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Figure 1 Plot of Planck distribution function. At high temperatures the occupancy of a state is
approximately linear in the temperature. The function (n) + 1 which is not plotted, approaches
the dashed line as asymptote at high temperatures.
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CHAPTER 3: PHONONS II. THERMAL PROPERTIES
BTN T N N S TSR R

We discuss the heat capacity of a phonon gas and then the effects of
anharmonic lattice interactions on the phonons and on the crystal.

PHONON HEAT CAPACITY

By heat capacity we shall usually mean the heat capacity at constant vol-
ume, which is more fundamental than the heat capacity at constant pressure,
which is what the experiments determine.! The heat capacity at constant vol-

- ume is defined as Cy = (dU/dT)y where U is the energy and T the temperature.

The contribution of the phonons to the heat capacity of a crystal is called

 the lattice heat capacity and is denoted by C,. The total energy of the

. phonons at a temperature 7(= k3T) in a crystal may be written as the sum of

- the energies over all phonon modes, here indexed by the wavevector K and
polarization index p:

U = E; Ugp = § EP:("Kp)ﬁ‘”Kp , (1)

where (ny,,) is the thermal equilibrium occupancy of phonons of wavevector
K and polarization p. The form of (ng,) is given by the Planck distribution
function:

E
1
_E
3
’;
E

_ 1
()= exp(fiw/t) — 1~ @)

- where the (-**) denotes the average in thermal equilibrium. A graph of (n) is
given in Fig. 1.

Planck Distribution

Consider a set of identical harmonic oscillators in thermal equilibrium.
The ratio of the number of oscillators in their (n + 1)th quantum state of exci-
tation to the number in the nth quantum state is

N,u/N, = exp(—hayrr) ,  17=kgT , (3)

'A thermodynamic relation gives C, — Cy = 9a’BVT, where « is the temperature coefficient
of linear expansion, V the volume, and B the bulk modulus. The fractional difference between c,
and Cy is usually small in solids and often may be neglected. As T— 0 we see that C,— Cy, pro-
vided @ and B are constant.
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by use of the Boltzmann factor. Thus the fraction of the total number of oscil- -
lators in the nth quantum state is

N,

DN, Yexp(—shw/r)
5=0 =0
We see that the average excitation quantum number of an oscillator is

23 exp(—sfiw/T)

N — 5
() Eexp(—sﬁw/f) ©)

exp(—nhw/r)

(4)

The summations in (5) are

= 1 . = i = x
i D (1—x?’ ®)
with x = exp(—#w/7). Thus we may rewrite (5) as the Planck distribution:
__x _ 1
=1 exp(hw/r) — 1 M

Normal Mode Enumeration

The energy of a collection of oscillators of frequencies wg, in thermal
equilibrium is found from (1) and (2): )

v=32

% 7 exp(hwg,/T) — 1~

ﬁﬂ) Kp

(8)

It is usually convenient to replace the summation over K by an integral. Sup-
pose that the crystal has Dp(w)dm modes of a given polarization p in the fre-
quency range o to ® + dw. Then the energy is

U-3 f duw Dp(w)mp(ﬁf:# . (9)
The lattice heat capacity is found by differentiation with respect to tempera-
ture. Let x = fiw/T = hw/kpT: then dU/IT gives

x* exp x
)(expx -1
The central problem is to find D(w), the number of modes per unit fre-

quency range. This function is called the density of modes or, more often, den-
sity of states.

C,_.,,=kxzjdw Dy(o (10)
P

Density of States in One Dimension

Consider the boundary value problem for vibrations of a one-dimensional
line (Fig. 2) of length L carrying N + 1 particles at separation 2. We suppose
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/Fixed

o
N RN S s |
s=0 1 2 - T s
Figure 2 Elastic line of N + 1 atoms, with N = 10, for boundary conditions that the end atoms
s = 0and s = 10 are fixed. The particle displacements in the normal modes for either longitudinal
or transverse displacements are of the form u, « sin sKa. This form is antomatically zero at the
alom at the end s = 0, and we choose K to make the displacement zero at the end s = 10 .

—r—rr——0——0—— 0 —6—
0 T 107
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Figure 3 The boundary condition sin sKa = 0 for s = 10 can be satisfied by choosing K = 7/10g,
27/10a, . . ., 97/10a, where 10g is the length L of the line. The present figurc is in K space. The
dots are not atoms but are the allowed valucs of K. Of the N + 1 particles on the line, only N — 1
are allowed to move, and their most general motion can be expressed in terms of the N — 1 al-
lowed valites of K. This quantization of K has nothing to do with quantum mechanics but follows
classically from the boundary conditions that the cnd atoms be fixed.

that the particles s = 0 and s = N at the ends of the line are held fixed. Each
normal vibrational mode of polarization p has the form of a standing wave,
where u_ is the displacement of the particle s:

u, = 1(0) exp(ﬂa)Kvpt) sin sKa | (11)

where wg, is related to K by the appropriate dispersion relation.
As in Fig. 3, the wavevector K is restricted by the fixed-end boundary con-
ditions to the values

_m™ 2w 3m (N=Dw
K=F., T . T, T - (12)

The solution for K = 7/L has
1, % sin (s7a/L) (13)

and vanishes for s = 0 and s = N as required.

The solution for K= Na/L = m/a = K,,,, has u, o« sin s7; this permits no
motion of any atom, because sin s vanishes at each atom. Thus there are
N — 1 allowed independent values of K in (12). This number is equal to the
number of particles allowed to move. Each allowed value of K is associated
with a standing wave. For the one-dimensional line there is one mode for each
interval AK = 7/L, so that the number of modes per unit range of K is L/7 for
K = /a, and O for K> 7/a.

Therc are three polarizations p for each value of K: in one dimension two
of these are transverse and one longitudinal. In three dimensions the polariza-
tions are this simple only for wavevectors in certain special crystal directions.

Another device for enumerating modes is equally valid. We consider the
medium as unbounded, but require that the solutions be periodic over a large
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5 Phonons II. Thermal Properties

Figure 6 Allowed values in Fourier space of the phonon wavevector K for a square lattice of lat-
tice constant a, with periodic boundary conditions applied over a square of side L = 10a. The uni-
form mode is marked with a cross. There is one allowed value of K per area (2m/10a)? = (27/L)?, so
that within the circle of area 7K? the smoothed number of allowed points is wKXL/21r).

We can obtain the group velocity dw/dK from the dispersion relation o versus
K. There is a singularity in D)(w)whenever the dispersion relation w(K) is hori-
zontal; that is, whenever the group velocity is zero.
Density of States in Three Dimensions

We apply periodic boundary conditions over N° primitive cells within a
cube of side L, so that K is determined by the condition
expli(K,.x + Ky + K. z)] =explifK(x + L) + Ky(y + L)+ Kz + L)}, (16)
whence

KK K=0; 20, +4m . Mr (17)

Therefore, there is one allowed value of K per volume (27/L)* in K space, or

LY_V
(211') 873 (18)

allowed values of K per unit volume of K space, for each polarization and for
each branch. The volume of the specimen is V = L®.

The total number of modes with wavevector less than K is found from (18)
to be (L/21r)® times the volume of a sphere of radius K. Thus

N = (L/2m)*(47K%/3) (19)
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for each polarization type. The density of states for each polarization is

D(w) = dN/dw = (VE2m)dK/dw) . (20)

Debye Model for Density of States

In the Debye approximation the velocity of sound is taken as constant for
each polarization type, as it would be for a classical elastic continuum. The dis-
persion relation is written as

w=vK , (21)

with v the constant velocity of sound.
The density of states (20) becomes

D(w) = Va?/2m® . (22)

If there are N primitive cells in the specimen, the total number of acoustic
phonon modes is N. A cutoff frequency wy, is determined by (19) as

o} = 6m°N/V . (23)
To this frequency there corresponds a cutoff wavevector in K space:
Kp = wp/v = (6mN/V)V3 | (24)

On the Debye model we do not allow modes of wavevector larger than Kj,. The
number of modes with K =< K, exhausts the number of degrees of freedom of a
monatomic lattice.

The thermal energy (9) is given by

ﬁ)D V 2 h
U= [ dw Dlw)n(@)ho = fo dw (2 ﬂ‘;’oa)(em"’_ 1) , (25)

for each polarization type. For brevity we assume that the phonon velocity is
independent of the polarization, so that we multiply by the factor 3 to obtain

P 3Vk: p 3
" o o — 1 2he €1
where 1 = fiw/T = ho/tkgT and
xp = hewp /ksT = 0/T . (27)

This defines the Debye temperature 6 in terms of oy, defined by (23).
We may express ¢ as

V3
= iw (611"/2N) ’ (28)
B
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= the Debye approximation. The vertical scale is in ]
mol™! K% The horizontal scale is the temperature
0 normalized to the Debye temperature 6. The re-
0 02 04 06 08 10 12 14 16 gion of the T° law is below 0.18. The asymptotic
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// Figure 8 Heat capacity of silicon and germa-
(;0 100 500 300 nium. Note the decrease at low temperatures.

Temperature, K multiply by 4.186.

so that the total phonon energy is

k TG xl,dx xB
U =9Nk;T| 5 L pri i (29)

where N is the number of atoms in the specimen and xp, = 6/T.
The heat capacity is found most easily by differentiating the middle ex-
pression of (26) with respect to temperature. Then

R\Y% f”’“ e ( T)3 J'I" xt e
Cy=—i~——= dw ————— = 9Nkg| = dx ———— . 30
v 2%k T? Jo @ (eMm — 1) "\0 0 (& — 1) (30)

The Debye heat capacity is plotted in Fig. 7. At T'> @ the heat capacity ap-
proaches the classical value of 3Nky. Measured values for silicon and germa-
nium are plotted in Fig. 8.

To convert a value in cal/mol-K to J/mol-K,
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Debye T°Law

At very low temperatures we may approximate (29) by letting the upper
limit go to infinity. We have

® 13 =j°° 3% =S Lo
fo dv odxxFEIexp( sx) 6;84 15 (31)

where the sum over s™* is found in standard tables. Thus U = 37*NkyT*/56° for
T <6, and

127" o (T Ty’
which is the Debye T° approximation. Experimental results for argon are plot-

ted in Fig. 9.

At sufficiently low temperature the T° approximation is quite good; that is,
when only long wavelength acoustic modes are thermally excited. These are just
the modes that may be treated as an elastic continuum with macroscopic elastic
constants. The energy of the short wavelength modes (for which this approxima-
tion fails) is too high for them to be populated significantly at low temperatures.

We understand the 7° result by a simple argument (Fig. 10). Only those
lattice modes having Aw < kyT will be excited to any appreciable extent at a
low temperature T. The excitation of these modes will be approximately classi-
cal, each with an energy close to k3T, according to Fig. 1.

Of the allowed volume in K space, the fraction occupied by the excited
modes is of the order of (w/wp)® or (K;/Kp)®, where K; is a “thermal” wavevec-
tor defined such that 40K, = kT and K}, is the Debye cutoff wavevector. Thus
the fraction occupied is (7/8)° of the total volume in K space. There are of the
order of 3N(T/6)%excited modes, each having energy kzT. The energy is
~3NkT(T/8)°, and the heat capacity is ~12Nkg(T/6)°.

For actual crystals the temperatures at which the T approximation holds
are quite low. It may be necessary to be below T = /50 to get reasonably pure
T° behavior.

Selected values of 8 are given in Table 1. Note, for example, in the alkali
metals that the heavier atoms have the lowest 6’s, because the velocity of
sound decreases as the density increases.

Einstein Model of the Density of States

Consider N oscillators of the same frequency @, and in one dimension.
The Einstein density of states is D(w) = N8(w — w,), where the delta function
is centered at wy. The thermal energy of the system is

Nhw

U= N{n)o = a1 (33)

with @ now written in place of wy, for convenience.
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22.23

17.78

13.33

e

Heat capacity, in mJ mol ™! K~1

4.44

0 1.33 2.66 3.99 5.32 6.65 7.98
73, in K3
Figure 9 Low temperature heat capacity of solid argon, plotted against T°. In this temperature

region the experimental results are in excellent agreement with the Debye T° law with 6 = 92.0 K.
(Courtesy of L. Finegold and N. E. Phillips.)

'h(J)D = fwKD = kBG
hoKy = kT

Figure 10 To obtain a qualitative explanation of the Debye T° law, we suppose that all phonon
modes of wavevector less than K have the classical thermal energy kpT and that modes between
K7 and the Debye cutoff Kp, are not excited at all. Of the 3N possible modes, the fraction excited is
(Ki/Kp)* = (T/6)3, because this is the ratio of the volume of the inner sphere to the outer sphere.
The energy is U = kT - 3N(T/8)*, and the heat capacity is Cy, = dU/3T = 12Nky(1/6)".
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- Figure 11 Comparison of experimental values of the heat capacity of diamond with values calcu-
1 Iated on the earliest quantum (Einstein) model, using the characteristic temperature
¢ O = fhiw/ky = 1320 K. To convert to J/mol-deg, multiply by 4.186.

The heat capacity of the oscillators is

_ ﬂ _ ﬁ_w 2 eluu/‘r
CV - (aT)V - NkB ( T ) (eﬁw/-r_ 1)2 ’ (34)

as plotted in Fig. 11. This expresses the Einstein (1907) result for the contribu-
i tion of N identical oscillators to the heat capacity of a solid. In three dimensions
. N is replaced by 3N, there being three modes per oscillator. The high tempera-
ture limit of Cy becomes 3Nky, which is known as the Dulong and Petit value.

At low temperatures (34) decreases as exp(—#hw/7), whereas the experi-
mental form of the phonon contribution is known to be T*as accounted for by
the Debye model treated above. The Einstein model, however, is often used to
- approximate the optical phonon part of the phonon spectrum.

General Result for D(w)

We want to find a general expression for D(w), the number of states per unit
frequency range, given the phonon dispersion relation w(K). The number of al-
lowed values of K for which the phonon frequency is between w and @ + de is

(LY £
D(w)dw— 2'1; dhel K 5 (35)

where the integral is extended over the volume of the shell in K space bounded
by the two surfaces on which the phonon frequency is constant, one surface on
which the frequency is » and the other on which the frequency is @ + dw.

The real problem is to evaluate the volume of this shell. We let dS,, denote
an element of area (Fig. 12) on the surface in K space of the selected constant
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Figure 12 Element of area dS,, on a constant
frequency surface in K space. The volume
between two surfaces of constant frequency at
w and w + dw is equal to [ dS,, dw/|Vgo|.

frequency . The element of volume between the constant frequency surfaces
o and w + dw is a right cylinder of base dS,, and altitude dK, so that

f PK = f S, dK, . (36)
shell

Here dK, is the perpendicular distance (Fig. 13) between the surface @ con-
stant and the surface w + dw constant. The value of dK; will vary from one
point to another on the surface.

The gradient of w, which is Vg, is also normal to the surface w constant,
and the quantity

|Vxo|dK, = do ,

is the difference in frequency between the two surfaces connected by dK|.
Thus the element of the volume is

dw dow
dS,dK, =dS,-——=dS,>—
@ L w |VK(0| %) Ug >

where v, = |[Vgo| is the magnitude of the group velocity of a phonon. For (35)

we have
_ [ L (dS.
D(w) dw = (ET) ,(v—g do .

We divide both sides by dw and write V = L® for the volume of the crystal: the
result for the density of states is

__V_ (dS,
D) =553 f 5 (37)
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Ve Surface @ + dw = constant

dK,
Figure 13 The quantity dK, is the perpendicular distance
[ between two constant frequency surfaces in K space, one at
Surface @ = constant frequency o and the other at frequency w + dw.
D{w) Di{w)

(a) (b)

Figure 14 Density of states as a function of frequency for (a) the Debye solid and (b) an actual
crystal structure. The spectrum for the crystal starts as @” for small w, but discontinuities develop
at singular points.

The integral is taken over the area of the surface w constant, in K space. The

-~ result refers to a single branch of the dispersion relation. We can use this re-
- sult also in electron band theory.

There is a special interest in the contribution to D(@) from points at which

~ the group velocity is zero. Such critical points produce singularitics (known as

Van Hove singularities) in the distribution function (Fig. 14).

ANHARMONIC CRYSTAL INTERACTIONS

The theory of lattice vibrations discussed thus far has been limited in the
potential energy to terms quadratic in the interatomic displacements. This is
the harmonic theory; among its consequences are:

* Two lattice waves do not interact; a single wave does not decay or change
form with time.

¢ There is no thermal expansion.

Adiabatic and isothermal elastic constants are equal.

The elastic constants are independent of pressure and temperature.

The heat capacity becomes constant at high temperatures T > .
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In real crystals none of these consequences is satisfied accurately. The devia-
tions may bc attributed to the neglect of anharmonic (higher than quadratic)
terms in the interatomic displacements. We discuss some of the simpler as-
pects of anharmonic effects.

Beautiful demonstrations of anharmonic effects are the experiments on
the interaction of two phonons to produce a third phonon at a frequency
@3 = w) + w,. Three-phonon processes are caused by third-order terms in the
lattice potential energy. The physics of the phonon interaction can be stated
simply: the presence of one phonon causes a periodic elastic strain which
(through the anharmonic interaction) modulates in space and time the elastic
constant of the crystal. A second phonon perceives the modulation of the elas-
tic constant and thereupon is scattered to produce a third phonon, just as from
a moving three-dimensional grating.

Thermal Expansion

We may understand thermal expansion by considering for a classical oscil-
lator the effect of anharmonic terms in the potential energy on the mean scpa-
ration of a pair of atoms at a temperature T. We take the potential energy of the
atoms at a displacement x from their equilibrium separation at absolute zero as

Ulx) = cx® —g® — i, (38)

with ¢, g, and f all positive. The term in x° represents the asymmetry of the
mutual repulsion of the atoms and the term in x* represents the softening of the
vibration at large amplitudes. The minimum at x = 0 is not an absolute mini-
mum, hut for small oscillations the form is an adequate representation of an in-
teratomic potential.

We calculate the average displacement by using the Boltzmann distribu-
tion function, which weights the possible values of x according to their

thermodynamic probability:

| dxx epl—puce)
() ="

»

fj dx exp[—BU(x)]

with B =1/ksT. For displacements such that the anharmonic terms in the
energy are small in comparison with kzT, we may expand the integrands as

J dx x exp(—BU) = [ dx [exp(—Bex®)](x + Bgx* + Bfx®) = (3n'/4)(g>)B™* ;
J dx exp(—BU) = [ dx exp(—Bex®) = (m/Bc)”? | (39)

whence the thermal expansion is

3
(x) = ;c% oT (40)
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Figure 15 Lattice constant of solid argon as a

Temperature, in K function of temperature.

- in the classical region. Note that in (39) we have left cx? in the exponential, but
- we have expanded exp(Bgx® + Bfr’) = 1 + Bgx® + Bfx* +
Measurements of the lattice constant of solid argon are shown in Fig. 15.
- The slope of the curve is proportional to the thermal expansion coefficient.
- The expansion coefficient vanishes as T — 0, as we expect from Problem 5. In
lowest order the thermal expansion does not involve the symmetric term fx* in
= U(x), but only the antisymmetric term gxs.

.,
g
1
3

THERMAL CONDUCTIVITY

The thermal conductivity coefficient K of a solid is defined with respect to
the steady-state flow of heat down a long rod with a temperature gradient

dT/dx

Gy = %T (41)

where jy is the flux of thermal energy, or the energy transmitted across unit
area per unit time.

This form implies that the process of thermal energy transfer is a random
process. The energy does not simply enter one end of the specimen and pro-
ceed directly (ballistically) in a straight path to the other end, but diffuses
through the specimen, suffering frequent collisions. If the energy were propa-
gated directly through the specimen without deflection, then the expression
for the thermal flux would not depend on the temperature gradient, but only
on the difference in temperature AT between the ends of the specimen, re-
gardless of the length of the specimen. The random nature of the conductivity
process brings the temperature gradient and, as we shall see, a mean free path
into the expression for the thermal flux.
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Table 2 Phonon mean free paths

[Calculated from (44), taking v = 5 X 10° cm/sec as a representative sound velocity.
The €’s obtained in this way refer to umklapp processes.]

Crystal T,°C C,in]J cm K K, inWem 'K™! €,in A
A O e R SRS
Quart* 0 2.00 0.13 40
—190 0.55 0.50 540
NaCl 0 1.88 0.07 23
—190 1.00 0.27 100

Parallel to optic axis.

From the kinetic theory of gases we find below the following expression
for the thermal conductivity:

K=3Cuf | (42)

where C is the heat capacity per unit volume, v is the average particle vclocity,
and € is the mean free path of a particle between collisions. This result was ap-
plied first by Debye to describe thermal conductivity in dielectric solids, with C
as the heat capacity of the phonons, v the phonon velocity, and € the phonon
mcan free path. Several representative values of the mean free path are given
in Table 2.

We give the elementary kinetic theory which leads to (42). The flux of par-
ticles in the x direction is 3n{|v,|), where n is the concentration of molecules;
in equilibrium there is a flux of equal magnitude in the opposite direction. The
{: ) denote average valuc.

If ¢ is the heat capacity of a particle, then in moving from a region at local
temperature T + AT to a region at local temperature 7' a particle will give up
energy ¢ AT. Now AT between the ends of a free path of the particle is given by

AT Rt iarn o,T ,

where T is the average time between collisions.
The net flux of energy (from both senses of the particle flux) is therefore

dT

ooy AT _ 1, o dT
Ju n{v’YcT e n{o*)er I (43)
If, as for phonons, v is constant, we may write (43) as
ju=—3cotdl (44)

with € = pr and C = nc. Thus K = iCuvf.
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Thermal Resistivity of Phonon Gas
The phonon mean free path € is determined principally by two processes,

' geometrical scattering and scattering by other phonons. If the forces between

atoms were purely harmonic, there would be no mechanism for collisions be-
tween different phonons, and the mean free path would be limited solely by
collisions of a phonon with the crystal boundary, and by lattice imperfections.

' There are situations where these effects are dominant.

With anharmonic lattice interactions, there is a coupling between differ-

. ent phonons which limits the value of the mean free path. The exact states of
- the anharmonic system are no longer like pure phonons.

The theory of the effect of anharmonic coupling on thermal resistivity pre-

~ dicts that ¢ is proportional to I/T at high temperatures, in agreement with
. many experiments. We can understand this dependence in terms of the num-
. ber of phonons with which a given phonon can interact: at high temperature
. the total number of excited phonons is proportional to T. The collision fre-

quency of a given phonon should be proportional to the number of phonons
with which it can collide, whence € o« 1/T.
To define a thermal conductivity there must exist mechanisms in the crys-

- tal whereby the distribution of phonons may be brought locally into thermal

equilibrium. Without such mechanisms we may not speak of the phonons at
one end of the crystal as being in thermal equilibrium at a temperature T; and
those at the other end in equilibrium at 7).

It is not sufficient to have only a way of limiting the mean free path, but
there must also be a way of establishing a local thermal equilibrium distribu-
tion of phonons. Phonon collisions with a static imperfection or a crystal
boundary will not by themselves establish thermal equilibrium, because such
collisions do not change the energy of individual phonons: the frequency s, of
the scattered phonon is equal to the frequency o, of the incident phonon.

It is rather remarkable also that a three-phonon collision process

K+K, =K, (45)

will not establish equilibrium, but for a subtle reason: the total momentum of
the phonon gas is not changed by such a collision. An equilibrium distribution
of phonons at a temperature T can move down the crystal with a drift velocity
which is not disturbed by three-phonon collisions of the form (45). For such
collisions the phonon momentum

J =3 nehiK (46)

is conserved, because on collision the change in J is K3 — K, — K; = 0. Here ng
is the number of phonons having wavevector K.

For a distribution with J # 0, collisions such as (45) are incapable of es-
tablishing complete thermal equilibrium because they leave J unchanged. If
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Figure 16a Flow of gas molecules in a state of drifting equilibrium down a long open tube with
frictionless walls. Elastic collision processes among the gas molecules do not change the momen-
tum or energy flux of the gas because in each collision the velocity of the center of mass of the col-
liding particles and their energy remain unchanged. Thus energy is transported from left to right
without being driven by a temperature gradient. Therefore the thermal resistivity is zero and the
thermal conductivity is infinite.

Figure 16b The usual definition of thermal conductivity in a gas refers to a situation where no
mass flow is permitted. Here the tube is closed at both ends, preventing the escape or entrance of
molecules. With a temperature gradient the colliding pairs with above-average center of mass ve-
locities will tend to be directed to the right, those with below-average velocities will tend to be di-
rected to the left. A slight concentration gradient, high on the right, will be set up to enable the
net mass transport to be zero while allowing a net energy transport from the hot to the cold end.

Figure 16c In a crystal we may arrange to create phonons chiefly at one end, as by illuminating
the left end with a lamp. From that end there will be a net flux of phonons toward the right end of
the crystal. If only N processes (K; + K, = K;) occur, the phonon flux is unchanged in momentum
on collision and some phonon flux will persist down the length of the crystal. On arrival of
phonons at the right end we can arrange in principle to convert most of their energy to radiation,
thereby creating a sink for the phonons. Just as in (a) the thermal resistivity is zero.

we start a distribution of hot phonons down a rod with J # 0, the distribution
will propagate down the rod with J unchanged. Therefore there is no thermal
resistance. The problem as illustrated in Fig. 16 is like that of the collisions be-
tween molecules of a gas in a straight tube with frictionless walls.
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Figure 16d In U processes there is a large net change in phonon momentum in each collision
event. An initial net phonon flux will rapidly decay as we move to the right. The ends may act as
sources and sinks. Net energy transport under a temperature gradient occurs as in (b).

(a) (b)

Figure 17 (a) Normal K, + K, =K; and (b) umklapp K, + K, =K;+ G phonon collision
processes in a two-dimensional square lattice. The square in each figure represents the first
Brillouin zone in the phonon K space; this zone contains all the possible independent values of the
phonon wavevector. Vectors K with arrowheads at the center of the zone represent phonons
absorbed in the collision process; those with arrowheads away from the center of the zone repre-
sent phonons emitted in the collision. We see in (b) that in the umklapp process the direction of
the x-component of the phonon flux has been reversed. The reciprocal lattice vector G as shown is
of length 27r/a, where a is the lattice constant of the crystal lattice, and is paralle] to the K, axis.
For all processes, N or U, energy must be conserved, so that @, + w, = w;.

Umklapp Processes

The important three-phonon processes that cause thermal resistivity are
not of the form K, + K, = K, in which K is conserved, but are of the form

K +K=K+G, (47)

where G is a reciprocal lattice vector (Fig. 17). These processes, discovered by
Peierls, are called umklapp processes. We recall that G may occur in all mo-
mentum conservation laws in crystals. In all allowed processes of the form of
(46) and (47), energy is conserved.
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We have seen examples of wave interaction processes in crystals for which
the total wavevector change need not be zero, but may be a reciprocal lattice
vector. Such processes are always possible in periodic lattices. The argument is
particularly strong for phonons: the only meaningful phonon K lie in the first
Brillouin zone, so that any longer K produced in a collision must be brought
back into the first zone by addition of a G. A collision of two phonons both
with a negative value of K, can by an umklapp process (G # 0), create a phonon
with positive K,. Umklapp processes are also called U processes.

Collisions in which G = 0 are called normal processes or N processes. At
high temperatures T > @ all phonon modes are excited because kpT > fiw .
A substantial proportion of all phonon collisions will then be U processes, with
the attendant high momentum change in the collision. In this regime we can
estimate the thermal resistivity without particular distinction between N and U
processes; by the earlier argument about nonlinear effects we expect to find a
lattice thermal resistivity o T at high temperatures.

The energy of phonons K;, K, suitable for umklapp to occur is of the order
of 3kz8, because each of the phonons 1 and 2 must have wavevectors of the
order of 3G in order for the collision (47) to be possible. If both phonons have
low K, and therefore low energy, there is no way to get from their collision a
phonon of wavevector outside the first zone. The umklapp process must con-
serve energy, just as for the normal process. At low temperatures the number
of suitable phonons of the high energy 3k required may be expected to vary
roughly as exp(—6/2T), according to the Boltzmann factor. The exponential
form is in good agreement with experiment. In summary, the phonon mean
free path which enters (42) is the mean free path for umklapp collisions be-
tween phonons and not for all collisions between phonons.

Imperfections

Geometrical effects may also be important in limiting the mean free path.
We must consider scattering by crystal boundaries, the distribution of isotopic
masses in natural chemical elements, chemical impurities, lattice imperfec-
tions, and amorphous structures.

When at low temperatures the mean free path £ becomes comparable with
the width of the test specimen, the value of € is limited by the width, and the
thermal conductivity becomes a function of the dimensions of the specimen. This
effect was discovered by de Haas and Biermasz. The abrupt decrease in thermal
conductivity of pure crystals at low temperatures is caused by the size effect.

At low temperatures the umklapp process becomes ineffective in limiting
the thermal conductivity, and the size effect becomes dominant, as shown in
Fig. 18. One would expect then that the phonon mean free path would be con-
stant and of the order of the diameter D of the specimen, so that

K=CoD . (48)
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Temperature, in K T. H. Geballe and G. W, IIull.)

The only temperature-dependent term on the right is C, the heat capacity,
which varies as T° at low temperatures. We expect the thermal conductivity to
vary as T° at low temperatures. The size effect enters whenever the phonon
mean free path becomes comparable with the diameter of the specimen.
Dielectric crystals may have thermal conductivities as high as metals. Syn-
thetic sapphire (Al,O;) has one of the highest values of the conductivity: nearly
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200 W em ™! K7 at 30 K. The maximum of the thermal conductivity in sapphire
is greater than the maximum of 100 W cm™ X! in copper. Metallic gallium,
however, has a conductivity of 845 W cm”' K~ ! at 1.8 K. The electronic contri-
bution to the thermal conductivity of metals is treated in Chapter 6.

In an otherwise perfect crystal, the distribution of isotopes of the chemical
elements often provides an important mechanism for phonon scattering. The
random distribution of isotopic mass disturbs the periodicity of the density as
seen by an elastic wave. In some substances scattering of phonons by isotopes
is comparable in importance to scattering by other phonons. Results for ger-
manium are shown in Fig. 19. Enhanced thermal conductivity has been ob-
served also in isotapically pure silicon and diamond; the latter has device
importance as a heat sink for laser sources.

Problems

1. Singularity in density of states. (a) From the dispersion relation derived in Chap-
ter 4 for a monatomic linear lattice of N atoms with nearest-neighbor interactions,
show that the density of modes is

where w,, is the maximum frequency. (b) Suppose that an optical phonon branch
has the form w(K) = w,—AK?, near K= 0 in three dimensions. Show that D(w) =
(L2m)3(2m/A¥*) (@) ~ )" for @ < @, and D(w) = 0 for @ > w,. Here the density
of modes is discontinuous.

2. Rms thermal dilation of crystal cell. (a) Estimate for 300 K the root mean
squarc thermal dilation AV/V for a primitive cell of sodium. Take the bulk modulus
as 7 X 10" erg cm ™. Note that the Debye temperature 158 K is less than 300 K, so
that the thermal energy is of the order of kzT. (b) Use this result to estimate the root
mean square thermal fluctuation Aa/a of the lattice parameter.

3. Zero point lattice displacement and strain. (a) In the Debye approximation,
show that the mean square displacement of an atom at absolute zero is {(R* =
3fiw/877pv’, where v is the velocity of sound, Start from the result (4.29) summed
over the independent lattice modes: {R*) = (A/2pV)Zw . We have included a factor
of 5 to go from mean square amplitude to mean square displacement. (b) Show that
Zw™! and (R?) diverge for a one-dimensional lattice, but that the mean square strain
is finite. Consider ((8R/6x)*) = 52K%u as the mean square strain, and show that it is
equal to wpL/AMNY® [or a linc of N atoms each of mass M, counting longitudinal
modes only. The divergence of R is not significant for any physical measurement.

4. Heat capacity of layer lattice. (a) Consider a dielectric crystal made up of layers

of atoms, with rigid coupling between layers so that the motion of the atoms
is restricted to the plane of the layer. Show that the phonon heat capacity in
the Debye approximation in the low temperature limit is proportional to T°
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(b) Suppose instead, as in many layer structures, that adjacent layers are very weakly
bound to each other. What form would you expect the phonon heat capacity to ap-
proach at extremely low temperatures?

'5. Griineisen constant. (a) Show that the free energy of a phonon mode of fre-
quency o is kgT In [2 sinh (Aw/2k,T)]. It is necessary to retain the zero-point encrgy
sh to obtain this result. (b) If A is the fractional volume change, then the free en-
ergy of the crystal may be written as

F(A, T) = 3BA? + kT 3 In [2 sinh (Awg/2ksT)] |

where B is the bulk modulus. Assume that the volume dependence of wy is
Sw/w = —yA, wherce vy is known as the Griineisen constant. If v is taken as indepen-
dent of the mode K, show that I is a minimum with respect to A when BA = ySiho
coth (hw/2k;T), and show that this may be written in terms of the thermal energy
density as A = yU(T)/B. (¢) Show that on the Debye model y = —3 In 6/3 In V. Note:
Many approximations are involved in this theory: the result (a) is valid only if  is in-
dependent of temperature; y may be quite different for different modes.

*This problem is somewhat difficult.
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