $\angle A = \angle R$, $\angle C = \angle P$ and $\angle B = \angle Q$. Find either both triangles are isosceles or congruent.
- Q 11. In the adjoining figure, PQRS is a square and E is the mid-point of PS and joined ER and EQ.

 Prove that EQ = ER.

Short Answer Type-I Questions

Q 12. In the adjoining figure, AD = BC and BD = CA prove that $\angle ADB = \angle BCA$.

Q 13. CE and BF are perpendiculars to AB and AC respectively in \triangle ABC such that BE = CF. Prove that \angle B = \angle C.

Short Answer Type-II Questions

- Q 14. In right angled $\triangle ABC$, $\angle C = 90^{\circ}$. M is the mid point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B. Show that:
 - (i) $\triangle AMC \cong \triangle BMD$
 - (ii) $\angle DBC = \angle ACB$
- Q 15. In the adjoining figure, PQRS is a square and SRT is an equilateral triangle. Prove that
 - (i) PT = QT
 - (ii) $\angle TPS = 20^{\circ}$

Long Answer Type Question

Q 16. If ABC is a right angled triangle such that AB = AC and bisector of angle C intersects the side AB at D, then prove that AC + AD = BC.

.