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Figure 1 Plot of Planck distribution function. At high temperatures the occupancy of a state is 
approximately linear in the temperature. The function (n) + b, which is not plotted, approaches 
the dashed line as asymptote at high temperatures. 
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We discuss the heat capacity of a phonon gas and then the effects of 
anharmonic lattice interactions on the phonons and on the crystal. 

PHONON HEAT CAPACITY 

By heat capacity we shall usually mean the heat capacity at constant vol- 
ume, which is more fundamental than the heat capacity at constant pressure, 
which is what the experiments determine.' The heat capacity at constant vol- 
ume is defined as Cv = (dU/dT), where U is the energy and T the temperature. 

The contribution of the phonons to the heat capacity of a crystal is called 
the lattice heat capacity and is denoted by C,.,. The total energy of the 
phonons at a temperature T(= k,T) in a crystal may he written as the sum of 
the energies over all phonon modes, here indexed by the wavevector K and 
polarization index p: 

Ui, = 2 2 U,, = z zcn,NJJio, 2 

K v K P 
(1) 

1 
(n) = errp(ho/.r) - l ' ( 2 )  

where the (...) denotes the average in thermal equilibrium. A graph of (n) is 

Planck Distribution 

Consider a set of identical harmonic oscillators in thermal equilibrium. 
The ratio of the number of oscillators in their (n + 1)th quantum state of exci- 
tation to the number in the nth quantum state is 

N,,+,IN. = exp(-fio/~) , 7= kBT , (3) 

'A thermodynamic relation gives Cp - C, = 902BVT, where a is the temperature coefficient 
of linear expansion, V the volume, and B the bulk modulus. The fractional difference between C, 
and C, is usually small in solids and often may be neglected. As T- 0 we see that C,+Cv, pro- 
vided a and B are constant. 



by use of the Boltzmann factor. Thus the fraction of the total number of oscil- 
lators in the nth quantum state is 

We see that the average excitation quantum number of an oscillator is 

z s  exp-shw/~) 
(n) = 

' 
z eT(-sfiolr) 

(5) 

The summations in (5) are 

with x = exp(-ftwl~). Thus we may rewrite (5) as the Plauck distribution: 

x - (n) = -- - 
1 

1 - x exp(fw/7) - 1 

Nomal Mode Enumeration 

The energy of a collection of oscillators of frequencies on;, in thermal 
equilibrium is found from (1) and (2): 

It is usually convenient to replace the summation over K by an integral. Sup- 
pose that the crystal has DP(o)do modes of a given polarization p in the fre- 
quency range o to o + d o .  Then the energy is 

The lattice heat capacity is found by differentiation with respect to tempera- 
ture. Let x = h o / ~  = ho/kBT: then 8U/aT gives 

x2 exp x 
~ ~ = k , ~ I d o ~ , , ( o )  p (expx - ' 

The central prohlem is to find D(w), the number of modes per unit fre- 
quency range. This function is called the density of modes or, more often, den- 
sity of states. 

Density of States in One Dimension 

Consider the boundary value prohlem for vibrations of a one-dimensional 
line (Fig. 2) of length L carrying N + 1 particles at separation a. We suppose 
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Figure 2 Elastic line of N + I atoms, with N = 10, fur boundary conditions that the end atoms 
s = 0 and s = 10 are k c d .  The particle displacements in the normal modes for eitl~cr longitu&~d 
or transverse displacrme~~ts are of the form u, sin sKa. This form is antomatically zero at the 
atom at the ends = 0 ,  and we choose K to make the displacement zero at the ends  = 10 

Figure 3 Thc boundary condition sin sKa = O for s = 10 can be satisfied by choosing K = .rr/lOa, 
ZdIOa, . . ., S.rr/lOa, where 10a is the length L of the line. The present figure is in K space. The 
dots are not atoms but are the allowed valucs of K. Of the N + 1 particles on the line, only N - 1 
are allowcd to move, and their most general motion car1 be expressed in terms of the N - 1 al- 
lowed vali~es of K.  This quantization of K has nothing to do with qnantnm mechanics but follows 
classically from the boondaryconditions that tlre cnd atoms be fixed. 

that the s = 0 and s = N at the ends of the line are held fixed. Each 
norrrlal vibrational modc of polarization p has the form of a standing wave, 
where u ,  is the displacement of the particle s: 

v, = 4 0 )  exp-io,,+,t) sin sKtl , (11) 

wtiere wKl, is related to K by the appropriate dispersion relation. 
As in Fig. 3,  thc wavevector K is restricted by the fixed-end boundary con- 

ditions to the values 

The solution for K = n/L has 

u, a sin (s.rra/L) (13) 

and vanishes for s = 0 and s = N as required. 
The solution for K = NT/L = d a  = K,,,, has u, sin ST; this permits no 

111otioll of any atom, because sinsz- vanishes at each atom. Thus there are 
N - 1 allowed independent values of K in (12). This number is equal to the 
number of particles allowed to Inove. Each allowed value of K is associated 
with a sta~ldi~ig wave. For the one-dimensional line there is one mode for each 
iriterval AK = T/L,  so that the number of modes per unit range of K is LIT for 
K 5 d a ,  and 0  for K > rrla. 

Therc are three polarizations p for each value of K: in one dimension two 
of these are transverse and one longitudinal. In three dimensions the polariza- 
tions are this simple only for wavevectors in ccrtain special crystal directions. 

Another device for enumerating modes is equally valid. We consider the 
medium as unbounded, hut require that the solutions be periodic over a large 
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Figure 6 Allowed values in Fourier space of the phonon wavevector K for a square lattice of lat- 
tice constant a, with periodic boundary conditions applied over a square of side L = 10o. The uni- 
form mode is marked with a cross. There is one allowrd value of K per area (271/l&~)~ = (ZwIL)', so 
that within the circle of area 7iKi the smoothed number of allowed paints is ITK'(L/ZW)'. 

We can obtain the group velocity doldK from the dispersion relation o versus 
K. There is a singularity in Dl(o)whenever the dispersion relation w(K) is hori- 
zontal; that is, whenever the group velocity is zero. 

Density of States in Three Dimensions 

We apply periodic boundary conditions over N3 primitive cells within a 
cube of side L, so that K is determined by the condition 

whence 

Therefore, there is one allowed value of K per volume (25~lL)~ in K space, or 

allowed values of K per unlt volume of K space, for each polarization and for 
each branch. The volume of the specimen is V = L3. 

The total number of modes with wavevector less than K is found from (18) 
to he (L125~)~ times the volume of a sphere of radius K. Thus 

N = (L/25~)~(4?ik"/3) (19) 



for each polarization type. The density of states for each polarization is 

D ( W )  = d ~ / d ~  = ( v I C / 2 d ) ( d ~ l d w )  . (20)  

Debye Model for Density of States 

In the Debye approximation the velocity of sound is taken as constant for 
each polarization type, as it would be for a classical elastic continuum. The dis- 
persion relation is written as 

w = u K  , (21)  

with v the constant velocity of sound. 
The density of states (20)  becomes 

If there are N primitive cells in the specimen, the total number of acoustic 
phonon modes is N. A cutoff frequency oD is determined by (19)  as 

To this frequency there corresponds a cutoff wavevector in K space: 

On the Debye model we do not allow modes of wavevector larger than K,. The 
number of modes with K 5 K, exhausts the number of degrees of freedom of a 
monatomic lattice. 

The thermal energy ( 9 )  is given by 

for each polarization type. For brevity we assume that the phonon velocity is 
independent of the polarization, so that we multiply by the factor 3 to obtain 

where x = h o / r  --= fi.wlk,T and 

xD = hwulk,T = BIT . (27)  

This defines the Debye temperature 0 in terms of w, defined by (23) .  
We may express 0 as 
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Figure 7 Heat capacity C, of a solid, according to 
the Debye approximation. The vertical scale is in J 
mol-' K-I. The holizuntal scale is the temperature 
normalized to the Debye temperature 0 .  The re- 
gion of the T3 law is below 0.18. The asymptotic 
value at high values of TI0 is 24.943 J mol-' deg-'. 

Figure 8 Heat capacity of silicon and germa- 
nium. Note the decrcase at low temperatures. 
To convert a value in caVmol-K to Jlmol-K, 

Temperature, K multiply by 4.186. 

so that the total phonon energy is 

where N is the number of atoms in the specimen and XD = BIT. 
The heat capacity is found most easily by differentiating the middle ex- 

pression of (26) with respect to temperature. Then 

The Debye heat capacity is plotted in Fig. 7. At T P 0 the heat capacity ap- 
proaches the classical value of 3Nkn. Measured values for silicon and germa- 
nium are plotted in Fig. 8. 



Debye PLaw 

At very low temperatures we may approximate (29) by letting the upper 
limit go to infinity. We have 

where the sum over s-4 is found in standard tables. Thus U - 37r4Nk,P/503 for 
T G 8, and 

which is the Dehye T3 approximation. Experimental results for argon are plot- 
ted in Fig. 9. 

At sufficiently low temperature the T3 approximation is quite good; that is, 
when only long wavelength acoustic modes are thermally excited. These are just 
the modes that may be treated as an elastic continuum with macroscopic elastic 
constants. The energy of the short wavelength modes (for which this approxima- 
tion fails) is too high for them to he populated significantly at low temperatures. 

We understand the T3 result by a simple argument (Fig. 10). Only those 
lattice modes having h o  < kBT will be excited to any appreciable extent at a 
low temperature T. The excitation of these modes will he approximately classi- 
cal, each with an energy close to k,T, according to Fig. 1. 

Of the allowed volume in K space, the fraction occupied by the excited 
modes is of the order of  do^)^ or (KT/KD)3, where KT is a "thermal" wavevec- 
tor defined such that hvK, = k,T and K ,  is the Debye cutoff wavevector. Thus 
the fraction occupied is (T/O)3 of the total volume in K space. There are of the 
order of 3N(T/8)3excited modes, each having energy kBT. The energy is 
-3Nk,T(T/O)3, and the heat capacity is -12NkB(T/O)3. 

For actual crystals the temperatures at which the T3 approximation holds 
are quite low. I t  may be necessary to be below T = 8/50 to get reasonably pure 
T3 behavior. 

Selected values of 8 are given in Table 1. Note, for example, in the alkali 
metals that the heavier atoms have the lowest 8>, because the velocity of 
sound decreases as the density increases. 

Einstein Model of the Density of States 

Consider N oscillators of the same frequency o, and in one dimension. 
The Einstein density of states is D(o) = N6(o - w,), where the delta function 
is centered at ow The thermal energy of the system is 

Nho U = N(n)ho = e""/' , 

with o now written in place of o,, for convenience 



Figure 9 Low temperature heat capacity of solid argon, plotted against T3. In this temperature 
region the experimental results are in excellent agreement with the Debye T3 law with B = 92.0 K. 
(Conrtesy of L. Finegold and N. E. Phillips.) 

Figure 10 To obtain a qualitative explanation of the Debye T3 law, we suppose that all phonon 
modes of wavevector less than K ,  have the classical thermal energy k,T and that modes between 
K, and the Debye cutoff K, are not excited at all. Of the 3N possible modes, the fraction excited is 
(KdKDJ1 = (T/O)3, because this is the ratio of the volume of the inner sphere to the outer sphere. 
Tne enerais  U - k,T . 3N(T@, and the heat capacity is C, = JU/aT= 12NkB(T/B)3. 
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Figure 11 Comparison of values of the heat capacity of diamond with values calcu- 
hted on the earliest quantum (Einstein) model, using the characteristic temperature 
& = W k ,  = 1320 K. To convert to Jlmol-deg, multiply by 4.186. 

The heat capacity of the oscillators is 

C v - - (;gv - =Nk, f:y(e6iy - , (34) 

as plotted in Fig. 11. This expresses the Einstein (1907) result for the contribu- 
tion of N identical oscillators to the heat capacity of a solid. In three dimensions 
N is replaced by 3N, there being three modes per oscillator. The high tempera- 
ture limit of Cv becomes 3Nk8, which is known as the Dnlong and Petit value. 

At low temperatures (34) decreases as exp(-fiw/~), whereas the experi- 
mental form of the phonon contribution is known to he T3as accounted for by 
the Debye model treated above. The Einstein model, however, is often used to 
approximate the optical phonon part of the phonon spectrum. 

General Result for D(m) 

We want to find a general expression for D(w), the number of states per unit 
frequency range, given the phonon dispersion relation o(K). The number of d- 
lowed values of K for which the phonon frequency is between o and w + dw is 

Mw) dw = ($ Ishe" B K  . (35) 

where the integral is extended over the volume of the shell in K space hounded 
by the two surfaces on which the phonon frequency is constant, one surface on 
which the frequency is w and the other on which the frequency is o + dw. 

The real problem is to evaluate the volume of this shell. We let dS, denote 
an element of area (Fig. 12) on the surface in K space of the selected constant 



Figure 12 Element of area dS ,  on a constant 
frequency surface in K space. The volume 
between -two surfaces of constant frequency at 
wand w + dw is equal to J dS,do/lV,wl. 

frequency w. The element of volume between the constant frequency surfaces 
w and w + dw is a right cylinder of base dS, and altitude dK,, SO that 

J = J ~ S J K ~  . 
shell 

Here dKL is the perpendicular distance (Fig. 13) between the surface w con- 
stant and the surface w + dw constant. The value of dK, will vary from one 
point to another on the surface. 

The gradient of w, which is VKw, is also normal to the surface w constant, 
and the quantity 

is the difference in frequency between the two surfaces connected by dKk 
Thus the element of the volume is 

where vg = lVKwl is the magnitude of the group velocity of a phonon. For (35) 
we have 

We divide both sides by dw and write V = L3 for the volume of the crystal: the 
result for the density of states is 
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Surface o + dw = constant 

Figure 13 Tlre quantity dK, is the perpendicular distance 
between two constant frequency surfaccs in K space, one at 
frequency o and the other at frequency o + dw. 

(a) (b) 

Figure 14 Density of states as a function of frequency for (a) the Debye solid and (b) an actual 
crystal structure. The specbum for the crystal starts as o2 for small o, but discontinuities develop 
at singular points. 

Thc integral is taken over the area of the surface o constant, in K space. The 
result refers to a single branch of the dispersion relation. We can use this re- 
sult also in electro~l band theory. 

There is a special interest in the contribution to D(w) frorn points at which 
the group velocity is zero. Such critical points produce singularitics (known as 
Van Hove singnlarities) in the distribution function (Fig. 14). 

ANHARMONIC CRYSTAL INTERACTIONS 

The theory of lattice vibrations disciissed thus far has been limited in the 
potential energy to terms quadratic in the interatomic displacements. This is 
the harmonic theory; among its consequences are: 

Two lattice waves do not interact; a single wave docs not decay or change 
form with time. 
There is no thermal expansion. 
Adiabatic and isothermal elastic constants are equal. 
The elastic constants are independent of pressure and temperature. 
The heat capacity becomes constant at high temperatures T > 8. 



In real crystals none of these consequences is satisfied accurately. The dcvia- 
tions may bc attributed to the neglect of anharmonic (higher than quadratic) 
terms in the interatomic displacements. We discuss some of the simpler as- 
pects of anharnionic effects. 

Beautiful demonstrations of anharmonic effects are the experiments on 
thc interaction of two pllonons to poduce a third phonon at a frequency 
w3 = wl + 0~ Three-phonon processes are caused by third-order terms in the 
lattice potential energy. The physics of the phonon interaction can be stated 
simply: the presence of one phonon canses a periodic elastic strain whidi 
(through the anharmonic interaction) modulates in space and time the elastic 
constant of the crystal. A second phonon perceives the modulation of the elas- 
tic constant and thereupon is scattered to produce a third phonon, just as from 
a moving three-dimensional grating. 

Thermal Expansion 

We may understand thermal expansion by considering for a classical oscil- 
lator the ellect of anharmonic terms in the potential energy on the mean scpa- 
ration of a pair of atoms at a temperature T .  We take the potential energy of the 
atoms at a displacement x from their equilibrium separation at absolute zero as 

with c, g, andf all positive. The term in x3 represents the asymmetry of the 
mutual repulsion of the atoms and the term in x4 represents the softening of the 
vibration at large amplitudes. The ~ninimum at x = 0 is not an absolute mini- 
mum, hut for small oscillations the form is an adequate representation of an in- 
teratomic potential. 

We calculate the average displacement by using the Boltzmann distribu- 
tion function, which weights the possible values of x according to their 
thermodynamic probability 

with p = l /k ,T.  For displacements such that the anharmonic terms in the 
energy are small in comparison with k,T, we may expand the integrands as 

whence the thermal expansion is 

3tz (x) = -kRT 
4cZ 



Temperature, in K 

5 Phonons ZI. T h s m l  Properties 121 

Figure 15 Lattice constant of solid argon as a 
funaion of temperature. 

in the classical region. Note that in (38) we have left a2 in the exponential, but 
we have expanded exp(pgx3 + pfi4) s 1 + pgx3 + pfi4 + . . .. 

Measurements of the lattice constant of solid argon are shown in Fig. 15. 
The slope of the curve is proportional to the thermal expansion coefficient. 
The expansion coefficient vanishes as T+ 0, as we expect from Problem 5. In 
lowest order the thermal expansion does not involve the symmetric termfi4 in 
U(x) ,  but only the antisymmetric term gx3. 

THERMAL CONDUCTMTY 

The thermal conductivity coefficient K of a solid is defined with respect to 
the steady-state flow of heat down a long rod with a temperature gradient 
dT/&: 

where jL, is the flux of thermal energy, or the energy transmitted across unit 
area per unit time. 

This form implies that the process of thermal energy transfer is a random 
process. The energy does not simply enter one end of the specimen and pro- 
ceed directly (hallistically) in a straight path to the other end, but diffuses 
through the specimen, suffering frequent collisions. If the energy were propa- 
gated directly through the specimen without deflection, then the expression 
for the thermal flux would not depend on the temperature gradient, but only 
on the difference in temperaturc AT between the ends of the specimen, re- 
gardless of the Tength of the specimen. The random nature of the conductivity 
process brings the temperature qadient and, as we shall see, a mean free path 
into the expression for the thermal flux. 



Table 2 Phonon mean free paths 

[Calculated from (44), taking v = 5 x 10' cmlsec as a representative sou~ld velocity. 
The e's obtained in this way refer to umklapp processes.] 

'Parallel to optic axis .  

From the kinetic theory of gases we find below thc tbllowing expression 
for the thermal conductivity: 

K = ;cue , (42) 

where C is the heat capacity per unit volu~ne, v  is the average particle velocity, 
and Z is the mean free path of a prticle between collisions. This result was ap- 
plied first by Debye to describe thermal conductivity in dielectric solids, with C 
as the heat capacity of the phonons, o the phonon velocity, and e the phonon 
mean free path. Several representative values of the mean free path are given 
in Table 2. 

We give the elementary kinetic theory which leads to (42). The flux of par- 
ticles in the x direction is in(lozl) ,  where n  is the concentration of molec~iles; 
in equilibrium there is a flux of equal magnitnde in the opposite direction. The 
(. . .) denote average valuc. 

If c is thc heat capacity of a particle, then in moving frurn a region at local 
temperatine T + AT to a region at local temperature 2' a particle will give up 
energy c  AT. Now AT between the ends of a free path of the particle is given hy 

where T is the average time between collisions. 
The net flnx of energy (from both senses of the particle flux) is therefore 

dT 1 dT j,, = - n ( d ) c r  = - z n ( v 2 ) c ~ -  . 
dx dx 

If, as for phonons, u  is constant, we may write (43) as 

- -k dl- u -  ~ e - ;  
dx 

with e = OT and C = nc. Thns K = $ c u t .  
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Thermal Resistivity of Phonon Gas 

The phonon mean free path t! is determined principally by two processes, 
geometrical scattering and scattering by other phonons. If the forces between 
atoms were purely harmonic, there would be no mechanism for collisions be- 
tween different phonons, and the mean free path wolild be limited solely by 
collisions of a phonon with the crystal boundary, and by lattice imperfections. 
There are situations where these effects are dominant. 

With anharmonic lattice interactions, there is a coupling between differ- 
ent phonons which limits the value of the mean free path. The exact states of 
the anharmonic system are no longer like pure phonons. 

The theory of the effect of anharmonic coupling on thermal resistivity pre- 
dicts that C is proportional to l/T at high temperatures, in agreement with 
many experiments. We can understand this dependence in terms of the nnm- 
ber of phonons with which a given phonon can interact: at high temperature 
the total number of excited phonons is proportional to T. The collision fre- 
quency of a given phonon should be proportional to the number of phonons 
with which it can collide, whence e 1/T. 

To define a thermal conductivity there must exist mechanisms in the crys- 
tal whereby the distribution of phonons may be brought locally into thermal 
equilibrium. Without such mechanisms we may not speak of the phonons at 
one end of the crystal as being in thermal equilibrium at a temperature T, and 
those at the other end in equilibrium at T , .  

It is not sufficient to have only a way of limiting the mean free path, but 
there must also be a way of establishing a local thermal equilibrium distribu- 
tion of phonons. Phonon collisions with a static imperfection or a crystal 
boundary will not by themselves establish thermal equilibrium, because such 
collisions do not change the energy of individual phonons: the frequency o2 of 
the scattered phonon is equal to the frequency o, of the incident phonon. 

It is rather remarkable also that a three-phonon collision process 

will not establish equilibrium, but for a subtle reason: the total momentum of 
the phonon gas is not changed by such a collision. An equilibrium distribution 
of phonons at a temperature T can move down the crystal with a drift velocity 
which is not disturbed by three-phonon collisions of the form (45). For such 
collisions the phonon momentum 

is conserved, because on collision the change in J is K3 - K2 - K1 = 0. Here nK 
is the number of phonons having wavevector K. 

For a distribution with J + 0, collisions such as (45) are incapable of es- 
tablishing complete thermal cquilihrium because they leave J unchanged. If 



Figure 16a Flow of gas molecules in a state of drifting equilibrium down a long open tube with 
frictionless walls. Elastic collision processes among the gas molecules do not change the momen- 
tum or energy flux of the gas because in each collision the velocity of the center of mass of the col- 
liding particles and their energy remain unchanged. Thus energy is transported from left to right 
without being driven by a temperature gradient. Therefore the thermal resistivity is zero and the 
thermal conductivity is infinite. 

Figure 16b The usual definition of thermal conductivity in a gas refers to a situation where no 
mass flow is permitted. Here the tube is closed at both ends, preventing the escape or entrance of 
molecules. With a temperature gradient the colliding pairs with above-average center of mass ve- 
locities will tend to be directed to the right, those with below-average velocities will tend to he di- 
rected to the left. A slight concentration gradient, high on the right, will be set up to enable the 
net mass transport to be zero while allowing a net energy transport from the hot to the cold end. 

Figure 16c In a crystal we may arrange to create phonons chiefly at one end, as by illuminating 
the left end with a lamp. From that end there will be a net flux of phonons toward the right end of 
the crystal. If only N processes (K, + K, = K,) occur, the phonon flux is unchanged in momentum 
on collision and some phonon flux will persist down the length of the crystal. On arrival of 
phonons at the right end we can arrange in principle to convert most of their energy to radiation, 
thereby creating a sink for the phonons. Just as in (a) the thermal resistivity is zero. 

we start a distribution of hot phonons down a rod with J # 0, the distribution 
will propagate down the rod with J unchanged. Therefore there is no thermal 
resistance. The problem as illustrated in Fig. 16 is like that of the collisions be- 
tween molecules of a gas in a straight tube with frictionless walls. 
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Figure 16d In U processes there is a large net change in phonon momentum in each collision I event. An initial net phonon flu will rapidly decay as we move to the right. The ends may act as 
I 
I sources and sinks. Net energy transport under a temperature gradient occurs as in (b). 

Figure 17 (a) Normal K, + K, = K, and (b) umklapp K, + K, = K3 + G phonon collision 
processes in a two-dimensional square lattice. The square in each figure represents the first 
Brillouin zone in the phonon K space; this zone contains all the possible independent values of the 
phonon wavevector. Vectors K with arrowheads at the center of the zone represent phonons 
absorbed in the collision process; those with arrowheads away from the center of the zone repre- 
sent phonons emitted in the collision. We see in (b) that in the umklapp process the direction of 
the x-component of the phonon flux has been reversed. The reciprocal lattice vector G as shown is 
of length 2 d a ,  where a is the lattice constant of the crystal lattice, and is parallel to the K,  axis. 
For all processes, N or U ,  energy must be conserved, so that o, + w, = o,. 

Umklapp Processes 

The important three-phonon processes that cause thermal resistivity are 
not of the form K1 + K2 = K3 in which K is conserved, but are of the form 

where G is a reciprocal lattice vector (Fig. 17). These processes, discovered by 
Peierls, are called umklapp processes.  We recall that G may occur in all mo- 
mentum conservation laws in crystals. In all allowed processes of the form of 
(46) and (47), energy is conserved. 



We have seen examples of wavc interaction processes in crystals for which 
the total wavevector change need not be zero, but may be a reciprocal lattice 
vector. Such processes are always possible in periodic lattices. The argument is 
particularly strong for phonons: the only meaningful phonon K's lie in the first 
Brillouin zone, so that any longer K produced in a collision must he brought 
back into the first zone by addition of a G. A collision of two phonons both 
with a negative valiie of K, can by an umklapp process (G # O), create a phonon 
with positive K,. Umklapp processes are also called U processes. 

Collisions in wliidi G = O are called normal processes or N processes. At 
high temperatures T > 0 all phonon modes are excited because kBT > &om. 
A substantial proportion of all phonon collisions will then he U processes, with 
the attendant high momentum change in the collision. In this regime we can 
estimate the thermal resistivity without particular distinction between Nand U 
processes; by the earlier argument about nonlinear effects we expect to find a 
lattice thermal resistivity T at high temperatures. 

The energy of phonons K,, K, suitable for umklapp to occur is of the order 
of ikB8, because each of thc phonons 1 and 2 mnst have wavevectors of the 
order of ;G in order for the collision (47) to be possible. If both phonons have 
low K, and therefore low energy, there is no way to get from their collision a 
phonon of wavevector outside the first zone. The uniklapp process must con- 
serve energy, just as for the normal process. At low temperatures the number 
of suitable phonons of the high energy ;kB0 rcquired may he expected to vary 
roughly as exp(-8/2T), according to the Boltzmann factor. The exponential 
form is in good agreement with experiment. In summary, the phonon mean 
free path which enters (42) is the mean free path for urnklapp collisions be- 
tween phonons and not for all collisions between phonons. 

Geometrical effects may also be in~portant in limiting the mean free path. 
We must consider scattering by crystal boundaries, the distribution of isotopic 
masses in natural chemical elements, chemical impurities, lattice imperfec- 
tions, and amorphous structiires. 

When at low temperatures the mean free path t becomes comparable with 
the width of the test specimen, the value o f t  is limited by the width, and the 
thermal conductivity becomes a function of the dimensions of the specimen. This 
effect was discovered by de Haas and Biermasz. The abrupt decrease in thermal 
conductivity of pure crystals at low temperatures is caused by the size effect. 

At low tcmperatiires the umklapp process becomes ineffective in limiting 
the thermal conductivity, and the size effect becomes dominamt, as shown in 
Fig. 18. One would expect then that the pho~~om niean free path would be con- 
stant and of the order of the diameter U of the specimen, so that 

K = C v D  . (48) 
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Figure 18 Thermal conductivity of a 
highly pr~rified crystal of sodium fluo- 
ride, after 11. E. Jackson, C. T. Walker, 
and T. F. McNelly. 
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The only temperature-dependent term on the right is C, the heat capacity, 
which varies as T%t low temperatures. We expect the thermal conductivity to 
vary as T h t  low temperatures. The size effect enters whenever the phonon 
mean free pat11 becomes comparahle with the diameter of the specimen. 

Dielectric crystals may have thermal conductivities as high as metals. Syn- 
thetic sapphire (A1,0,) has one of the highest values of the conductivity: nearly 



200 W c m  K-' at 30 K. The maximum of the thermal conductivity in sapphire 
is greater than the maximum of 100 W cm-' K-' in copper. Metallic gallium, 
however, has a co~lductivity of 845 W cm-' K-' at 1.8 K. The electronic contri- 
bution to the thermal conductivity of metals is treated in Chaptcr 6.  

In  an otherwise perfect crystal, the  distribution of isotopes of the chemical 
elements often provides an important mechanism for phonon scattering. The 
random distribution of isotopic mass disturbs the periodicity of the density as 
seen by an elastic wave. In  some substances scattering of phonons by isotopes 
is comparable in importance to  scattering by other phonons. Kcsults for gcr- 
manium are show1 in Fig. 19. Enhanced thcrmal condncti\lty has been oh- 
served also in isotopically pure silicon and diamond; the  latter has device 
importance as a heat sink for laser sources. 

Problems 

1. Singularity in density of ntatex. (a) Frnm the dispersion relation rlcrivcd in Chap- 
ter 4 for a irroiratoinic linear lattice nf N atnms with nearest-neighhnr interactions, 
show that t l ~ r  density of modes is 

where w, is the maximum frequenc).. (b) Suppose that an optical phonon branch 
has the form w(K) = w,-AK2, near K = 0 in three dimensions. Show that D(w) = 

( L / ~ ' T ) ~ ( ~ ' T / A " ' ) ( ~  - w)lJ2 for w < w, and D(w) = 0 for o > o,. Here the density 
oC modes is discontinuous. 

2.  Rma thennal dilation of crystal cell. (a) Estimate for 300 K the root mean 
squarc thcrmal dilation A m '  for a primitive cell of sodium. Take the bulk modulus 
as 7 X 10" crg ~ m - ~ .  Note that the Debye temperature 158 K is less than 300 K, so 
that thc thcrmal cnc rg  is of the order of k,T. (b) Use this result to estimate the root 
mean square thcrmal fluctuation Aala of the lattice parameter. 

3. Zero point lattice displacement and atrain. (a) In the Debye approximation, 
show that the mean square displacement of an atom at absolute zero is (RZ) = 

3hw38dp3, where v is the velocity of sound. Start from the result (4.29) summed 
over the independent lattice modes: (R? )= (h/2pV)Zw-'. We have included a factor 
of to go from mean square amplitude to mean square displacement. (b) Show that 
Zw-' and (d) diverge for a one-dimensional lattice, but that the mean square strain 
is finite. Consider ((dkva~)? = i2ICui as the mean square strain, and show that it is 
equal to fiw%/4h4N03 Tor a linc of i\r atoms each of mass M, counting longitudinal 
modes only The divergence of R2 is not significant for any physical measurement. 

4.  Heat capacity of layer lattice. (a) Consider a dielectric crystal made up of layers 
of atoms, with rigid coupling between layers so that the motion of the atoms 
is restricted to the plane of the layer. Show that the phonon heat capacity in 
the Debye approximation in the low temperature limit is proportional to 'P. 
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(b) Suppnse instead, as in many layer structures, that adjacent layers are very weakly 
bound to each other. What form would you expect the phonon heat capacity to ap- 
proach at extremely low temperatures? 

'5. Griineinen constant. (a) Show that the free energy of a phonon mode of fre- 
quency o is kgT In [2 sinh (ho/2k,T)]. It is necessary to r e t a i ~ ~  the zero-point energy 
i h o  to obtain this result. (h) If A is the fractional volurrre change, then the free en- 
ergy of the crystal may be written as 

F(A, T) = ~BA'  + k , ~ x  In [2 sinh (fiwK/2kBT)] 

where B is the bulk modulus. Assume that the volume deparrdence of o~ (  is 
Swlw = -yA, whcrc y is known as the Criineisen constant. If y is taken as indepcn- 
dent nf the mode K, show that P is a minimum with respect to A whcn BA = yZiho 
cot11 (fiw/2kBT), and show that this may be written in terrrrs of the thermal energy 
density as A = yU(T)/B. (c) Show that on the Debye model y = -a In Old In V. Note: 
Many approximations are involved in this theory: the result (a) is valid only if o is in- 
dependent of tcmperature; y may be quite different for differerrt modes. 

 h his pmblcm is solnewhat difficult. 
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