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LEARNING OBJECTIVES

Context free GraMMar
 • A context free grammar (CFG) is a fi nite set of variables (non-

terminals) each of which represents a language. The language 
represented by variables is described recursively in terms of 
each other. The primitive symbols are called terminals.

 • The rules relating variables are called productions. A typical 
production states that the language associated with a given vari-
able contains strings that are formed by concatenating strings 
from languages of certain other variables.

 • CFG is a collection of three things; 
An alphabet Z of letters called terminals.
A set of symbols called non-terminals, one of which is a start 
symbol, S.
A fi nite set of productions of the form:
One terminal → fi nite set of terminals and/or non-terminals.

 • A CFG is defi ned as: G = (V, T, P, S)

Where 

V → Finite set of variables (non-terminals)
T → Finite set of terminals (symbols)
P → Finite set of productions, each, production is of the form, 
A → α, A ∈ V, α ∈ (V ∪ T)*

S → Start symbol

Context free lanGuaGe (Cfl)
The language generated by CFG is a set of all strings of terminals 
that can be produced from start symbols, using the productions as 

substitutions. A language generated by a CFG is called context free 
language (CFL).

Note: Every regular grammar is context free, so a regular lan-
guage (RL) is also context free.
Family of RL’s is proper subset of CFL’s.
i.e., RL ⊂ CFL

CFL 

RL 

Solved Examples

Example 1: What is the language that is generated by CFG, G =
S → AB|A → +/–|B → CB/C|C → 0/1/2/ . . . 9.
(A) Set of all rational numbers
(B) Set of all integers
(C) Set of all natural numbers
(D) Set of all complex numbers

Solution: (B)
S → AB|A → +/–|B → CB/C|C → 0/1/2/ . . . 9
Consider-18 (integer)
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Note:

 • A context free language with property that all grammars 
that generate it are ambiguous is inherently ambiguous.

 • Inherently ambiguous grammars cannot convert to unam-
biguous grammars.

MiniMization of Context 
free GraMMar
 • Grammar may consist of some extra symbols (non-terminals). 

Having extra symbols unnecessarily increases the length of 
grammar.

 • Simplification of grammar means reduction of grammar. 

The properties of reduced grammar are:

 1. Each variable (non-terminal) and each terminal of G 
appears in the derivation of some word in L.

 2. There should not be any production as X → Y where X 
and Y are non-terminals.

 3. If e is not in language L, then there need not be produc-
tion X → e.

Reduced grammar

Removal of
useless symbols  Removal of e -

productions
Removal of

unit production

Removal of Useless Symbols
 • Any symbol is useful when it appears on right hand side, 

in the production rule and generates some terminal string. 
If no such derivation exists, then it is supposed to be a 
useless symbol.

 • A symbol P is useful, if there exists some derivation

S PB PB W∗
∗

⇒ ⇒α α and 

Then P is said to be useful symbol.

Example 3: A grammar G′, is generated by removing 
useless symbols from G defined below. The obtained G′ 
contains productions:
 S  → aA|bB
 A  → aA|a
 B  → bB
 D → ab|Ea
 E → aC|d
(A) S  → aA
 A  → aA|a
(B) S  → aS|bA|C
 A → a
 C → aCd
(C) S  → aA|bB
 A  → aA|a
 B  → bB
(D) Cannot remove useless symbols

S → AB
   → –B
   → –CB
   → –1B
   → –18

Context free
grammar

Context free
languageLanguage

Grammar

L

Accepts

Machine

aMbiGuity in Context 
free GraMMars
A CFG, G is called ambiguous if there is w ∈ L(G) such 
that w has (at least) two different parse trees with respect to G.

Example 2: The language, L = {an bn cm dm/n ≥ 0, m ≥ 
0} ∪ {anbmcmdn/n ≥ 0, m ≥ 0} is designed in CFG, G. The 
Grammar is 
(A) Ambiguous 
(B) Unambiguous
(C) Cannot be determined
(D) None of above

Solution: (A)
CFG G for given language L is:

S → AB|C
A → aAb|e
B → cBd|e
C → aCd|D
D → bDc|e
It’s an inherently ambiguous grammar.
Consider string, aabbccdd

S

C

C
a d

S

A

A
a b

B

A
a b

B
c d

B
c d

C
a d

C
b c

D

D
b c

D

⇒

e

e e
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(A) 9 (B) 2
(C) 3 (D) 5

Solution: (A)
A → PQ
Q → R → S → W → 2
⇒ Q, R, S → Unit production
A → PQ
P → 0
Q → R|1
         ↓  
⇒    Q → 2|P1|1R|1 (substitute the production of R, S, W)
∴ A → PQ
P → 0
Q → 2| P1| 1R| 1
R → 2| P1| 1R
∴ 9 – Productions

norMal forMs
 • It is necessary to have a grammar in some specific form 

so, grammar normalization is needed.

Normal forms

Chomsky normal
form (CNF)

Griebach normal
form (GNF)

That is, There should be fixed number of terminals and 
non-terminals, in CFG.

Chomsky’s Normal Form (CNF)
 • A context free grammar (CFG), G = (V, Σ, R, S) is said to 

be in CNF, if and only if every rule in R is of one of the 
following forms

 1. A → a, for some A ∈ V and some a ∈ Σ
 2. A → BC, for some A ∈ V and B, C ∈ V ∪ {S}
 3. S → e
 • Every rule either replaces a variable by a single character 

or by a pair of variables except the start symbol and the 
only rule that can have the empty word as it’s right hand 
side must have start symbol as it’s left hand side.

Note: Every parse tree for a grammar in CNF must be a 
binary tree and the parse tree for any non-empty word can-
not have any leaves labeled with e in it.

Transforming of a grammar to CNF
 • In order to construct the grammar G in CNF that is equiv-

alent to a given grammar G, first identify how exactly G 
can violate the rules for a CNF. Since CNF only restricts 
the rules in G, see only at R. The ‘bad’ cases of rules are:

 • A → uSv where A ∈ V and u, v ∈ (V ∪ Σ)*. The start sym-
bol must not appear on the right-hand side of any rule. 
This is called ‘start symbol rule’.

Solution:
S → aA → aaA → aaaA → aaaa 
B → bB → bbB → bbbB → bbbbB ..... (string cannot be 
generated)
∴ B is useless
D and E cannot be generated from ‘S’. So, eliminate. Hence 
G ′ contains 
∴ S → aA
A → aA|a

Removing e-Productions
A production of the form A → e is called an e-production. 
If A is a non-terminal and A → (*) e, then A is called a ‘nul-
lable non-terminal’. So eliminate such productions without 
changing meaning of grammar.

Example 4: The grammar, G is given below. The CFG 
generated after eliminating e-production is:
 S → ABC
 A → BC|a
 B → bAC|∈
 C → cAB|∈
(A) S → ABC|AB|BC|CA
 A → BC|B|C
 B → bAC|bA|bC
 C → cAB|cA|cB
(B) S → ABc
 A → BC
 B → bAC
 C → cAB
(C) S → ABC|BC|AC|AB|A|B|C
 A → BC|B|C|a
 B → bAC|bA|bC|b
 C → cAB|cA|cB|c
(D) None of these

Solution (C)
B → ∈, C → ∈
⇒ A → ∈
∴ Remove e-productions and obtained CFG is Choice (C).

Removing Unit Productions
 • A production of form A → B, where A and B are both 

non-terminals, is called a ‘unit production’.
 • Presence of unit production in a grammar increases the 

cost of derivation.

Example 5: The total number of productions obtained by 
removing unit production from the Grammar,
 A  → PQ
 P  → 0
 Q → R|1
 R  → S
 S  → W|1R
 W → 2|P1
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 • To remove ‘start symbol rule’, add a new symbol, so 
make it the start symbol in new grammar G

1
, and add 

the single rule S
0
 → S to R to get the rules for G

1
. Since 

S
0
 does not appear in any rules, the new grammar has no 

start symbol rules.
 • A → e where A ∈ V ∪ {S}|. The only symbol that can be 

replaced by the word is start symbol. This is called ‘e-rules’.

 • To remove ‘e-rules’, identify all variables that can yield 
the empty string, either directly or indirectly.
 These variables are ‘nullable’. Remove all direct rules 
A → e from the grammar and fix up the grammar by 
removing all occurrences of nullable variables from the 
right hand sides of all rules.
 A → B where A, B ∈ V. The only rules involving vari-
ables on the right-hand side must have exactly two of 
them. This is called ‘unit rules’.

 • To remove ‘Unit rules’, identify a set of unit pairs. 

These are pairs of symbols (A, B), where A B⇒
∗

. Then 
remove all unit rules by copying right-hand sides. If there 
is a rule A → B, (A, B) is a unit pair. Then, if there is a rule 
B → W, derive W from A by A → B, B → W. To remove 
the unit rule and still generate an equivalent grammar, add 
the right-hand side W to the rules for A directly, A → W.
 A → W where A ∈ V, W ∈ (V ∪ Σ)* and W contains 
at least one character and at least one variable. The only 
rules where character appear on right-hand side must 
have exactly one character as right-hand side. This is 
called ‘mixed rules’.

 • To remove ‘mixed rules’, Let A → W ∈ R
3
 is a mixed 

rules. Then write W as W = V
0
 C

1
V

1
 . . . V

n−1
C

n
V

n
, where 

C
i
 ∈ Σ are occurrences of characters, and the V

i
 ∈ V* are 

strings of only variables. Then add a new symbol, C
i
 to 

V
4
 for every character C

i
 and add the rules C

i
 → c

i
 to R

4
. 

Finally define W1: = V
0
 C

1
 V

1 
… V

n−1
 C

n
 V

n
 ∈ V* and add 

rules A → W ′ to R
4
. If the rule A → W is part of the deri-

vation for some word, replace that single rule by applying 
rule A → W ′ first and then replacing all C

i
 by c

i
 using 

their respective rules.

A w→  Where A ∈ V and W ∈ (V ∪ Σ)* with |w| > 2. 
Rules must have one symbol (character) or two variables 
(two variables as right hand side). These are called long 
rules.

 • To remove ‘long rules’, Let A → B
1 
… B

n
 be a long rule, 

i.e., n > 2. B
i
 is all variables. Break up every single long rule, 

into several ‘short’ rules, by introducing new ‘helper varia-
bles’ and splitting right hand side from left to right: add 
new symbols A

1
, … A

n−2
 to set of variables and add following 

rules to R
5
: A → B

1
A

1
, A

1
 → B

2
 A

2
, … A

n−2
 → B

n−1
 B

n
.

Example 6: Consider grammar, G = S → ASB, A → aAS| 
a|e, B → SbS|A|bb. The CNF generated contains ____ non-
terminals.
(A) 5 (B) 6
(C) 9 (D) 11

Solution: (C)
Add new start state:
S

0
 → S

S  → ASB
A  → aAS|a|e
B  → SbS|A|bb
Eliminate e-rules
A  → e:
S

0
 → S

S  → ASB|SB
A  → aAS|a|aS
B  → SbS|A|bb|e
Eliminate B → e:
S

0
 → S

S  → ASB|SB|S|AS
A  → aAS|a|aS
B  → SbS|A|bb
Remove Unit rules:
B  → A:
S

0
 → S

S  → ASB|SB|S|AS
A  → aAS|a|aS
B  → SbS|bb|aAS|a|aS
S  → S:
S

0
 → S 

S
0
 → ASB|SB|AS

A  → aAS|a|aS
B  → SbS|bb|aAS|a|aS
S

0
 → S:

S
0
 → ASB|SB|AS

S  → ASB|SB|AS
A  → aAS|a|aS
B  → SbS|bb|aAS|a|aS
Replace rules which have more than two symbols:
S

0
 → ASB: S

0
 → AU

1
 and U

1
 → SB

∴ S
0
 → AU

1
|SB| AS

S  → AU
1
|SB| AS

A → aAS|a|aS
B  → SbS|bb|aAS|a|aS
U

1
 → SB

A  → aAS ⇒ A → aU
2 
and U

2
 → AS and B → SbS 

⇒ B → SU
3
 and U

3 
→ bS

∴ S
0
 → AU

1
|SB|AS 

S   → AU
1
|SB| AS

A   → aU
2
|a|aS

B   → SU
3
|bb|aU

2
|a|aS

U
1
 → SB

U
2
 → AS

U
3
 → bS

Eliminate rules which have terminals and variables or two 
terminals.
Let V

1
 → a, V

2
 → b

∴ S
0
  → AU

1
|AS|SB

S  → AU
1
|SB|AS

A → V
1
U

2
|a|V

1
S
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 Grammar, G now is:
 A

1
 → A

2
A

3
|A

4
A

4

 A
4
 → b|A

1
A

4

 A
2
 → b

 A
3
 → a

3.  Identify all productions which do not conform to any 
of the types listed below:

 A
i
 → A

j
 x

k
 ∃ j > i

 Z
i
  → A

j
 x

k
 ∃ j ≤ n

 A
i
 → a x

k
 ∃ x

k
 ∈ V* and a ∈ T

4. A
4
 → A

1
 A

4
 … identified

5. A
4
 → A

1
 A

4
|b

 To eliminate A
1
, use substitution rule, A

1
 → A

2
 A

3
|A

4 
A

4

 ∴ A
4 
→ A

2
 A

3 
A

4
|A

4 
A

4
A

4
|b

 Substitute A
2 
→ b

 ∴ A
4
 → b A

3 
A

4
|A

4 
A

4 
A

4
|b

  A
4
 → A

4 
A

4 
A

4
 is left recursive. So, remove left recur-

sion i.e., A
4
 → b A

3 
A

4
|b|bA

3
A

4
Z|bZ

 Z → A
4
A

4
|A

4
 A

4
Z

6. Now, G = A
1
 → A

2
 A

3
|A

4 
A

4

 A
4
 → b A

3 
A

4
|b|b A

3 
A

4
 Z|b Z

 Z  → A
4
 A

4
|A

4 
A

4
Z

 A
2
 → b

 A
3
 → a

7. A
1
, Z are not in GNF. So,

 For A
1
 → A

2 
A

3
|A

4 
A

4
:

 Substitute for A
2 
and A

4
 to convert it to GNF

 A
1
 → b A

3
| b A

3
 A

4 
A

4
|b A

4
|b A

3
 A

4 
Z A

4
|b Z A

4

 For Z → A
4
 A

4
|A

4
 A

4 
Z

 substitute for A
4
 to convert it to GNF

 Z → b A
3
 A

4 
A

4
|b A

4
|b A

3
 A

4 
Z A

4
|b Z A

4
|b A

3
 A

4 
A

4   

 
Z|b A

4 
Z|b A

3 
A

4
 Z A

4 
Z|b Z A

4
 Z

 ∴ Final GNF is:
 A

1
 → b A

3
|b A

3 
A

4 
A

4
|b A

4
| b A

3 
A

4 
Z A

4
|b Z A

4

 A
4 
→ b A

3
 A

4
|b|b A

3
 A

4 
Z|b Z

 A
2
 → b

 A
3
 → a

 Z → b A
3
 A

4 
A

4
|b A

4
|b A

3 
A

4
 Z A

4
|b Z A

4
|b A

3
 A

4
 A

4   

 
Z| b A

4
 Z|b A

3
 A

4
 Z A

4 
Z|b Z A

4
 Z

 ∴ 19 productions.

PuMPinG leMMa for Context 
free lanGuaGes
Let ‘L’ be context free language. There exists some integer, 
m ∃ ∀w in L, with |w| ≥ m, w = uvxyz with |vxy| ≤ m and |vy| ≥ 
1 ∃ u vi x yi z ∈ L ∀ i = 0, 1, 2, 3, …

Note: Pumping lemma is used to show that a language is 
Not context free.

Example 8: The language {an bm cn d (n+m): m, n ≥ 0} is
(A) Regular
(B) Context free but not regular
(C) Neither context free nor regular
(D) Cannot be determined

B   → SU
3
|V

2
V

2
|V

1
U

2
|a|V

1
S

U
1
 → SB

U
2
 → AS

U
3
 → V

2
S

V
1
  → a

V
2
  → b

∴ Nine non-terminals.

Greiback Normal Form (GNF)
 • A CFG, G = (V, T, R, S) is said to be in GNF, if every 

production is of form A → aα where a ∈ T, α ∈ V*, i.e., 
α is a string of zero or more variables.

 • Left recursion in R can be eliminated by following schema:
 If A → Aα

1
 |Aα

2
| … |Aα

r
|b

1
|b

2
| … |b

s
, then replace the 

above rules by
 (i) A → b

i
|b

i
Z, 1 ≤ i ≤ s

 (ii) Z → α
i
| α

i
Z, 1 ≤ i ≤ r

 • If G = (V, T, R, S) is a CFG, then another CFG, G
1
 = 

(V
1
, T, R

1
, S) can be constructed in GNF ∃ L (G

1
) = L 

(G) − {e}.

The step wise algorithm is as follows:

 1. Eliminate null production, unit productions and 
useless symbols from the grammar G and then 
construct a G1 = (V1, T, R1, S) in CNF generating the 
language L (G1) = L (G) − {e}.

 2. Rename the variables like A
1
, A

2
, … A

n
 starting with 

S = A
1
.

 3. Modify the rules in R1, so that if A
i
 → A

j
γ ∈ R1 then 

j > i.
 4. Starting with A

1
 and proceeding to A

n
, can be obtained as:

(a) Assume that productions have been modified so 
that for 1 ≤ i ≤ k, A

i
 → A

j
 γ ∈ R1 only if j > i

(b) If A
k
 → A

j
γ is a production with j < k, generate 

a new set of productions substituting for A
j
, the 

body of each A
j
 production.

(c) Repeating (b) atmost k − 1 times, obtains rules of 
the form A

k
 → A

p
γ, p ≥ k.

(d) Replace rules A
k
 → A

k
γ by removing left-

recursion.
 5. Modify the A

i
 → A

j
γ for i = n − 1, n − 2, … 1 in 

desired form at same time change z production rules.

Example 7: A grammar G is defined with rules S → 
XA|BB, B → b|SB, X → b, A → a. The normalized GNF of 
G contains ____ productions.
(A) 17 (B) 19
(C) 5 (D) 16

Solution: (B)
1. The Grammar, G is already in CNF.
2. Re-label with variables
 S with A

1

 X with A
2
 

 A with A
3

 B with A
4
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(A) Regular
(B) Context free
(C) Regular but not context fee
(D) Cannot be determined

Solution: (B)
L

1
 = {an bn : n > 0} is context free

L
2
 = {a100 b100} is regular

L a b a b2
100 100= + −∗{( ) } { } is regular

{an bn} context free

L a b a b2
100 100= + −∗{( ) } { }  is regular

{ }a b Ln n ∩ 2  → context free

{ } { : , }a b L a b n n Ln n n n∩ = ≠ ≥ =2 100 0  is context free:

Table 1 Comparing Regular and Context free Languages:

Regular Language CFL

Regular expression or regular 
grammar

Context free grammar

Recognize the language Parses the language

These are DFSA's These are NDPDA's

Minimize FSA's Find deterministic grammar.

Closed under:
Concatenation
Union
Kleen star
Complement
Intersection

Closed under:
Concatenation
Union
Kleen star

Push Down autoMata (PDa)
A push down automata is merely a finite automata with a 
stack added to it.

PDA is used to generate context free language.
The stack allows for unbounded memorization.

Finite
control d

Tape
head State

Stack

Top

A

a

P

Input tape: The tape is divided into finitely many cells. 
Each cell contains a symbol in an alphabet, Σ.
Stack: The stack head always scans the top symbol of the 
stack. It performs two basic operations.

 • Push: Add a new symbol at the top
 • Pop: Read and remove the top symbol 

Tape head: The head scans at a cell on the tape and can 
read a symbol on the cell. In each move, the head can move 
to the right cell.

Solution: (C)
L = {an bm cn d (n + m): m, n ≥ 0}
Clearly, L is not regular because, number of a’s and number 
of b’s must be known to compute number of d’s.
‘L’ is not context free because, Let w = aM bM cM d2M. Clearly 
neither v nor y can cross regions and include more than one 
letter, since if that happened; letters obtained will be out of 
order when pumped.
 So, consider cases, where v and y fall within a single region.
Consider 4-regions corresponding to a, b, c and d.
(1, 1) → change number of a’s and they won’t match c’s any 
more.
(1, 2) → If v is not empty, change a’s and they won’t match 
with c’s. If y is non-empty, number of b’s changed won’t 
have right number of d’s.
(1, 3), (1, 4) → ruled out. ∵ |v x y| ≤ M
(2, 2) → Change number of b’s and they won’t match right 
number of d’s.
(2, 3) → If v is non-empty, change number of b’s without 
changing number of d’s. If y is not empty, change c’s and 
they’ll no longer match a’s.
(2, 4) → ruled out ∵ |v x y| ≤ M
(3, 3) → Change number of c’s and they won’t match a’s. 
(3, 4) → If v is not empty change c’s and they won’t match 
a’s. If y is not empty, change d’s without changing b’s.
(4, 4) → change d’s without changing a’s or b’s.
∴ L is not context free.

Closure ProPerties of Cfl’s
 1. CFL’s are closed under union: For CFL’s L

1
, L

2
 

with CFG’s G
1
, G

2
 and start variables S

1
, S

2
. The 

grammar of Union L
1
 ∪ L

2
 has new start symbol S 

and additional production S → S
1
| S

2

 2. CFL’s are closed under concatenation: For CFL’s 
L

1
, L

2
 with CFG’s G

1
, G

2
 and start variables S

1
, S

2
. 

The grammar of concatenation L
1
L

2
 has new start 

variables S and additional production: S → S
1
 S

2

 3. CFL’s are closed under star operation: For CFL 
L, with CFG G and start variable S. The grammar of 
the start operation L* has new start variable S

1
 and 

additional production:

S
1
 → S S

1
|e

 4. CFL’s are not closed under intersection: If L
1
, L

2
 

are two context free languages, L
1
 ∩ L

2
 not necessarily 

be context free.
 5. CFL’s are not closed under complement: If L is 

context free language, L  not necessarily be context free.
 6. Intersection of CFL’s and regular language: 

(regular closure): If L
1
 is a CFL and R

2
 is a regular 

language then L
1
 ∩ L

2
 is a CFL.

Example 9: The language, L
1
 = {an bn : n ≥ 0} and L

2
 = 

{a100 b100}. The relation L1 ∩ L2 is _____
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Solution: (B)
S → aTb|b
T → Ta|e

qfq1q0
e, e|S e, Z 0|e

      e, S|aTb

  e, T|Ta

e, S|b

e, T|e
a, a|e
b, b|e

Let S → q
0
, T → q

1

Consider string “aab” S → aTb → aTab → aab
δ(q

0
, aab, z

0
)├ δ(q

0
, e aab, z

0
)

├ δ (q
1
, aab, q

0
z

0
)

├ δ (q
1
, aab, aTb z

0
)

├ δ (q
1
, ab, Tbz

0
) 

├ δ (q
1
, ab, aTbz

0
)

├ δ (q
1
, b, Tbz

0
) 

├ δ (q
1
, b, ∈bz

0
)

├ δ (q
1
, b, bz

0
) 

├ δ (q
1
, ∈, z

0
)

├ δ (q
f
, ∈) → acceptance

PDAs accepting by final state and empty stack are 
equivalent:
P

F
 → PDA accepting by final state,

P
F
 = (Q

F 
, Σ, Γ, δ

F 
, q

0
, z

0
, F)

P
N
 → PDA accepting by empty stack

P
N
 = (Q

N
, Σ, Γ, δ

N
, q

0
, z

0
)

 • For every P
N
, ∃ P

F
 ∃ L (P

F
) = L(P

N
)

 • For every P
F
, ∃ P

N
 ∃ L (P

N
) = L (P

F
)

ConvertinG CfG to PDa
The PDA simulates the left most derivation on a given w, 
and upon consuming it fully it either arrives at acceptance 
(by empty stack) or non-acceptance.

The steps to convert CFG to PDA are:

 1. Push right hand side of the production on to stack, 
with left most symbol at the stack top.

 2. If stack top is the left most variable, then replace it 
by all its productions (each possible substitution will 
represent a distinct path taken by non-deterministic 
PDA (NPDA).

 3. If stack top has a terminal symbol and if it matches 
with the next symbol in the input string, then pop it. 
Follow from step-1 again to complete all productions.

Example 11: The CFG, G of a language L is S → AB, 
A → aAb|e, B → cB/e. The PDA generated by G contains 
____ states.
(A) 5 (B) 4 (C) 3 (D) 1

Finite control: The finite control has finitely many states 
which form a set Q. For each move, the state is changed 
according to the evaluation of transition function.

A PDA is defined as: P = (Q, Σ, Γ, δ, q
0
, z

0
, F)

Where Q: set of States 
Σ: Input alphabet
Γ: Stack symbol
δ: Transition function
q

0
: Start state

z
0
: Initial stack top symbol

F: Final/accepting states
Transition functions δ: Q × Γ × Σ ⇒ Q × Γ
Q: Old state
Γ: Stack top
Σ: Input symbol
Q: New state, Γ: New stack top

PDA’s instantaneous description (IDs): A PDA has a 
configuration at any given instance: (q, w, y)

q → current state
w → remainder of input (i.e., unconsumed part)
y → current stack contents as a string from top to bottom 

of the stack.
If δ(q, a, x) = {P, A} is a transition, then following are 

also true:

 • (q, a, x) ├ (P, e, A)
 • (q, aw, xB)├ (p, w, AB)

Note: 1. →: Turnstile notation and represents one move.
          2. ├*: represents sequence of moves.

Principles about IDs:

 1. If for a PDA, (q, x, A) ├* (p, y, B), then for any string  
w ∈ Σ* and γ ∈ Γ*, it is also true that:

  (q, xw, Aγ) ├* (p, yw, Bγ)
 2. If for a PDA, (q, xw, A) ├* (p, yw, B), then it is also true 

that: (q, x, A) ├* (p, y, B)

Acceptance by PDA: There are two types of PDAs that 
one can design: 

 • Those that accept by final state or 
 • Those that accept by empty stack

PDAs that accept by final state: For a PDA, P, the lan-
guage accepted by P, denoted by L (P) by final state, is:

{w| (q
0
, w, z

0
) ├* (q, ∈, A)} ∃ q ∈ F

PDAs that accept by empty stack: For a PDA P, the lan-
guage accepted by P, denoted by N (P) by empty stack, is:

{w|(q
0
, w, z

0
) ├* (q, e, e)}, for any q ∈ Q.

Example 10: Consider the grammar S → aTb| b, T → Ta |e. 
The PDA constructed contains ____ states.
(A) 4 (B) 3 (C) 5 (D) 2
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Solution: (C)
S → AB
A → aAb|e
B → cB|e
⇒ δ(q

0
, w, S) = (q

1
, AB)

    δ(q
1
, w, A) = (q

1
, aAb)

    δ(q
1
, e, A) = δ(q

1
, e)

    δ(q
1
, w, B) = (q

1
, cB)

    δ(q
1
, e, B) = δ(q

2
, e) → accept

∴ {q
0
, q

1
, q

2
} 3-states.

Converting a PDA into a CFG
Given: G = (V, T, P, S) Initial stack symbol (S) same as start 
variable in grammar
Output: P

N
 = ({q}, T, V ∪ T, δ, q, S), where δ is

 • If q
0
 is start state in PDA and q

n
 is final state of PDA then 

[q
0
, z, q

n
] becomes a start state of CFG. Here z represents 

stack symbol.
 • The production rule for the ID of the form δ(q

i
, a, z

0
) = 

(q
i+1

, z
1
,
 
z

2
) can be obtained as:

δ(q
i
, z

0
, q

i+k
) → a(q

i+1
, z

1
, q

m
) (q

m
, z

2
, q

i+k
)

Where q
i+k

, q
m
 represents the intermediate staes, z

0
, z

1
,
 
z

2
 

are stack symbols and a is input symbol. 
 • The production rule for the ID of the form δ(q

i
, a, z

0
) = 

(q
i+1

, e) can be converted as

(q
i
, z

0
, q

i+1
) → a

Example 12: The PDA, P for language L is generated as:

e, e|e

a, e|a b, e|bb, a |e e, b|ec, b |e

e, e|e e, e|e e, e|e

The CFG for P is:
 (A) S → S

1
S

2

  S
1
 → aS

2
b

  S
2
 → c|e

 (B) S → S
1
bc

  S
1
 → a|e

 (C) S → S
1
S

2

  S
1
 → aS

1
b|e

  S
2
 → bS

2
|bS

2
c|e

 (D) S → aS
1
c

  S
1
 → b|e

Solution: (C)
The language, L generated by given PDA is 

L = {an bn bm cp: m ≥ p and n, p ≥ 0}

It can be generated by following rules:

S → S
1
S

2

S
1
 → aS

1
b|e → S

1
 generates an bn 

S
2
 → bS

2
|bS

2
c|e → S

2
 generates bm cp

DeterMinistiC PDa 
(DeterMinistiC Cfl)

Deterministic
context free
languages

(DPDA)

Context-free
Languages

PDAs
⊆

 • Every DPDA is also a PDA.
 • A context free language ‘L’ accepted by PDA may or may 

not be accepted by DPDA.

A PDA, M = (Q, Σ, Γ, δ, q
0
, F) is deterministic if there is 

no configuration for which M has choice of more than one 
move. That is, it must satisfy the following conditions:

 1. For any q ∈ Q, a ∈ Σe and s ∈ Γ e, the set δ(q, a, s) 
has almost one element. (Doesn’t allow two or more 
transitions from same state).

 2. For any q ∈ Q, and s ∈ Γe, if δ(q, e, s) ≠ f, then δ(q, 
a, s) = f for every a ∈ Σ and δ(q, a, e) = f for all a ∈ 
Σ e.

 3. For any q ∈ Q and a ∈ Σ, if (q, a, e) ≠ f, then δ(q, a, 
s) = f for all s ∈ Γ and δ(q, e, t) = f for all t ∈ Γe.

 4. For any q ∈ Q, if δ(q, e, e) ≠ f, then δ(q, a, t) = f for 
all a ∈ Σe and t ∈ Γe (except when a = e, t = e).

Rule-2 says that if there is a transition from state q that 
reads character, s from stack but doesn’t read other input, 
other transitions from q, that don’t read stack are not allowed 
and other transitions from q that read s from the stack and 
read the input are not allowed either.

Rule-3 says that if there is a transition from state q that 
reads character a, but doesn’t read stack, other transitions 
from q that don’t read the input are not allowed and other 
transitions from q that read ‘a’ from input and read the stack 
are not allowed either.

Rule-4 says that if there is a transition from q that doesn’t 
read either input or stack, all other transitions from q are not 
allowed.

Example 13: A language, L is defined as: L = {wcwR: w ∈ 
(a, b)*}. What is Nature of language L?
(A) CFL and DCFL (B) Only CFL
(C) Only DCFL (D) None of these

Solution: (A)

L = {x = wcwR for w ∈ (a, b)*}

Fs
C, e/e 

a, a|e 
b, b|e 

a, e|a
b, e|b

Clearly, obtained PDA is also DPDA in sense; there is no 
choice in transitions.

∴ Hence L is CFL and DCFL.
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 9. The DPDA constructed to accept language, L with prop-
erty L = L

1
 ∪ L

2
 where L

1
 = {10n1n| n > 0}, L

2
 = {110n12n| 

n > 0} contains ___ states.
 (A) 4 (B) 5
 (C) 6 (D) 7

 10. The PDA is designed as:

q0 q1 q2

0, e|0
1, e|1

e, $/e

0, 1|1 $ 0
1, 0|0 $ 0

0, 1| e
1, 0|e

0, 0|0 $ 0
1, 1|1 $ 1

0, 1| e
1, 0| e
0, 0 → 00
1, 1 → 11

0, 0 | 00
1, 1|11

q3

 What is the language generated by the above PDA?
 (A)  Binary strings that have same number of 0’s and 

1’s.
 (B)  Binary strings that start with 00 and end with 11 

and have same number of 0’s and 1’s.
 (C)  Binary strings that start and end with the same 

symbol and have same number of 0’s and 1’s.
 (D)  Binary strings that start with 11 and end with 00 

and have same number of 0’s and 1’s.

 11. The language, L ba ba b ba n m mm m m
n

n= ≥ …( : , ,1 2 2 1�    
≥ 0 and m

i
 ≠ m

j
 for some i, j). What is nature of ‘L’?

 (A) Regular
 (B) Context free but not regular
 (C) Regular but not context free
 (D) Neither context free nor regular

 12. Two languages L
1
, L

2
 are defined as:

  L
1
 = {ai bj ck: i, j, k ≥ 0, i = j}

   L
2
 = {ai bj ck: i, j, k ≥ 0, j = k} which of following state-

ments are true?
   (i) L

1
 ∩ L

2
 is context free

  (ii) L
1
 ∩ L

2
 = {an bn cn| n ≥ 0}

 (iii) L
1
, L

2
 are context free

 (iv) Only L
1
 is context free

 (A) All are true (B) (i), (ii) are true
 (C) (iii), (iv) are true (D) (ii), (iii) are true

 13. The language generated by grammar:
 S → Te|Ue, T → cTd|cT|e, U → cUd|Ud|dd. is
 (A) L = {cn dm e: m ≥ n}
 (B) L = {cn dm e: m = n}
 (C) L = {cm dn em: m ≥ n + 2}
 (D) None of these

 14. Remove null productions, useless symbols from the 
following grammar result in:

 S  → ABC
 A → aBC
 B → C|e
 C → cd|DCF
 D → dD|e

exerCises

Practice Problems 1
Directions for questions 1 to 15: Select the correct alterna-
tive from the given choices.

 1. Consider the grammar, G = (V, Σ, R, S) where V = {a, 
b, S, A}, Σ = {a, b}, R = {S → AA, A → AAA, A → a, 
A → bA, A → Ab} How many strings can be generated 
by L(G) that can be produced by derivations of four or 
fewer steps?

 (A) 5  (B) 10  (C) 14  (D) 8

 2. Consider the following languages L
1
, L

2
 and L

3
:

 L
1
 = {an bm cn+m| n, m ≥ 0}

 L
2
 = {an bn+1 cn+2| n ≥ 0}

 L
3
 = {an bn cm| n, m ≥ 0}

 Which of following statement is true?
 (A) L

1
, L

2
, L

3
 are context free languages

 (B) L
1
, L

2
 are context free but not L

3

 (C) L
1
, L

3
 are context free but not L

2

 (D) L
1
, L

2
, L

3
 are not context free languages.

 3. The language, L = {b
i
 # b

i+1
 : b

i
 is i in binary, i ≥ 1} is:

 (A) Regular
 (B) Context free
 (C) Regular and context free
 (D) Neither context free nor Regular

 4. The CFG, G : A → BAB|B|e, B → 00|e. The CFG is 
normalized using CNF. The obtained G’, contains ___ 
rules.

 (A) 11  (B) 14  (C) 12  (D) 13

 5. The language L i
i

= ≥{ : }0 12   is:

 (A) Context free
 (B) DCFL
 (C) Both CFL and DCFL
 (D) Not context free language

 6. The context free grammar, G is defined with produc-
tion rules S → EcC′|aAE|AU, A → aA|e, B → bB|e, C′ 
→ cC′|e, E → aEc|F, F → bFc|e, U → aUc|V, V → bVc| 
bB What is the language generated by L?

 (A) L = {an bm ck : k ≠ n + m}
 (B) L = {an bm ck : k = n + m}
 (C) L = {an bm ck : k > n + m}
 (D) L = {an bm ck : k < n + m}

 7. Consider the grammar, G ≡ S → abScB|e, B → bB|b. 
What language does it generate?

 (A) L(G) = {(ab)n (cb) m|n = m}
 (B) L(G) = {anbn (cb) m|n ≠ m}
 (C) L(G) = {(ab)n (cbm) n|n ≥ 0, m > 0}
 (D) L(G) = {{ab)n (cbm) n|n ≥ 0, m ≥ 0}

 8. The language, L = {0i 1j 2k| i ≠ j or j ≠ k}. The CFG, G 
generated by L contains ___ rules.

 (A) 23 (B) 20
 (C) 21 (D) 19
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  E → eFE
  F → eC
 (A) S  → ABC|AC
  A  → aBC|aC
  B → C
  C → cd|DCF|CF
  D → dD|d
  F → eC
 (B) S  → aBCc
  A → aBC
  B → cD|dDEF|dEF
  C → cD|dDEF|dEF
  F  → eB
  D → dD|d
  E  → eFE|e

 (C)  S  → aBCBC|aBC
  B → cD|dDEF|dEF
  F → eB
  C → dD|d
  D → e
  F → CD|dDEF
 (D) None of these

 15. Let the language L
1
, L

2
 are defined as:

  L
1
: {ai b2i cj| i, j ≥ 0}, L

2
 = {ai b2i ai| i ≥ 0}. Which of 

following is true?
 (A) L

1
, L

2
 are context free

 (B) Only L
1
 is context free

 (C) Only L
2
 is context free 

 (D) Neither L
1
 nor L

2
 is context free

Practice Problems 2
Directions for questions 1 to 15: Select the correct alterna-
tive from the given choices.

 1. Consider the alphabet Σ = {a, b, c, (,), ∪, *, f}. Then con-
text free grammar that generates all strings in Σ* that 
are regular expressions over {a, b} is:

 (A) S → S*|a|b|SS
 (B) S → f|a|b|S
 (C) S → f|a ∪ b|S*

 (D) S → f|S*|a|b|(S)|S ∪ S|SS

 2. The PDA for language, L is designed below. The CFG 
generated contains ____ productions.

1 2
e, e → $

3
e, $ → e

a, e → a
b, a → e

 (A) 5 (B) 4
 (C) 3 (D) 6

 3. The language, L generated by the following grammar, 
S → SS| AAA|e, A → aA| Aa| b is

 (A) (a* b*)* (B) (a* b* b* a*)*

 (C) a* b* a* (D) (a* b a* b a* b a*)*

 4. The grammar, G is defined with rules S → S
1
|S

2
, S

1
 → 

S
1
b|Ab|e, A → aAb| ab, S

2
 → S

2
a| Ba|e, B → bBa| ba. The 

CNF is applied on G. The obtained grammar, G’ contains 
___ rules.

 (A) 24 (B) 23
 (C) 21 (D) 20

 5. The language, L b nn= ≥{ : }
2

1  is:

 (A) CFL but not DCFL
 (B) DCFL but not CFL
 (C) Only DCFL
 (D) Not CFL

 6. Consider the grammar, G = S → aSc|B, B → bBc|e The 
language, L generated by G is

 (A) L = {an bm ck: k = n + m}
 (B) L = {an bm ck: k ≠ n + m}
 (C) L = {an bm ck: k > n + m}
 (D) L = {an bm ck: k < n + m}

 7. The grammar, G is defined with productions:
 S → 0A|1B, A → 0AA|1S|1, B → 1BB|0S|0
 The grammar, G

2
 is defined with productions:

 S → AB|aaB, A → a|Aa, B → b
 Which grammar is/are ambiguous?
 (A) Only G

1

 (B) Only G
2

 (C) Both G
1
 and G

2

 (D) Both G
1
 and G

2
 are unambiguous

 8. The language, L
1
 = {0n 1n| n > 0} and L

2
 = {0n 12n| n > 

0}. The CFG generated for L
1
 ∪ L

2
 is:

 (A) S → 0 A 1|0 A 1 1
  A → 0|1|e
 (B) S → 0 A 1 1
  A → 0|1|e
 (C) S → 0 A 1|0 B 1 1
  A → 0 A 1|e
  B → 0 B 1 1|e
 (D) S → 0 A 1 1|0 1 1
  A → 0|1|e
 9. The NPDA constructed to accept language, L with 

property, L = L
1
 ∪ L

2
, where L

1
 = {1n 0n| n > 0}, L

2
 =  

{0n 12n| n ≥ 0} contains ____ final states.
 (A) 3 (B) 1
 (C) 2 (D) 4

 10. The DPDA for language, L is designed below. What is 
the language generated?

b, a |e

a, e|a b, a /e

b, $|$ b, $|$ b, $|$
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 (A) L = {an bm: m = n}
 (B) L = {an bm: m = n + 2}
 (C) L = {an bm: m ≥ n + 2}
 (D) L = {an bm: m ≤ n + 2}

 11. The CFG, G is defined with rules:
  S → AB|CD, A → A00|e, B → B11|1, C → C00|0, D → 

D11|e. The language generated by G is
 (A) L = {0n 1n|n ≥ 0}
 (B) L = {0 0n 1 1n|n > 0}
 (C) L = {0n 1m|n + m is odd}
 (D) L = {0n 1m|n + m is even}

 12. The languages, L
1
, L

2
, L

3
 are defined as:

  L
1
 = {an bm cn+m|n, m ≥ 0}, L

2
 = {an bn cm|n, m ≥ 0}, L

3
 = 

{an bn c2n|n ≥ 0}, Which of the following statements are 
true?

   (i) L
1
, L

2 
are context free

  (ii) L
1
, L

3
 are context free

 (iii) L
3
 = L

1
 ∩ L

2

 (iv) L
1
, L

3
 are context free but not L

2

 (A) (i), (ii) (B) (i), (iii)
 (C) (ii), (iii) (D) (iii), (iv)

 13. The language, L
1
 and L

2
 are defined as L

1
 = {an bn: n ≥ 0 

and n is not a multiple of 5} and L
2
 = {0n # 02n # 03n| n ≥ 

0}. Which of following is true?
 (A) L

1
 and L

2
 are context free

 (B) Only L
1
 is context free

 (C) Only L
2
 is context free

 (D) Neither L
1
 nor L

2
 is context free

 14. The language, L
1
 and L

2
 are defined as L mn n m

1 0 1= { ) | ,   
n > 0}, L

2
 = {0n 1n 0n 1n|n ≥ 0} which of following is 

true?
 (A) L

1
 and L

2
 are context free

 (B) Only L1 is context free
 (C) Only L

2
 is context free

 (D) Neither L
1
 nor L

2
 is context free

 15. The language L
1
, L

2
 are defined as L

1
 = {0i 1i 0j 1i|i, j > 

0}, L
2
 = {1k 0i 1i 0j 1j 0k|i, j, k > 0}. Which of following 

is true?
 (A) L

1
 and L

2
 are context free

 (B) Only L
1
 is context free

 (C) Only L
2
 is context free

 (D) Neither L
1
 nor L

2
 is context free

Previous years’ Questions

 1. Match the following: [2008]

E. Checking that identifi-
ers are declared before 
their use

P. L = {anbmcndm|n≥1, m≥1}

F. Number of formal 
parameters in the 
declaration of a function 
agrees with the number 
of actual parameters in 
use of that function

Q. X → XbX|XcX|dXf|g

G. Arithmetic expressions 
with matched pairs of 
parentheses

R. L = {wcw|w∈(a|b)*}

H. Palindromes S. X → bXb|cXc|e

 (A) E − P, F − R, G − Q, H − S

 (B) E − R, F − P, G − S, H − Q

 (C) E − R, F − P, G − Q, H − S

 (D) E − P, F − R, G − S, H − Q

 2. Consider the languages L
1
, L

2
 and L

3
 as given below.

 L
1
 = {0p 1q|p, q ∈ N},

 L
2
 = { 0p 1q|p, q ∈ N and p = q} and 

  L
3
 = {0p 1q 0r|p, q, r ∈ N and p = q = r}. Which of the 

following statements is NOT TRUE? [2011]
 (A)  Push Down Automata (PDA) can be used to rec-

ognize L
1
 and L

2
.

 (B) L
1
 is a regular language.

 (C) All the three languages are context free
 (D)  Turing machines can be used to recognize all the 

languages.

 3. Which of the following problems are decidable? [2012]
 (1) Does a given program ever produce an output?

 (2)  If L is a context free language, then, is L  also 
context free?

 (3) If L is a regular language, then, is L  also regular?

 (4)  If L is recursive language, then, is L  also recur-
sive?

 (A) 1, 2, 3, 4 (B) 1, 2
 (C) 2, 3, 4 (D) 3, 4

 4. Consider the following languages.
 L

1
 = {0p 1q 0r|p, q, r ≥ 0}

 L
2
 = {0p 1q 0r|p, q, r ≥ 0, p ≠ r}

 Which one of the following statements is FALSE?
 [2013]
 (A) L

2
 is context-free

 (B) L
1
 ∩ L

2
 is context-free

 (C) Complement of L
2
 is recursive

 (D) Complement of L
1
 is context-free but not regular

 5. Which one of the following is TRUE? [2014]
 (A) The language L = {an bn|n ≥ 0} is regular 
 (B) The language L = {an|n is prime} is regular 
 (C)  The language L = {w|w has 3k + 1b’s for some k 

∈N with Σ = {a, b}} is regular 
 (D)  The language L = {ww|w∈Σ* with Σ = {0, 1}} is 

regular.

 6. Consider the following languages over the alphabet 
Σ  = {0, 1, c}.

 L
1
 = {0n 1n|n ≥ 0}

 L
2
 = {wcwr|w ∈ {0, 1}*}

 L
3
 = {wwr|w ∈ {0, 1}*}
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  Here wr is reverse of the string w. Which of these 
languages are deterministic context-free languages?
 [2014]

 (A) None of the languages

 (B) Only L
1

 (C) Only L
1
 and L

2

 (D) All the three languages 

 7. Consider the NPDA <Q = {q
0
, q

1
, q

2
}, Σ = {0, 1}, 

  Γ = {0, 1, ⊥}, δ, q
0
, ⊥, F = {q

2
}>, where (as per usual 

convention) Q is the set of states, Σ is the input alpha-
bet, Γ is the stack alphabet, δ is the state transition 
function, q

0
 is the initial state, ⊥ is the initial stack 

symbol, and F is the set of accepting states. The state 
transition is as follows:

1. Z     1Z 0, 1Z      Z

0/1/ε, Z        Z

1, 0Z      Z0. Z     0Z
q0 q1 q2

ε, ⊥        ε

  Which one of the following sequences must follow the 
string 1011 00 so that the overall string is accepted by 
the automation? [2015]

 (A) 10110 (B) 10010
 (C) 01010 (D) 01001

 8. Which of the following languages are context-free?
 [2015]

  L
1
 = {ambnanbm | m, n ≥ 1}

 L
2
 = {ambnambn | m, n ≥ 1}

 L
3
 = {ambn | m = 2n + 1}

 (A) L
1
 and L

2
 only (B) L

1
 and L

3
 only

 (C) L
2
 and L

3
 only (D) L

3
 only

 9. Consider the following context-free grammars:

  G
1
:S → aS|B, B → b|bB

  G
2
: S → aA|bB, A → aA|B| e, B |bBe

  Which one of the following pairs of languages is gen-
erated by G

1
 and G

2
, respectively? [2016]

 (A)  {am bn | m > 0 or n > 0} and {am bn | m > 0 and n > 
0}

 (B)  {am bn  | m > 0and n > 0} and {am bn | m > 0 or n ≥ 
0}

 (C)  {am bn | m ≥ 0 or n > 0} and {am bn | m > 0 and n > 
0}

 (D)  {am bn | m ≥ 0 and n > 0} and {am bn | m > 0 or n > 
0}

 10. Consider the transition diagram of a PDA given below 
with input alphabet ∑ = {a, b} and stack alphabet  = 
{X,Z}. Z is the initial stack symbol. Let L denote the 
language accepted by the PDA.

  Which one of the following is TRUE? [2016]
 (A)  L = {an bn| n ≥ 0} and is not accepted by any finite 

automata.
 (B)  L = {an | n ≥ 0) ∪ {anbn | n ≥ 0} and is not ac-

cepted by any deterministic PDA.
 (C)  L is not accepted by any Turing machine that halts 

on every input.
 (D)  L = {an|n ≥ 0} ∪ {an bn|n ≥ 0} and is deterministic 

context-free.

 11. Consider the following languages:

  L
1
 = {anbmcn+m : m, n ≥1}

  L
2
 = {anbnc2n : n ≥ 1}

  Which one of the following is TRUE? [2016]

 (A) Both L
1
 and L

2
 are context - free.

 (B) L
1
 is context - free while L

2
 is not context - free

 (C)  L
2
 is context - free while L

1
 is not context - free.

 (D) Neither L
1
 nor L

2
 is context - free.

 12. Consider the following context-free grammar over the 
alphabet Σ = {a, b, c} with S as the start symbol:

 S → abScT | abcT
 T → bT | b

  Which one of the following represents the language 
generated by the above grammar? [2017]

 (A) {(ab)n(cb)n | n ≥ 1}

 (B) ( ) 1 2

1 2{ | , , , , 1}n
n mm m

nab cb cb cb n m m m… … ≥
 (C) {(ab)n(cbm)n | m, n ≥ 1}
 (D) {(ab)n(cbn)m | m, n ≥ 1}

 13. If G is a grammar with productions

S → SaS | aSb | bSa | SS |∈
  Where S is the start variable, then which one of the 

following strings is not generated by G? [2017]
 (A) abab (B)  aaab
 (C)  abbaa (D) babba

 14. Consider the context-free rammers over the alphabet 
{a, b, c} given below. S and T are non-terminals.

G
1
 : S → aSb|T, T → cT|∈

G
2
 : S → bSa|T, T → cT|∈

  The language L(G
1
) ∩ L(G

2
) is [2017]

 (A) Finite
 (B) Not finite but regular
 (C) Context-Free but not regular
 (D) Recursive but not context-free.

 15. Consider the following languages over the alphabet Σ 
= {a, b, c}.
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  Let L
1
 = {anbncm| m, n ≥ 0} and L

2
 = {ambncn| m, n ≥ 0}.

  Which of the following are context-free languages?
 [2017]

 I. L
1 
∪ L

2

 II. L
1
 ∩ L

2

 (A) I only (B) II only
 (C) I and II (D) Neither I nor II

 16. Let L
1
 L

2
 be any two context-free languages and R be 

any regular language. Then which of the following is/
are CORRECT? [2017]

 I. L
1
 ∪ L

2
 is context-free.

 II. L1  is context-free.
 III. L

1
 − R is context-free.

 IV. L
1
 ∩ L

2
 is context-free.

 (A)  I, II and IV only (B)  I and III only
 (C)  II and IV only (D)  I only

 17. Identify the language generated by the following 
grammar, where S is the start variable. [2017]

S → XY
X → aX|a
Y → aYb|∈

 (A)  {ambn| m  ≥ n, n > 0} (B)  {ambn| m ≥ n, n ≥ 0}
 (C)  {ambn| m >n, n ≥ 0} (D)  {ambn| m > n, n > 0}

 18. Consider the following languages.

  L
t
 = {ap | p is a prime number}

  L
2
 = {anbmc2m| n  ≥ 0, m ≥ 0}

  L
3
 = {anbnc2n|n ≥ 0}

  L
4
 = {anbn | n ≥ 1}

  Winch of the following are CORRECT? [2017]
 I. L

1
 is context-free but not regular.

 II. L
2
is not context-free.

 III. L
3
is not context-free but recursive.

 IV. L
4
 is deterministic context-free.

 (A)  I, II and IV only (B)  II and III only
 (C)  I and IV only (D)  III and IV only

 19. Consider the following languages:
I. {ambncpdq | m + p = n + q, where m, n, p, q ≥ 0}
II. {ambncpdq | m = n and p = q, where m, n, p, q ≥ 0}
III. {ambncpdq | m = n = p and p ≠ q, where m, n, p,  

q ≥ 0}
IV. {ambncpdq | mn = p + q, where m, n, p, q ≥ 0}

  Which of the languages above are context-free? 
 [2018]

(A) I and IV only (B) I and II only
(C) II and III only (D) II and IV only

answer Keys

exerCises

Practice Problems 1
 1. D 2. C 3. D 4. B 5. D 6. A 7. C 8. B 9. D 10. C
 11. B 12. D 13. D 14. A 15. B

Practice Problems 2
  1. D 2. C 3. D 4. A 5. D 6. A 7. C 8. C 9. C 10. C
 11. C 12. B 13. B 14. B 15. C

Previous Years’ Questions
 1. C 2. C 3. D 4. D 5. C 6. C 7. B 8. B 9. D 10. D
 11. B  12. B 13. D 14. B 15. A 16. B 17. C 18. D 19. B
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