CHAPTER 10

ANSWERS

Multiple Choice Questions

1.	(a)	2.	(b)	3.	(c)	4.	(a)
5.	(a)	6.	(a)	7.	(d)	8.	(a)
9.	(a)	10.	(b)	11.	(b)	12 .	(b)
13 .	(d)	14.	(b)	15.	(d)	16 .	(d)
17.	(a)	18.	(c)	19.	(d)		

Short Answer Questions

- **20.** (a) concave mirror
 - (b) convex lens
 - (c) concave lens
 - (d) convex mirror
- 21. Hint— Draw the diagram and explain using laws of refractions at both the interfaces.
- 22. Hint— No. Bending will be different in different liquids since velocity of light at the interface separating two media depends on the relative refractive index of the medium.

23. Hint
$$n = \frac{c}{v}$$

 $n_{21} = \frac{v_1}{v_2}$

24. Hint— $n_{dg} = \frac{v_g}{v_d} = 1.6$, $n_g = \frac{c}{v_g}$, and $n_d = \frac{c}{v_d}$

Therefore,
$$\frac{v_g}{v_d} \times \frac{c}{v_g} = n_d = 1.6 \times 1.5 = 2.40.$$

25. Hint— Statement is correct if the object is placed within 20 cm from the lens in the first case and between 20 cm and 40 cm in the second case.

- **26. Hint** Sudha should move the screen towards the lens so as to obtain a clear image of the building. The approximate focal length of this lens will be 15 cm.
- **27.** $P = \frac{1}{f}$, $P \propto \frac{1}{f}$. Power of a lens is inversely proportional to its focal length therefore lens having focal length of 20 cm will provide more convergence.
- **28.** When two plane mirrors are placed at right angle to each other then the incident and reflected rays will always be parallel to each other.

Long Answer Questions

- **30. Hint** Draw ray diagrams separately indicating the direction of incident and reflected rays.
- **31. Hint** Draw ray diagrams separately indicating the direction of incident.
- **32. Hint** Draw ray diagrams indicating the direction of incident, refracted and emergent rays and explain.
- **33. Hint**—Draw ray diagrams separately indicating the direction of incident and refracted rays.
- **34. Hint**—Draw ray diagrams indicating the direction of incident ray and reflected ray.

35. Hint—
$$m = -\frac{v}{u} = -3$$
, using $\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$ calculate *u*.

 $u = -\frac{80}{3}$ cm, image is real and inverted. The lens is convex.

36. $m = \frac{1}{3}$. Using $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ calculate u; u = -80 cm. Image is real and inverted. Mirror is concave.

37. Hint — $P = \frac{1}{f}$ where *f* is in metre. Its unit is Dioptre. Lens is convex in the first case and concave in the second case. Power is equal to 2 dioptre in the first case and -2 dioptre in the second case.

38. Hint—

- (i) Focal length = $\frac{38}{2}$ = 19 cm
- (ii) The image will be formed at infinity
- (iii) Virtual and erect

