TEST

Structural Analysis

- **1.** Which of the following statements regarding statically determinate structures are correct?
 - I. Can be analyzed by equilibrium equations.
 - II. Stresses are caused due to temperature changes.
 - III. BM at a section does not depend on material or sectional properties of structure.
 - (A) I, II, III are correct (B) I, II are correct
 - (C) I, III are correct (D) II, III are correct
- 2. The pin jointed frame shown in the figure is

(A) perfect frame.

(C) deficit frame.

- (B) redundant frame.(D) None of these
- **3.** Which of the following method comes under the category of displacement method to analyze statically indeterminate structure?
 - (A) Elastic center method
 - (B) Minimum strain energy theorem
 - (C) Moment distribution method
 - (D) Column analogy method
- **4.** The cantilever beam *AB* of length '*L*' fixed at *A* and free at *B* is subjected to a concentrated load '*W*' at its free end. The strain energy (*U*) stored in a beam is (*EI*: Constant)

(A)
$$\frac{W^2 L^2}{4EI}$$
 (B) $\frac{WL^3}{6EI}$
(C) $\frac{W^2 L^3}{6EI}$ (D) $\frac{WL}{EI}$

5. The bending moment induced at fixed end of cantilever beam of span '*L*', if the free end undergoes a unit displacement without rotation, is

6. The value of support moment *M* for the beam shown in the figure is (in kN-m)

- (A) 12.5 (B) 7.5 (C) 15 (D) None of these
- 7. The Influence line diagram (ILD) shown is for the member _____.

- (A) *ab* (B) *ac* (C) *cd* (D) *ad*
- 8. The ILD for shear force at a section 'c' of simply supported beam of length 'L', when unit load moves from one end to other is

Time: 60 Minutes

3.248 | Part III Unit 3 Structural Analysis

- 9. Which of the following statements are correct?
 - I. The stiffness coefficient k_{ji} indicates force at j due to a unit deformation at i.
 - II. Stiffness matrix is a square symmetric matrix.
 - III. Stiffness matrix is possible for both stable and unstable structures also.
 - (A) I, II, III are correct (B) I, II are correct
 - (C) I, III are correct (D) II, III are correct
- 10. Which of the following statements are correct?
 - I. The internal forces at any cross-section of an arch are SF, BM only.
 - II. The effect of arching a beam is to reduce BM in the span.
 - III. A two hinged arch is indeterminate by one degree.
 - IV. The internal forces at any cross-section of an arch are SF, BM and normal thrust also.
 - (A) I, II, III, IV are correct
 - (B) I, II, III are correct
 - (C) II, III, IV are correct
 - (D) I, III, IV are correct
- **11.** Determine the stiffness matrix for a beam for the given coordinates shown in the figure.

- 12. A cable carrying a load of 40 kN/m run of horizontal span, is stretched between supports 150 m apart. The supports are at same level and the central dip is 15 m. The greatest tension and least tension in cable are
 - (A) 8100 kN, 7500 kN
 - (B) 10,000 kN, 7500 kN
 - (C) 9500 kN, 6000 kN
 - (D) None of these
- **13.** For the continuous beam shown in the figure, the ILD for reaction at *A* is

14. A beam ABCD is 15 m long and is simply supported at B and C, 8 m apart. Overhangs BA and CD are 3 m and 4 m respectively. A train of two point loads of 150 kN and 100 kN, 3 m apart, crosses the beam from left to right with 100 kN load leading. The maximum sagging BM under 150 kN load anywhere is

(A)	150 kN-m	(B) 250 kN-m
-----	----------	--------------

- (C) 360 kN-m (D) 400 kN-m
- **15.** In the truss shown below, indicate how many number of members with zero forces.

- (A) 4 (B) 5
- (C) 6 (D) None of these
- 16. A simply supported beam of length L = 10 m and depth = 0.5 m is subjected to a temperature differential of 80°C at top and 160°C at bottom. Determine the vertical deflection of beam at its mid point (c) due to temperature gradient take $\alpha = 10 \times 10^{-6}$ /°C.

(A) 25 mm
(B) 30 mm
(C) 40 mm
(D) None of these

17. What is the rotation of the member at '*C*' for a frame as shown in the figure?

18. In the portal frame shown in the given figure, the ratio of sway moments in column *AB* and *CD* will be equal to

- (C) 2/3 (D) 15/8
- 19. U₁ and U₂ are the strain energies stored in a prismatic bar due to axial tensile force w₁ and w₂ respectively. The strain energy 'U' stored in the same bar due to combined action of w₁ and w₂ is

(A)	$U = U_1 U_2$	(B) $U > U_1 + U_2$
(C)	$U < U_1 + U_2$	(D) $U = U_1 + U_2$

20. The right triangular truss is made of members having equal cross-sectional area of 1000 mm² and Youngs modulus of 2×10^5 MPa. The horizontal deflection at *B* is

21. A two spans continuous beam having equal spans each of length L/2 is subjected to a uniformly distributed load 2w per unit length. The beam has constant flexural rigidity. The reaction at middle support is

(A)
$$\frac{3wl}{4}$$
 (B) $\frac{3wl}{8}$ (C) $\frac{5wl}{4}$ (D) $\frac{5wl}{8}$

22. Using the data in Q No 21; find the bending moment at the middle support.

(A)
$$\frac{wl^2}{16}$$
 (B) $\frac{wl^2}{4}$ (C) $\frac{wl^2}{8}$ (D) $\frac{3wl^2}{16}$

23. In the frame shown below; what are the distribution factors for members *BA*, *BC* and *BD* respectively?

- (A) 0, 0.4, 0.6 (B) 0, 0.3, 0.7
 - (D) None of these
- 24. Examine the given truss below.

(C) 0, 0.4, 0.3

- (A) Statically determinate
- (B) Statically indeterminate but kinematically determinate
- (C) Statically indeterminate and kinematically indeterminate
- (D) Statically determinate and kinematically indeterminate
- **25.** The horizontal deflection at *C* for the following frame shown below is

3.250 | Part III • Unit 3 • Structural Analysis

Answer Keys											
1. C 11 B	2. A 12. A	3. C 13. B	4. C	5. C 15. B	6. B	7. D 17. B	8. C 18. A	9. B 19. B	10. C 20. C		
21. C	22. A	23. C	24. C	25. C	10. 0	17. 0	10. 11	17. 5	20. 0		