
Chapter 2

Context Free Languages
and Push Down Automata

 Context free grammar

 Context free language

 Ambiguity in context free grammars

 Removing �-productions

 Removing unit productions

 Normal forms

 Chomsky's normal form

 Greiback normal form

 Closure properties of CFL's

 Push down automata

 PDAs accepting by fi nal state and empty stack are
equivalent

 Converting CFG to PDA

 Deterministic PDA

LEARNING OBJECTIVES

Context free GraMMar
 • A context free grammar (CFG) is a fi nite set of variables (non-

terminals) each of which represents a language. The language
represented by variables is described recursively in terms of
each other. The primitive symbols are called terminals.

 • The rules relating variables are called productions. A typical
production states that the language associated with a given vari-
able contains strings that are formed by concatenating strings
from languages of certain other variables.

 • CFG is a collection of three things;
An alphabet Z of letters called terminals.
A set of symbols called non-terminals, one of which is a start
symbol, S.
A fi nite set of productions of the form:
One terminal → fi nite set of terminals and/or non-terminals.

 • A CFG is defi ned as: G = (V, T, P, S)

Where

V → Finite set of variables (non-terminals)
T → Finite set of terminals (symbols)
P → Finite set of productions, each, production is of the form,
A → α, A ∈ V, α ∈ (V ∪ T)*

S → Start symbol

Context free lanGuaGe (Cfl)
The language generated by CFG is a set of all strings of terminals
that can be produced from start symbols, using the productions as

substitutions. A language generated by a CFG is called context free
language (CFL).

Note: Every regular grammar is context free, so a regular lan-
guage (RL) is also context free.
Family of RL’s is proper subset of CFL’s.
i.e., RL ⊂ CFL

CFL

RL

Solved Examples

Example 1: What is the language that is generated by CFG, G =
S → AB|A → +/–|B → CB/C|C → 0/1/2/ . . . 9.
(A) Set of all rational numbers
(B) Set of all integers
(C) Set of all natural numbers
(D) Set of all complex numbers

Solution: (B)
S → AB|A → +/–|B → CB/C|C → 0/1/2/ . . . 9
Consider-18 (integer)

Chapter 2  •  Context Free Languages and Push Down Automata | 5.25

Note:

 • A context free language with property that all grammars
that generate it are ambiguous is inherently ambiguous.

 • Inherently ambiguous grammars cannot convert to unam-
biguous grammars.

MiniMization of Context
free GraMMar
 • Grammar may consist of some extra symbols (non-terminals).

Having extra symbols unnecessarily increases the length of
grammar.

 • Simplification of grammar means reduction of grammar.

The properties of reduced grammar are:

 1. Each variable (non-terminal) and each terminal of G
appears in the derivation of some word in L.

 2. There should not be any production as X → Y where X
and Y are non-terminals.

 3. If e is not in language L, then there need not be produc-
tion X → e.

Reduced grammar

Removal of
useless symbols Removal of e -

productions
Removal of

unit production

Removal of Useless Symbols
 • Any symbol is useful when it appears on right hand side,

in the production rule and generates some terminal string.
If no such derivation exists, then it is supposed to be a
useless symbol.

 • A symbol P is useful, if there exists some derivation

S PB PB W∗
∗

⇒ ⇒α α and

Then P is said to be useful symbol.

Example 3: A grammar G′, is generated by removing
useless symbols from G defined below. The obtained G′
contains productions:
 S → aA|bB
 A → aA|a
 B → bB
 D → ab|Ea
 E → aC|d
(A) S → aA
 A → aA|a
(B) S → aS|bA|C
 A → a
 C → aCd
(C) S → aA|bB
 A → aA|a
 B → bB
(D) Cannot remove useless symbols

S → AB
 → –B
 → –CB
 → –1B
 → –18

Context free
grammar

Context free
languageLanguage

Grammar

L

Accepts

Machine

aMbiGuity in Context
free GraMMars
A CFG, G is called ambiguous if there is w ∈ L(G) such
that w has (at least) two different parse trees with respect to G.

Example 2: The language, L = {an bn cm dm/n ≥ 0, m ≥
0} ∪ {anbmcmdn/n ≥ 0, m ≥ 0} is designed in CFG, G. The
Grammar is
(A) Ambiguous
(B) Unambiguous
(C) Cannot be determined
(D) None of above

Solution: (A)
CFG G for given language L is:

S → AB|C
A → aAb|e
B → cBd|e
C → aCd|D
D → bDc|e
It’s an inherently ambiguous grammar.
Consider string, aabbccdd

S

C

C
a d

S

A

A
a b

B

A
a b

B
c d

B
c d

C
a d

C
b c

D

D
b c

D

⇒

e

e e

5.26 | Unit 5  •  Theory of Computation

(A) 9 (B) 2
(C) 3 (D) 5

Solution: (A)
A → PQ
Q → R → S → W → 2
⇒ Q, R, S → Unit production
A → PQ
P → 0
Q → R|1
 ↓
⇒ Q → 2|P1|1R|1 (substitute the production of R, S, W)
∴ A → PQ
P → 0
Q → 2| P1| 1R| 1
R → 2| P1| 1R
∴ 9 – Productions

norMal forMs
 • It is necessary to have a grammar in some specific form

so, grammar normalization is needed.

Normal forms

Chomsky normal
form (CNF)

Griebach normal
form (GNF)

That is, There should be fixed number of terminals and
non-terminals, in CFG.

Chomsky’s Normal Form (CNF)
 • A context free grammar (CFG), G = (V, Σ, R, S) is said to

be in CNF, if and only if every rule in R is of one of the
following forms

 1. A → a, for some A ∈ V and some a ∈ Σ
 2. A → BC, for some A ∈ V and B, C ∈ V ∪ {S}
 3. S → e
 • Every rule either replaces a variable by a single character

or by a pair of variables except the start symbol and the
only rule that can have the empty word as it’s right hand
side must have start symbol as it’s left hand side.

Note: Every parse tree for a grammar in CNF must be a
binary tree and the parse tree for any non-empty word can-
not have any leaves labeled with e in it.

Transforming of a grammar to CNF
 • In order to construct the grammar G in CNF that is equiv-

alent to a given grammar G, first identify how exactly G
can violate the rules for a CNF. Since CNF only restricts
the rules in G, see only at R. The ‘bad’ cases of rules are:

 • A → uSv where A ∈ V and u, v ∈ (V ∪ Σ)*. The start sym-
bol must not appear on the right-hand side of any rule.
This is called ‘start symbol rule’.

Solution:
S → aA → aaA → aaaA → aaaa
B → bB → bbB → bbbB → bbbbB (string cannot be
generated)
∴ B is useless
D and E cannot be generated from ‘S’. So, eliminate. Hence
G ′ contains
∴ S → aA
A → aA|a

Removing e-Productions
A production of the form A → e is called an e-production.
If A is a non-terminal and A → (*) e, then A is called a ‘nul-
lable non-terminal’. So eliminate such productions without
changing meaning of grammar.

Example 4: The grammar, G is given below. The CFG
generated after eliminating e-production is:
 S → ABC
 A → BC|a
 B → bAC|∈
 C → cAB|∈
(A) S → ABC|AB|BC|CA
 A → BC|B|C
 B → bAC|bA|bC
 C → cAB|cA|cB
(B) S → ABc
 A → BC
 B → bAC
 C → cAB
(C) S → ABC|BC|AC|AB|A|B|C
 A → BC|B|C|a
 B → bAC|bA|bC|b
 C → cAB|cA|cB|c
(D) None of these

Solution (C)
B → ∈, C → ∈
⇒ A → ∈
∴ Remove e-productions and obtained CFG is Choice (C).

Removing Unit Productions
 • A production of form A → B, where A and B are both

non-terminals, is called a ‘unit production’.
 • Presence of unit production in a grammar increases the

cost of derivation.

Example 5: The total number of productions obtained by
removing unit production from the Grammar,
 A → PQ
 P → 0
 Q → R|1
 R → S
 S → W|1R
 W → 2|P1

Chapter 2  •  Context Free Languages and Push Down Automata | 5.27

 • To remove ‘start symbol rule’, add a new symbol, so
make it the start symbol in new grammar G

1
, and add

the single rule S
0
 → S to R to get the rules for G

1
. Since

S
0
 does not appear in any rules, the new grammar has no

start symbol rules.
 • A → e where A ∈ V ∪ {S}|. The only symbol that can be

replaced by the word is start symbol. This is called ‘e-rules’.

 • To remove ‘e-rules’, identify all variables that can yield
the empty string, either directly or indirectly.
 These variables are ‘nullable’. Remove all direct rules
A → e from the grammar and fix up the grammar by
removing all occurrences of nullable variables from the
right hand sides of all rules.
 A → B where A, B ∈ V. The only rules involving vari-
ables on the right-hand side must have exactly two of
them. This is called ‘unit rules’.

 • To remove ‘Unit rules’, identify a set of unit pairs.

These are pairs of symbols (A, B), where A B⇒
∗

. Then
remove all unit rules by copying right-hand sides. If there
is a rule A → B, (A, B) is a unit pair. Then, if there is a rule
B → W, derive W from A by A → B, B → W. To remove
the unit rule and still generate an equivalent grammar, add
the right-hand side W to the rules for A directly, A → W.
 A → W where A ∈ V, W ∈ (V ∪ Σ)* and W contains
at least one character and at least one variable. The only
rules where character appear on right-hand side must
have exactly one character as right-hand side. This is
called ‘mixed rules’.

 • To remove ‘mixed rules’, Let A → W ∈ R
3
 is a mixed

rules. Then write W as W = V
0
 C

1
V

1
 . . . V

n−1
C

n
V

n
, where

C
i
 ∈ Σ are occurrences of characters, and the V

i
 ∈ V* are

strings of only variables. Then add a new symbol, C
i
 to

V
4
 for every character C

i
 and add the rules C

i
 → c

i
 to R

4
.

Finally define W1: = V
0
 C

1
 V

1
… V

n−1
 C

n
 V

n
 ∈ V* and add

rules A → W ′ to R
4
. If the rule A → W is part of the deri-

vation for some word, replace that single rule by applying
rule A → W ′ first and then replacing all C

i
 by c

i
 using

their respective rules.

A w→ Where A ∈ V and W ∈ (V ∪ Σ)* with |w| > 2.
Rules must have one symbol (character) or two variables
(two variables as right hand side). These are called long
rules.

 • To remove ‘long rules’, Let A → B
1
… B

n
 be a long rule,

i.e., n > 2. B
i
 is all variables. Break up every single long rule,

into several ‘short’ rules, by introducing new ‘helper varia-
bles’ and splitting right hand side from left to right: add
new symbols A

1
, … A

n−2
 to set of variables and add following

rules to R
5
: A → B

1
A

1
, A

1
 → B

2
 A

2
, … A

n−2
 → B

n−1
 B

n
.

Example 6: Consider grammar, G = S → ASB, A → aAS|
a|e, B → SbS|A|bb. The CNF generated contains ____ non-
terminals.
(A) 5 (B) 6
(C) 9 (D) 11

Solution: (C)
Add new start state:
S

0
 → S

S → ASB
A → aAS|a|e
B → SbS|A|bb
Eliminate e-rules
A → e:
S

0
 → S

S → ASB|SB
A → aAS|a|aS
B → SbS|A|bb|e
Eliminate B → e:
S

0
 → S

S → ASB|SB|S|AS
A → aAS|a|aS
B → SbS|A|bb
Remove Unit rules:
B → A:
S

0
 → S

S → ASB|SB|S|AS
A → aAS|a|aS
B → SbS|bb|aAS|a|aS
S → S:
S

0
 → S

S
0
 → ASB|SB|AS

A → aAS|a|aS
B → SbS|bb|aAS|a|aS
S

0
 → S:

S
0
 → ASB|SB|AS

S → ASB|SB|AS
A → aAS|a|aS
B → SbS|bb|aAS|a|aS
Replace rules which have more than two symbols:
S

0
 → ASB: S

0
 → AU

1
 and U

1
 → SB

∴ S
0
 → AU

1
|SB| AS

S → AU
1
|SB| AS

A → aAS|a|aS
B → SbS|bb|aAS|a|aS
U

1
 → SB

A → aAS ⇒ A → aU
2
and U

2
 → AS and B → SbS

⇒ B → SU
3
 and U

3
→ bS

∴ S
0
 → AU

1
|SB|AS

S → AU
1
|SB| AS

A → aU
2
|a|aS

B → SU
3
|bb|aU

2
|a|aS

U
1
 → SB

U
2
 → AS

U
3
 → bS

Eliminate rules which have terminals and variables or two
terminals.
Let V

1
 → a, V

2
 → b

∴ S
0
 → AU

1
|AS|SB

S → AU
1
|SB|AS

A → V
1
U

2
|a|V

1
S

5.28 | Unit 5  •  Theory of Computation

 Grammar, G now is:
 A

1
 → A

2
A

3
|A

4
A

4

 A
4
 → b|A

1
A

4

 A
2
 → b

 A
3
 → a

3. Identify all productions which do not conform to any
of the types listed below:

 A
i
 → A

j
 x

k
 ∃ j > i

 Z
i
 → A

j
 x

k
 ∃ j ≤ n

 A
i
 → a x

k
 ∃ x

k
 ∈ V* and a ∈ T

4. A
4
 → A

1
 A

4
 … identified

5. A
4
 → A

1
 A

4
|b

 To eliminate A
1
, use substitution rule, A

1
 → A

2
 A

3
|A

4
A

4

 ∴ A
4
→ A

2
 A

3
A

4
|A

4
A

4
A

4
|b

 Substitute A
2
→ b

 ∴ A
4
 → b A

3
A

4
|A

4
A

4
A

4
|b

 A
4
 → A

4
A

4
A

4
 is left recursive. So, remove left recur-

sion i.e., A
4
 → b A

3
A

4
|b|bA

3
A

4
Z|bZ

 Z → A
4
A

4
|A

4
 A

4
Z

6. Now, G = A
1
 → A

2
 A

3
|A

4
A

4

 A
4
 → b A

3
A

4
|b|b A

3
A

4
 Z|b Z

 Z → A
4
 A

4
|A

4
A

4
Z

 A
2
 → b

 A
3
 → a

7. A
1
, Z are not in GNF. So,

 For A
1
 → A

2
A

3
|A

4
A

4
:

 Substitute for A
2
and A

4
 to convert it to GNF

 A
1
 → b A

3
| b A

3
 A

4
A

4
|b A

4
|b A

3
 A

4
Z A

4
|b Z A

4

 For Z → A
4
 A

4
|A

4
 A

4
Z

 substitute for A
4
 to convert it to GNF

 Z → b A
3
 A

4
A

4
|b A

4
|b A

3
 A

4
Z A

4
|b Z A

4
|b A

3
 A

4
A

4

Z|b A

4
Z|b A

3
A

4
 Z A

4
Z|b Z A

4
 Z

 ∴ Final GNF is:
 A

1
 → b A

3
|b A

3
A

4
A

4
|b A

4
| b A

3
A

4
Z A

4
|b Z A

4

 A
4
→ b A

3
 A

4
|b|b A

3
 A

4
Z|b Z

 A
2
 → b

 A
3
 → a

 Z → b A
3
 A

4
A

4
|b A

4
|b A

3
A

4
 Z A

4
|b Z A

4
|b A

3
 A

4
 A

4

Z| b A

4
 Z|b A

3
 A

4
 Z A

4
Z|b Z A

4
 Z

 ∴ 19 productions.

PuMPinG leMMa for Context
free lanGuaGes
Let ‘L’ be context free language. There exists some integer,
m ∃ ∀w in L, with |w| ≥ m, w = uvxyz with |vxy| ≤ m and |vy| ≥
1 ∃ u vi x yi z ∈ L ∀ i = 0, 1, 2, 3, …

Note: Pumping lemma is used to show that a language is
Not context free.

Example 8: The language {an bm cn d (n+m): m, n ≥ 0} is
(A) Regular
(B) Context free but not regular
(C) Neither context free nor regular
(D) Cannot be determined

B → SU
3
|V

2
V

2
|V

1
U

2
|a|V

1
S

U
1
 → SB

U
2
 → AS

U
3
 → V

2
S

V
1
 → a

V
2
 → b

∴ Nine non-terminals.

Greiback Normal Form (GNF)
 • A CFG, G = (V, T, R, S) is said to be in GNF, if every

production is of form A → aα where a ∈ T, α ∈ V*, i.e.,
α is a string of zero or more variables.

 • Left recursion in R can be eliminated by following schema:
 If A → Aα

1
 |Aα

2
| … |Aα

r
|b

1
|b

2
| … |b

s
, then replace the

above rules by
 (i) A → b

i
|b

i
Z, 1 ≤ i ≤ s

 (ii) Z → α
i
| α

i
Z, 1 ≤ i ≤ r

 • If G = (V, T, R, S) is a CFG, then another CFG, G
1
 =

(V
1
, T, R

1
, S) can be constructed in GNF ∃ L (G

1
) = L

(G) − {e}.

The step wise algorithm is as follows:

 1. Eliminate null production, unit productions and
useless symbols from the grammar G and then
construct a G1 = (V1, T, R1, S) in CNF generating the
language L (G1) = L (G) − {e}.

 2. Rename the variables like A
1
, A

2
, … A

n
 starting with

S = A
1
.

 3. Modify the rules in R1, so that if A
i
 → A

j
γ ∈ R1 then

j > i.
 4. Starting with A

1
 and proceeding to A

n
, can be obtained as:

(a) Assume that productions have been modified so
that for 1 ≤ i ≤ k, A

i
 → A

j
 γ ∈ R1 only if j > i

(b) If A
k
 → A

j
γ is a production with j < k, generate

a new set of productions substituting for A
j
, the

body of each A
j
 production.

(c) Repeating (b) atmost k − 1 times, obtains rules of
the form A

k
 → A

p
γ, p ≥ k.

(d) Replace rules A
k
 → A

k
γ by removing left-

recursion.
 5. Modify the A

i
 → A

j
γ for i = n − 1, n − 2, … 1 in

desired form at same time change z production rules.

Example 7: A grammar G is defined with rules S →
XA|BB, B → b|SB, X → b, A → a. The normalized GNF of
G contains ____ productions.
(A) 17 (B) 19
(C) 5 (D) 16

Solution: (B)
1. The Grammar, G is already in CNF.
2. Re-label with variables
 S with A

1

 X with A
2

 A with A
3

 B with A
4

Chapter 2  •  Context Free Languages and Push Down Automata | 5.29

(A) Regular
(B) Context free
(C) Regular but not context fee
(D) Cannot be determined

Solution: (B)
L

1
 = {an bn : n > 0} is context free

L
2
 = {a100 b100} is regular

L a b a b2
100 100= + −∗{() } { } is regular

{an bn} context free

L a b a b2
100 100= + −∗{() } { } is regular

{ }a b Ln n ∩ 2 → context free

{ } { : , }a b L a b n n Ln n n n∩ = ≠ ≥ =2 100 0 is context free:

Table 1 Comparing Regular and Context free Languages:

Regular Language CFL

Regular expression or regular
grammar

Context free grammar

Recognize the language Parses the language

These are DFSA's These are NDPDA's

Minimize FSA's Find deterministic grammar.

Closed under:
Concatenation
Union
Kleen star
Complement
Intersection

Closed under:
Concatenation
Union
Kleen star

Push Down autoMata (PDa)
A push down automata is merely a finite automata with a
stack added to it.

PDA is used to generate context free language.
The stack allows for unbounded memorization.

Finite
control d

Tape
head State

Stack

Top

A

a

P

Input tape: The tape is divided into finitely many cells.
Each cell contains a symbol in an alphabet, Σ.
Stack: The stack head always scans the top symbol of the
stack. It performs two basic operations.

 • Push: Add a new symbol at the top
 • Pop: Read and remove the top symbol

Tape head: The head scans at a cell on the tape and can
read a symbol on the cell. In each move, the head can move
to the right cell.

Solution: (C)
L = {an bm cn d (n + m): m, n ≥ 0}
Clearly, L is not regular because, number of a’s and number
of b’s must be known to compute number of d’s.
‘L’ is not context free because, Let w = aM bM cM d2M. Clearly
neither v nor y can cross regions and include more than one
letter, since if that happened; letters obtained will be out of
order when pumped.
 So, consider cases, where v and y fall within a single region.
Consider 4-regions corresponding to a, b, c and d.
(1, 1) → change number of a’s and they won’t match c’s any
more.
(1, 2) → If v is not empty, change a’s and they won’t match
with c’s. If y is non-empty, number of b’s changed won’t
have right number of d’s.
(1, 3), (1, 4) → ruled out. ∵ |v x y| ≤ M
(2, 2) → Change number of b’s and they won’t match right
number of d’s.
(2, 3) → If v is non-empty, change number of b’s without
changing number of d’s. If y is not empty, change c’s and
they’ll no longer match a’s.
(2, 4) → ruled out ∵ |v x y| ≤ M
(3, 3) → Change number of c’s and they won’t match a’s.
(3, 4) → If v is not empty change c’s and they won’t match
a’s. If y is not empty, change d’s without changing b’s.
(4, 4) → change d’s without changing a’s or b’s.
∴ L is not context free.

Closure ProPerties of Cfl’s
 1. CFL’s are closed under union: For CFL’s L

1
, L

2

with CFG’s G
1
, G

2
 and start variables S

1
, S

2
. The

grammar of Union L
1
 ∪ L

2
 has new start symbol S

and additional production S → S
1
| S

2

 2. CFL’s are closed under concatenation: For CFL’s
L

1
, L

2
 with CFG’s G

1
, G

2
 and start variables S

1
, S

2
.

The grammar of concatenation L
1
L

2
 has new start

variables S and additional production: S → S
1
 S

2

 3. CFL’s are closed under star operation: For CFL
L, with CFG G and start variable S. The grammar of
the start operation L* has new start variable S

1
 and

additional production:

S
1
 → S S

1
|e

 4. CFL’s are not closed under intersection: If L
1
, L

2

are two context free languages, L
1
 ∩ L

2
 not necessarily

be context free.
 5. CFL’s are not closed under complement: If L is

context free language, L not necessarily be context free.
 6. Intersection of CFL’s and regular language:

(regular closure): If L
1
 is a CFL and R

2
 is a regular

language then L
1
 ∩ L

2
 is a CFL.

Example 9: The language, L
1
 = {an bn : n ≥ 0} and L

2
 =

{a100 b100}. The relation L1 ∩ L2 is _____

5.30 | Unit 5  •  Theory of Computation

Solution: (B)
S → aTb|b
T → Ta|e

qfq1q0
e, e|S e, Z 0|e

 e, S|aTb

 e, T|Ta

e, S|b

e, T|e
a, a|e
b, b|e

Let S → q
0
, T → q

1

Consider string “aab” S → aTb → aTab → aab
δ(q

0
, aab, z

0
)├ δ(q

0
, e aab, z

0
)

├ δ (q
1
, aab, q

0
z

0
)

├ δ (q
1
, aab, aTb z

0
)

├ δ (q
1
, ab, Tbz

0
)

├ δ (q
1
, ab, aTbz

0
)

├ δ (q
1
, b, Tbz

0
)

├ δ (q
1
, b, ∈bz

0
)

├ δ (q
1
, b, bz

0
)

├ δ (q
1
, ∈, z

0
)

├ δ (q
f
, ∈) → acceptance

PDAs accepting by final state and empty stack are
equivalent:
P

F
 → PDA accepting by final state,

P
F
 = (Q

F
, Σ, Γ, δ

F
, q

0
, z

0
, F)

P
N
 → PDA accepting by empty stack

P
N
 = (Q

N
, Σ, Γ, δ

N
, q

0
, z

0
)

 • For every P
N
, ∃ P

F
 ∃ L (P

F
) = L(P

N
)

 • For every P
F
, ∃ P

N
 ∃ L (P

N
) = L (P

F
)

ConvertinG CfG to PDa
The PDA simulates the left most derivation on a given w,
and upon consuming it fully it either arrives at acceptance
(by empty stack) or non-acceptance.

The steps to convert CFG to PDA are:

 1. Push right hand side of the production on to stack,
with left most symbol at the stack top.

 2. If stack top is the left most variable, then replace it
by all its productions (each possible substitution will
represent a distinct path taken by non-deterministic
PDA (NPDA).

 3. If stack top has a terminal symbol and if it matches
with the next symbol in the input string, then pop it.
Follow from step-1 again to complete all productions.

Example 11: The CFG, G of a language L is S → AB,
A → aAb|e, B → cB/e. The PDA generated by G contains
____ states.
(A) 5 (B) 4 (C) 3 (D) 1

Finite control: The finite control has finitely many states
which form a set Q. For each move, the state is changed
according to the evaluation of transition function.

A PDA is defined as: P = (Q, Σ, Γ, δ, q
0
, z

0
, F)

Where Q: set of States
Σ: Input alphabet
Γ: Stack symbol
δ: Transition function
q

0
: Start state

z
0
: Initial stack top symbol

F: Final/accepting states
Transition functions δ: Q × Γ × Σ ⇒ Q × Γ
Q: Old state
Γ: Stack top
Σ: Input symbol
Q: New state, Γ: New stack top

PDA’s instantaneous description (IDs): A PDA has a
configuration at any given instance: (q, w, y)

q → current state
w → remainder of input (i.e., unconsumed part)
y → current stack contents as a string from top to bottom

of the stack.
If δ(q, a, x) = {P, A} is a transition, then following are

also true:

 • (q, a, x) ├ (P, e, A)
 • (q, aw, xB)├ (p, w, AB)

Note: 1. →: Turnstile notation and represents one move.
 2. ├*: represents sequence of moves.

Principles about IDs:

 1. If for a PDA, (q, x, A) ├* (p, y, B), then for any string
w ∈ Σ* and γ ∈ Γ*, it is also true that:

 (q, xw, Aγ) ├* (p, yw, Bγ)
 2. If for a PDA, (q, xw, A) ├* (p, yw, B), then it is also true

that: (q, x, A) ├* (p, y, B)

Acceptance by PDA: There are two types of PDAs that
one can design:

 • Those that accept by final state or
 • Those that accept by empty stack

PDAs that accept by final state: For a PDA, P, the lan-
guage accepted by P, denoted by L (P) by final state, is:

{w| (q
0
, w, z

0
) ├* (q, ∈, A)} ∃ q ∈ F

PDAs that accept by empty stack: For a PDA P, the lan-
guage accepted by P, denoted by N (P) by empty stack, is:

{w|(q
0
, w, z

0
) ├* (q, e, e)}, for any q ∈ Q.

Example 10: Consider the grammar S → aTb| b, T → Ta |e.
The PDA constructed contains ____ states.
(A) 4 (B) 3 (C) 5 (D) 2

Chapter 2  •  Context Free Languages and Push Down Automata | 5.31

Solution: (C)
S → AB
A → aAb|e
B → cB|e
⇒ δ(q

0
, w, S) = (q

1
, AB)

 δ(q
1
, w, A) = (q

1
, aAb)

 δ(q
1
, e, A) = δ(q

1
, e)

 δ(q
1
, w, B) = (q

1
, cB)

 δ(q
1
, e, B) = δ(q

2
, e) → accept

∴ {q
0
, q

1
, q

2
} 3-states.

Converting a PDA into a CFG
Given: G = (V, T, P, S) Initial stack symbol (S) same as start
variable in grammar
Output: P

N
 = ({q}, T, V ∪ T, δ, q, S), where δ is

 • If q
0
 is start state in PDA and q

n
 is final state of PDA then

[q
0
, z, q

n
] becomes a start state of CFG. Here z represents

stack symbol.
 • The production rule for the ID of the form δ(q

i
, a, z

0
) =

(q
i+1

, z
1
,

z

2
) can be obtained as:

δ(q
i
, z

0
, q

i+k
) → a(q

i+1
, z

1
, q

m
) (q

m
, z

2
, q

i+k
)

Where q
i+k

, q
m
 represents the intermediate staes, z

0
, z

1
,

z

2

are stack symbols and a is input symbol.
 • The production rule for the ID of the form δ(q

i
, a, z

0
) =

(q
i+1

, e) can be converted as

(q
i
, z

0
, q

i+1
) → a

Example 12: The PDA, P for language L is generated as:

e, e|e

a, e|a b, e|bb, a |e e, b|ec, b |e

e, e|e e, e|e e, e|e

The CFG for P is:
 (A) S → S

1
S

2

 S
1
 → aS

2
b

 S
2
 → c|e

 (B) S → S
1
bc

 S
1
 → a|e

 (C) S → S
1
S

2

 S
1
 → aS

1
b|e

 S
2
 → bS

2
|bS

2
c|e

 (D) S → aS
1
c

 S
1
 → b|e

Solution: (C)
The language, L generated by given PDA is

L = {an bn bm cp: m ≥ p and n, p ≥ 0}

It can be generated by following rules:

S → S
1
S

2

S
1
 → aS

1
b|e → S

1
 generates an bn

S
2
 → bS

2
|bS

2
c|e → S

2
 generates bm cp

DeterMinistiC PDa
(DeterMinistiC Cfl)

Deterministic
context free
languages

(DPDA)

Context-free
Languages

PDAs
⊆

 • Every DPDA is also a PDA.
 • A context free language ‘L’ accepted by PDA may or may

not be accepted by DPDA.

A PDA, M = (Q, Σ, Γ, δ, q
0
, F) is deterministic if there is

no configuration for which M has choice of more than one
move. That is, it must satisfy the following conditions:

 1. For any q ∈ Q, a ∈ Σe and s ∈ Γ e, the set δ(q, a, s)
has almost one element. (Doesn’t allow two or more
transitions from same state).

 2. For any q ∈ Q, and s ∈ Γe, if δ(q, e, s) ≠ f, then δ(q,
a, s) = f for every a ∈ Σ and δ(q, a, e) = f for all a ∈
Σ e.

 3. For any q ∈ Q and a ∈ Σ, if (q, a, e) ≠ f, then δ(q, a,
s) = f for all s ∈ Γ and δ(q, e, t) = f for all t ∈ Γe.

 4. For any q ∈ Q, if δ(q, e, e) ≠ f, then δ(q, a, t) = f for
all a ∈ Σe and t ∈ Γe (except when a = e, t = e).

Rule-2 says that if there is a transition from state q that
reads character, s from stack but doesn’t read other input,
other transitions from q, that don’t read stack are not allowed
and other transitions from q that read s from the stack and
read the input are not allowed either.

Rule-3 says that if there is a transition from state q that
reads character a, but doesn’t read stack, other transitions
from q that don’t read the input are not allowed and other
transitions from q that read ‘a’ from input and read the stack
are not allowed either.

Rule-4 says that if there is a transition from q that doesn’t
read either input or stack, all other transitions from q are not
allowed.

Example 13: A language, L is defined as: L = {wcwR: w ∈
(a, b)*}. What is Nature of language L?
(A) CFL and DCFL (B) Only CFL
(C) Only DCFL (D) None of these

Solution: (A)

L = {x = wcwR for w ∈ (a, b)*}

Fs
C, e/e

a, a|e
b, b|e

a, e|a
b, e|b

Clearly, obtained PDA is also DPDA in sense; there is no
choice in transitions.

∴ Hence L is CFL and DCFL.

5.32 | Unit 5  •  Theory of Computation

 9. The DPDA constructed to accept language, L with prop-
erty L = L

1
 ∪ L

2
 where L

1
 = {10n1n| n > 0}, L

2
 = {110n12n|

n > 0} contains ___ states.
 (A) 4 (B) 5
 (C) 6 (D) 7

 10. The PDA is designed as:

q0 q1 q2

0, e|0
1, e|1

e, $/e

0, 1|1 $ 0
1, 0|0 $ 0

0, 1| e
1, 0|e

0, 0|0 $ 0
1, 1|1 $ 1

0, 1| e
1, 0| e
0, 0 → 00
1, 1 → 11

0, 0 | 00
1, 1|11

q3

 What is the language generated by the above PDA?
 (A) Binary strings that have same number of 0’s and

1’s.
 (B) Binary strings that start with 00 and end with 11

and have same number of 0’s and 1’s.
 (C) Binary strings that start and end with the same

symbol and have same number of 0’s and 1’s.
 (D) Binary strings that start with 11 and end with 00

and have same number of 0’s and 1’s.

 11. The language, L ba ba b ba n m mm m m
n

n= ≥ …(: , ,1 2 2 1�
≥ 0 and m

i
 ≠ m

j
 for some i, j). What is nature of ‘L’?

 (A) Regular
 (B) Context free but not regular
 (C) Regular but not context free
 (D) Neither context free nor regular

 12. Two languages L
1
, L

2
 are defined as:

 L
1
 = {ai bj ck: i, j, k ≥ 0, i = j}

 L
2
 = {ai bj ck: i, j, k ≥ 0, j = k} which of following state-

ments are true?
 (i) L

1
 ∩ L

2
 is context free

 (ii) L
1
 ∩ L

2
 = {an bn cn| n ≥ 0}

 (iii) L
1
, L

2
 are context free

 (iv) Only L
1
 is context free

 (A) All are true (B) (i), (ii) are true
 (C) (iii), (iv) are true (D) (ii), (iii) are true

 13. The language generated by grammar:
 S → Te|Ue, T → cTd|cT|e, U → cUd|Ud|dd. is
 (A) L = {cn dm e: m ≥ n}
 (B) L = {cn dm e: m = n}
 (C) L = {cm dn em: m ≥ n + 2}
 (D) None of these

 14. Remove null productions, useless symbols from the
following grammar result in:

 S → ABC
 A → aBC
 B → C|e
 C → cd|DCF
 D → dD|e

exerCises

Practice Problems 1
Directions for questions 1 to 15: Select the correct alterna-
tive from the given choices.

 1. Consider the grammar, G = (V, Σ, R, S) where V = {a,
b, S, A}, Σ = {a, b}, R = {S → AA, A → AAA, A → a,
A → bA, A → Ab} How many strings can be generated
by L(G) that can be produced by derivations of four or
fewer steps?

 (A) 5 (B) 10 (C) 14 (D) 8

 2. Consider the following languages L
1
, L

2
 and L

3
:

 L
1
 = {an bm cn+m| n, m ≥ 0}

 L
2
 = {an bn+1 cn+2| n ≥ 0}

 L
3
 = {an bn cm| n, m ≥ 0}

 Which of following statement is true?
 (A) L

1
, L

2
, L

3
 are context free languages

 (B) L
1
, L

2
 are context free but not L

3

 (C) L
1
, L

3
 are context free but not L

2

 (D) L
1
, L

2
, L

3
 are not context free languages.

 3. The language, L = {b
i
 # b

i+1
 : b

i
 is i in binary, i ≥ 1} is:

 (A) Regular
 (B) Context free
 (C) Regular and context free
 (D) Neither context free nor Regular

 4. The CFG, G : A → BAB|B|e, B → 00|e. The CFG is
normalized using CNF. The obtained G’, contains ___
rules.

 (A) 11 (B) 14 (C) 12 (D) 13

 5. The language L i
i

= ≥{ : }0 12 is:

 (A) Context free
 (B) DCFL
 (C) Both CFL and DCFL
 (D) Not context free language

 6. The context free grammar, G is defined with produc-
tion rules S → EcC′|aAE|AU, A → aA|e, B → bB|e, C′
→ cC′|e, E → aEc|F, F → bFc|e, U → aUc|V, V → bVc|
bB What is the language generated by L?

 (A) L = {an bm ck : k ≠ n + m}
 (B) L = {an bm ck : k = n + m}
 (C) L = {an bm ck : k > n + m}
 (D) L = {an bm ck : k < n + m}

 7. Consider the grammar, G ≡ S → abScB|e, B → bB|b.
What language does it generate?

 (A) L(G) = {(ab)n (cb) m|n = m}
 (B) L(G) = {anbn (cb) m|n ≠ m}
 (C) L(G) = {(ab)n (cbm) n|n ≥ 0, m > 0}
 (D) L(G) = {{ab)n (cbm) n|n ≥ 0, m ≥ 0}

 8. The language, L = {0i 1j 2k| i ≠ j or j ≠ k}. The CFG, G
generated by L contains ___ rules.

 (A) 23 (B) 20
 (C) 21 (D) 19

Chapter 2  •  Context Free Languages and Push Down Automata | 5.33

 E → eFE
 F → eC
 (A) S → ABC|AC
 A → aBC|aC
 B → C
 C → cd|DCF|CF
 D → dD|d
 F → eC
 (B) S → aBCc
 A → aBC
 B → cD|dDEF|dEF
 C → cD|dDEF|dEF
 F → eB
 D → dD|d
 E → eFE|e

 (C) S → aBCBC|aBC
 B → cD|dDEF|dEF
 F → eB
 C → dD|d
 D → e
 F → CD|dDEF
 (D) None of these

 15. Let the language L
1
, L

2
 are defined as:

 L
1
: {ai b2i cj| i, j ≥ 0}, L

2
 = {ai b2i ai| i ≥ 0}. Which of

following is true?
 (A) L

1
, L

2
 are context free

 (B) Only L
1
 is context free

 (C) Only L
2
 is context free

 (D) Neither L
1
 nor L

2
 is context free

Practice Problems 2
Directions for questions 1 to 15: Select the correct alterna-
tive from the given choices.

 1. Consider the alphabet Σ = {a, b, c, (,), ∪, *, f}. Then con-
text free grammar that generates all strings in Σ* that
are regular expressions over {a, b} is:

 (A) S → S*|a|b|SS
 (B) S → f|a|b|S
 (C) S → f|a ∪ b|S*

 (D) S → f|S*|a|b|(S)|S ∪ S|SS

 2. The PDA for language, L is designed below. The CFG
generated contains ____ productions.

1 2
e, e → $

3
e, $ → e

a, e → a
b, a → e

 (A) 5 (B) 4
 (C) 3 (D) 6

 3. The language, L generated by the following grammar,
S → SS| AAA|e, A → aA| Aa| b is

 (A) (a* b*)* (B) (a* b* b* a*)*

 (C) a* b* a* (D) (a* b a* b a* b a*)*

 4. The grammar, G is defined with rules S → S
1
|S

2
, S

1
 →

S
1
b|Ab|e, A → aAb| ab, S

2
 → S

2
a| Ba|e, B → bBa| ba. The

CNF is applied on G. The obtained grammar, G’ contains
___ rules.

 (A) 24 (B) 23
 (C) 21 (D) 20

 5. The language, L b nn= ≥{ : }
2

1 is:

 (A) CFL but not DCFL
 (B) DCFL but not CFL
 (C) Only DCFL
 (D) Not CFL

 6. Consider the grammar, G = S → aSc|B, B → bBc|e The
language, L generated by G is

 (A) L = {an bm ck: k = n + m}
 (B) L = {an bm ck: k ≠ n + m}
 (C) L = {an bm ck: k > n + m}
 (D) L = {an bm ck: k < n + m}

 7. The grammar, G is defined with productions:
 S → 0A|1B, A → 0AA|1S|1, B → 1BB|0S|0
 The grammar, G

2
 is defined with productions:

 S → AB|aaB, A → a|Aa, B → b
 Which grammar is/are ambiguous?
 (A) Only G

1

 (B) Only G
2

 (C) Both G
1
 and G

2

 (D) Both G
1
 and G

2
 are unambiguous

 8. The language, L
1
 = {0n 1n| n > 0} and L

2
 = {0n 12n| n >

0}. The CFG generated for L
1
 ∪ L

2
 is:

 (A) S → 0 A 1|0 A 1 1
 A → 0|1|e
 (B) S → 0 A 1 1
 A → 0|1|e
 (C) S → 0 A 1|0 B 1 1
 A → 0 A 1|e
 B → 0 B 1 1|e
 (D) S → 0 A 1 1|0 1 1
 A → 0|1|e
 9. The NPDA constructed to accept language, L with

property, L = L
1
 ∪ L

2
, where L

1
 = {1n 0n| n > 0}, L

2
 =

{0n 12n| n ≥ 0} contains ____ final states.
 (A) 3 (B) 1
 (C) 2 (D) 4

 10. The DPDA for language, L is designed below. What is
the language generated?

b, a |e

a, e|a b, a /e

b, $|$ b, $|$ b, $|$

5.34 | Unit 5  •  Theory of Computation

 (A) L = {an bm: m = n}
 (B) L = {an bm: m = n + 2}
 (C) L = {an bm: m ≥ n + 2}
 (D) L = {an bm: m ≤ n + 2}

 11. The CFG, G is defined with rules:
 S → AB|CD, A → A00|e, B → B11|1, C → C00|0, D →

D11|e. The language generated by G is
 (A) L = {0n 1n|n ≥ 0}
 (B) L = {0 0n 1 1n|n > 0}
 (C) L = {0n 1m|n + m is odd}
 (D) L = {0n 1m|n + m is even}

 12. The languages, L
1
, L

2
, L

3
 are defined as:

 L
1
 = {an bm cn+m|n, m ≥ 0}, L

2
 = {an bn cm|n, m ≥ 0}, L

3
 =

{an bn c2n|n ≥ 0}, Which of the following statements are
true?

 (i) L
1
, L

2
are context free

 (ii) L
1
, L

3
 are context free

 (iii) L
3
 = L

1
 ∩ L

2

 (iv) L
1
, L

3
 are context free but not L

2

 (A) (i), (ii) (B) (i), (iii)
 (C) (ii), (iii) (D) (iii), (iv)

 13. The language, L
1
 and L

2
 are defined as L

1
 = {an bn: n ≥ 0

and n is not a multiple of 5} and L
2
 = {0n # 02n # 03n| n ≥

0}. Which of following is true?
 (A) L

1
 and L

2
 are context free

 (B) Only L
1
 is context free

 (C) Only L
2
 is context free

 (D) Neither L
1
 nor L

2
 is context free

 14. The language, L
1
 and L

2
 are defined as L mn n m

1 0 1= {) | ,
n > 0}, L

2
 = {0n 1n 0n 1n|n ≥ 0} which of following is

true?
 (A) L

1
 and L

2
 are context free

 (B) Only L1 is context free
 (C) Only L

2
 is context free

 (D) Neither L
1
 nor L

2
 is context free

 15. The language L
1
, L

2
 are defined as L

1
 = {0i 1i 0j 1i|i, j >

0}, L
2
 = {1k 0i 1i 0j 1j 0k|i, j, k > 0}. Which of following

is true?
 (A) L

1
 and L

2
 are context free

 (B) Only L
1
 is context free

 (C) Only L
2
 is context free

 (D) Neither L
1
 nor L

2
 is context free

Previous years’ Questions

 1. Match the following: [2008]

E. Checking that identifi-
ers are declared before
their use

P. L = {anbmcndm|n≥1, m≥1}

F. Number of formal
parameters in the
declaration of a function
agrees with the number
of actual parameters in
use of that function

Q. X → XbX|XcX|dXf|g

G. Arithmetic expressions
with matched pairs of
parentheses

R. L = {wcw|w∈(a|b)*}

H. Palindromes S. X → bXb|cXc|e

 (A) E − P, F − R, G − Q, H − S

 (B) E − R, F − P, G − S, H − Q

 (C) E − R, F − P, G − Q, H − S

 (D) E − P, F − R, G − S, H − Q

 2. Consider the languages L
1
, L

2
 and L

3
 as given below.

 L
1
 = {0p 1q|p, q ∈ N},

 L
2
 = { 0p 1q|p, q ∈ N and p = q} and

 L
3
 = {0p 1q 0r|p, q, r ∈ N and p = q = r}. Which of the

following statements is NOT TRUE? [2011]
 (A) Push Down Automata (PDA) can be used to rec-

ognize L
1
 and L

2
.

 (B) L
1
 is a regular language.

 (C) All the three languages are context free
 (D) Turing machines can be used to recognize all the

languages.

 3. Which of the following problems are decidable? [2012]
 (1) Does a given program ever produce an output?

 (2) If L is a context free language, then, is L also
context free?

 (3) If L is a regular language, then, is L also regular?

 (4) If L is recursive language, then, is L also recur-
sive?

 (A) 1, 2, 3, 4 (B) 1, 2
 (C) 2, 3, 4 (D) 3, 4

 4. Consider the following languages.
 L

1
 = {0p 1q 0r|p, q, r ≥ 0}

 L
2
 = {0p 1q 0r|p, q, r ≥ 0, p ≠ r}

 Which one of the following statements is FALSE?
 [2013]
 (A) L

2
 is context-free

 (B) L
1
 ∩ L

2
 is context-free

 (C) Complement of L
2
 is recursive

 (D) Complement of L
1
 is context-free but not regular

 5. Which one of the following is TRUE? [2014]
 (A) The language L = {an bn|n ≥ 0} is regular
 (B) The language L = {an|n is prime} is regular
 (C) The language L = {w|w has 3k + 1b’s for some k

∈N with Σ = {a, b}} is regular
 (D) The language L = {ww|w∈Σ* with Σ = {0, 1}} is

regular.

 6. Consider the following languages over the alphabet
Σ = {0, 1, c}.

 L
1
 = {0n 1n|n ≥ 0}

 L
2
 = {wcwr|w ∈ {0, 1}*}

 L
3
 = {wwr|w ∈ {0, 1}*}

Chapter 2  •  Context Free Languages and Push Down Automata | 5.35

 Here wr is reverse of the string w. Which of these
languages are deterministic context-free languages?
 [2014]

 (A) None of the languages

 (B) Only L
1

 (C) Only L
1
 and L

2

 (D) All the three languages

 7. Consider the NPDA <Q = {q
0
, q

1
, q

2
}, Σ = {0, 1},

 Γ = {0, 1, ⊥}, δ, q
0
, ⊥, F = {q

2
}>, where (as per usual

convention) Q is the set of states, Σ is the input alpha-
bet, Γ is the stack alphabet, δ is the state transition
function, q

0
 is the initial state, ⊥ is the initial stack

symbol, and F is the set of accepting states. The state
transition is as follows:

1. Z 1Z 0, 1Z Z

0/1/ε, Z Z

1, 0Z Z0. Z 0Z
q0 q1 q2

ε, ⊥ ε

 Which one of the following sequences must follow the
string 1011 00 so that the overall string is accepted by
the automation? [2015]

 (A) 10110 (B) 10010
 (C) 01010 (D) 01001

 8. Which of the following languages are context-free?
 [2015]

 L
1
 = {ambnanbm | m, n ≥ 1}

 L
2
 = {ambnambn | m, n ≥ 1}

 L
3
 = {ambn | m = 2n + 1}

 (A) L
1
 and L

2
 only (B) L

1
 and L

3
 only

 (C) L
2
 and L

3
 only (D) L

3
 only

 9. Consider the following context-free grammars:

 G
1
:S → aS|B, B → b|bB

 G
2
: S → aA|bB, A → aA|B| e, B |bBe

 Which one of the following pairs of languages is gen-
erated by G

1
 and G

2
, respectively? [2016]

 (A) {am bn | m > 0 or n > 0} and {am bn | m > 0 and n >
0}

 (B) {am bn | m > 0and n > 0} and {am bn | m > 0 or n ≥
0}

 (C) {am bn | m ≥ 0 or n > 0} and {am bn | m > 0 and n >
0}

 (D) {am bn | m ≥ 0 and n > 0} and {am bn | m > 0 or n >
0}

 10. Consider the transition diagram of a PDA given below
with input alphabet ∑ = {a, b} and stack alphabet =
{X,Z}. Z is the initial stack symbol. Let L denote the
language accepted by the PDA.

 Which one of the following is TRUE? [2016]
 (A) L = {an bn| n ≥ 0} and is not accepted by any finite

automata.
 (B) L = {an | n ≥ 0) ∪ {anbn | n ≥ 0} and is not ac-

cepted by any deterministic PDA.
 (C) L is not accepted by any Turing machine that halts

on every input.
 (D) L = {an|n ≥ 0} ∪ {an bn|n ≥ 0} and is deterministic

context-free.

 11. Consider the following languages:

 L
1
 = {anbmcn+m : m, n ≥1}

 L
2
 = {anbnc2n : n ≥ 1}

 Which one of the following is TRUE? [2016]

 (A) Both L
1
 and L

2
 are context - free.

 (B) L
1
 is context - free while L

2
 is not context - free

 (C) L
2
 is context - free while L

1
 is not context - free.

 (D) Neither L
1
 nor L

2
 is context - free.

 12. Consider the following context-free grammar over the
alphabet Σ = {a, b, c} with S as the start symbol:

 S → abScT | abcT
 T → bT | b

 Which one of the following represents the language
generated by the above grammar? [2017]

 (A) {(ab)n(cb)n | n ≥ 1}

 (B) () 1 2

1 2{ | , , , , 1}n
n mm m

nab cb cb cb n m m m… … ≥
 (C) {(ab)n(cbm)n | m, n ≥ 1}
 (D) {(ab)n(cbn)m | m, n ≥ 1}

 13. If G is a grammar with productions

S → SaS | aSb | bSa | SS |∈
 Where S is the start variable, then which one of the

following strings is not generated by G? [2017]
 (A) abab (B) aaab
 (C) abbaa (D) babba

 14. Consider the context-free rammers over the alphabet
{a, b, c} given below. S and T are non-terminals.

G
1
 : S → aSb|T, T → cT|∈

G
2
 : S → bSa|T, T → cT|∈

 The language L(G
1
) ∩ L(G

2
) is [2017]

 (A) Finite
 (B) Not finite but regular
 (C) Context-Free but not regular
 (D) Recursive but not context-free.

 15. Consider the following languages over the alphabet Σ
= {a, b, c}.

5.36 | Unit 5  •  Theory of Computation

 Let L
1
 = {anbncm| m, n ≥ 0} and L

2
 = {ambncn| m, n ≥ 0}.

 Which of the following are context-free languages?
 [2017]

 I. L
1
∪ L

2

 II. L
1
 ∩ L

2

 (A) I only (B) II only
 (C) I and II (D) Neither I nor II

 16. Let L
1
 L

2
 be any two context-free languages and R be

any regular language. Then which of the following is/
are CORRECT? [2017]

 I. L
1
 ∪ L

2
 is context-free.

 II. L1 is context-free.
 III. L

1
 − R is context-free.

 IV. L
1
 ∩ L

2
 is context-free.

 (A) I, II and IV only (B) I and III only
 (C) II and IV only (D) I only

 17. Identify the language generated by the following
grammar, where S is the start variable. [2017]

S → XY
X → aX|a
Y → aYb|∈

 (A) {ambn| m ≥ n, n > 0} (B) {ambn| m ≥ n, n ≥ 0}
 (C) {ambn| m >n, n ≥ 0} (D) {ambn| m > n, n > 0}

 18. Consider the following languages.

 L
t
 = {ap | p is a prime number}

 L
2
 = {anbmc2m| n ≥ 0, m ≥ 0}

 L
3
 = {anbnc2n|n ≥ 0}

 L
4
 = {anbn | n ≥ 1}

 Winch of the following are CORRECT? [2017]
 I. L

1
 is context-free but not regular.

 II. L
2
is not context-free.

 III. L
3
is not context-free but recursive.

 IV. L
4
 is deterministic context-free.

 (A) I, II and IV only (B) II and III only
 (C) I and IV only (D) III and IV only

 19. Consider the following languages:
I. {ambncpdq | m + p = n + q, where m, n, p, q ≥ 0}
II. {ambncpdq | m = n and p = q, where m, n, p, q ≥ 0}
III. {ambncpdq | m = n = p and p ≠ q, where m, n, p,

q ≥ 0}
IV. {ambncpdq | mn = p + q, where m, n, p, q ≥ 0}

 Which of the languages above are context-free?
 [2018]

(A) I and IV only (B) I and II only
(C) II and III only (D) II and IV only

answer Keys

exerCises

Practice Problems 1
 1. D 2. C 3. D 4. B 5. D 6. A 7. C 8. B 9. D 10. C
 11. B 12. D 13. D 14. A 15. B

Practice Problems 2
 1. D 2. C 3. D 4. A 5. D 6. A 7. C 8. C 9. C 10. C
 11. C 12. B 13. B 14. B 15. C

Previous Years’ Questions
 1. C 2. C 3. D 4. D 5. C 6. C 7. B 8. B 9. D 10. D
 11. B 12. B 13. D 14. B 15. A 16. B 17. C 18. D 19. B

	Unit 5: Theory of Computation
	Chapter 2: Context Free Languages and Push Down Automata
	Context Free Grammar
	Context Free Language (CFL)
	Ambiguity in Context Free Grammars
	Minimization of Context Free Grammar
	Normal Forms
	Pumping Lemma for Context Free Languages
	Closure Properties of CFL’s
	Push Down Automata (PDA)
	Converting CFG to PDA
	Deterministic PDA (Deterministic CFL)
	Exercises
	Previous Years’ Questions
	Answer Keys

