
EXERCISE-01

CHECK YOUR GRASP

10.	The correct structure of	of trans–2–hexenal is -		
	(A) V=VAO		(B) <u>CHO</u> (D) <u>CHO</u>	
	(C) CHO		(D) ////OHO	
11.	The total number of b	enzene derivatives having	the molecular formula C ₇	H ₈ O is -
	(A) 3	(B) 4	(C) 5	(D) 6
12.	Which of the following	compounds does not exh	nibit tautomerism	
	(A) CH ₃ NO ₂		(B) CH ₃ CH ₂ NO ₂	
	(C) C ₆ H ₅ CH=CH–OH		(D) CH ₃ CH ₂ OH	
13.	The total number of b	enzene derivatives with the	e molecular formula $C_6 H_3$	₃ Cl ₃ is -
	(A) 2	(B) 3	(C) 4	(D) 5
14.	Which of the following	compounds is not chiral	?	
	(A) DCH ₂ CH ₂ CH ₂ Cl	(B) CH ₃ CHDCH ₂ Cl	(C) CH ₃ CHClCH ₂ D	(D) CH ₃ CH ₂ CHDCl
15.	The total number of st	ereoisomers of 2,3-dibror	nobutane is -	
	(A) 2	(B) 3	(C) 4	(D) 5
16.	In the structure :			
	$H \rightarrow OH \\ H \rightarrow Br \text{ the cont} \\ OH_{3} $ (A) 2R, 3R	igurations at the chiral ce (B) 2S, 3R	ntres are : (C) 2R, 3S	(D) 2S, 3S
17 .	Which of the following	compound contains a ps	eudo-asymmetric carbon a	atom
	(A) $CH_3CHCHCH_2$		(B) CH3CH-CH-CHC	H
	Br Br Br		Br OH Br	
	(C) CH ₂ CHCHCHCHCH		(D) CH3CHCHCHCHCH	3
10	ÓHBr Br	(Δ) (D) (C) (Δ)	Br OHC	
18.		structures (A), (B), (C) and		
	CH ₃		C_2H_5	
	(A) CI-Br		(B) (C) Br	
	$(A) C_2H_3$		(B) C_2H_3 (B) C_1H_3 (B) C_2H_3 (B) C_2H_3 (C)	
	(C) CH_{3} H_{2} H_{3} H_{3} H_{2} H_{3}		a	
	(C) CH ₃ Br		(D) C ₂ H ₂ - CH ₃ Br	
	C ₂ H ₅		Br	
		statements is not correct		
	(A) B and C are identi		(B) A and B are enant	iomers
	(C) A and C are enant	iomers	(D) B and D are enant	tiomers

٠E

19.			0		the projection formula (A) yields the I_5 and Cl) of (A) yields the projection
	$\begin{array}{c} CH_{3} \\ \hline \\ C_{2}H_{3} \end{array} \\ Br C_{2}H_{3} \end{array}$	$\xrightarrow{\text{Br}}$ 	CH ₃ H ₅ - Br		
	(A)	(B)	(C)		
	Which of the follo	wing statements	is not correct	about the structur	es (A), (B) and (C) -
	(A) B and C are id	dentical		(B) A and C are	e enantiomers
	(C) B and C are e	nantiomers		(D) A and B are	e enantiomers
20 .	How many meso	stereoisomers ai	e possible for	2, 3, 4-pentanetri	ol -
	(A) 1	(B) 2		(C) 3	(D) none of these
21.	The total number	of stereoisomer	s of the compo	ound	
	CH:CH=CH+C	ана⊨ана	L is -		
	ů l	H	0		
	(A) 2	(B) 3		(C) 4	(D) 8
22 .	The total number	of aldehydes an	d ketones with	the molecular for	mula C ₄ H ₈ O is -
	(A) 2	(B) 3		(C) 4	(D) 5
23.	In which of the fo	llowing properti	es do enantion	ners differ from ea	ch other
	(A) Solubility in ar	n achiral solvent		(B) Reactivity w	ith an achiral reagent
	(C) Melting point			(D) Optical rota	tion
24.	(+) - Mandelic acid mixture of 25% (-				e the observed specific rotation of a
	(A) + 118.5°	(B) –118	5.5°	(C) – 79°	(D) + 79°
25.	When $C_6^{}H_4^{}Cl_2^{}$ is a q types of $C_6^{}H_3^{}Cl_3^{}$			er will give m type	s of $C_6^{}H_3^{}Cl_3^{}$, and p-isomer will give
	(A) 1, 2, 3	(B) 2, 1		(C) 1, 3, 2	(D) 2, 3, 1

CHEC	CHECK YOUR GRASP									ANSWER KEY					EXERCISE -1					
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	В	А	С	D	В	D	В	А	D	В	С	D	В	А	В	В	В	D	С	D
Que.	21	22	23	24	25															
Ans.	С	В	В	D	В															
										03										

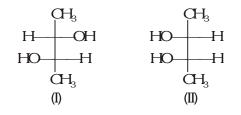
EXERCISE-02

SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THEN ONE CORRECT ANSWERS)

- 1. Tautomerism is shown by :-
 - (A) HCN

$$(C) CH_3 - CH_2 - N_0$$

In which of the following cases, cis-trans nomenclature can not be used : (A) Cl—CH=CH—Cl
 (B) CH₂—CH=CH—CHO


(C)
$$C_6H_5$$
—N=N— C_6H_5

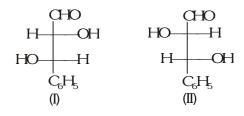
3. Among the following, which are tautomers :-

(A)
$$\begin{array}{c} \Theta \\ \Theta \\ \Theta \\ H_2 - C - O \\ H_3 \text{ and } O \\ \Theta \\ O \\ O \end{array}$$
 and $\begin{array}{c} O \\ \Theta \\ \Theta \\ \Theta \\ O \end{array}$

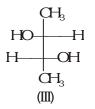
(C)
$$CH_3 - N_0$$
 and $CH_3 - CH = N - OH$

4. Consider the following compounds :

Choose the correct statements :

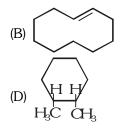

- (A) I and III are enantiomers
- (C) II and III are diastereomers
- 5. Which will show geometrical isomerism :-

(A) C_6H_5 -CH=NOH


(C) $C_6H_5 - N = N - C_6H_5$

6.

Which statement (s) is/are correct for :-



- (A) Both are in threo form
- (C) Both are diastereomers

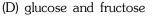
(B) I and II are diastereomers

(D) I, II and III are all optically active $% \mathcal{A}(\mathcal{A})$

(B) Both are enantiomers

(D) Both are in erythro form

·E

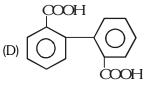

BRAIN TEASERS

 \mathbf{O}

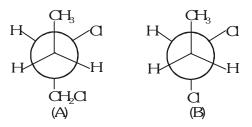
ဝူ

(D)
$$CH_3$$
— $CH=C(Cl)C_2H_5$

(B)
$$CH_3$$
— CH_2 — CH = NH and CH_3 — CH = CH — NH_2

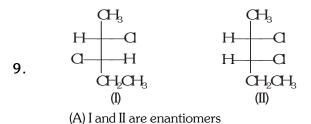


7. Which of the following compounds are chiral and resolvable :-


(A) $C_6H_5N(CH_3)$ (C_2H_5)

(B) $[C_6H_5 \overset{+}{N}(CH_3) (C_2H_5) (C_3H_7)]$ Cl⁻

8. Observe the following structures and pick up the correct option (s) mentioned below :-



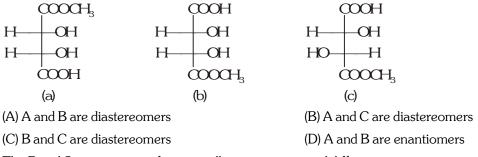
(A) The two are position isomers

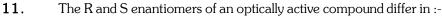
(B) None of the two shows optical isomerism

(C) Only A shows optical isomerism

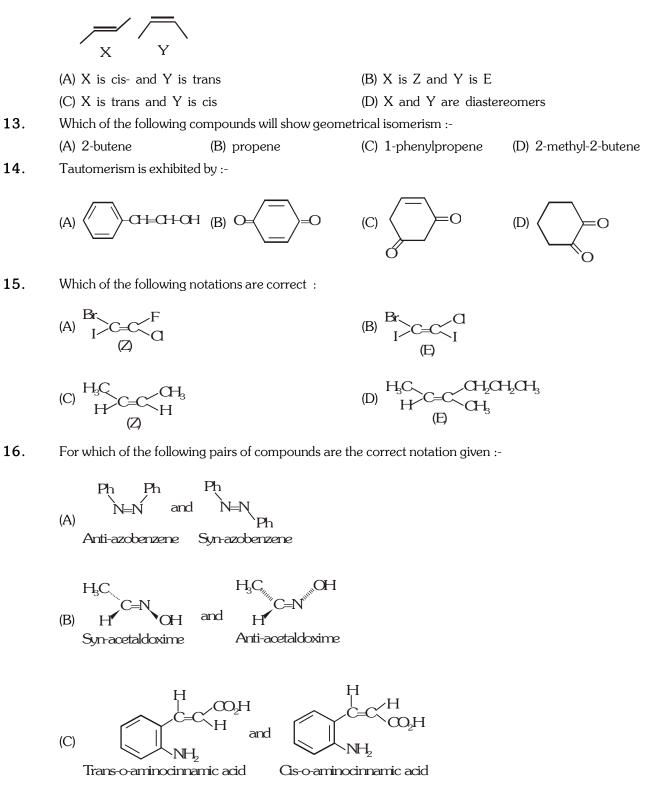
(D) The two are not related to each other regarding isomerism

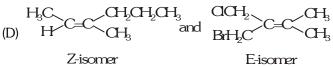
(B) I is 2S, 3S; while II is 2S, 3R


(C) I is 2R, 3R; While II is 2R, 3S


(D) I and II are diastereomers

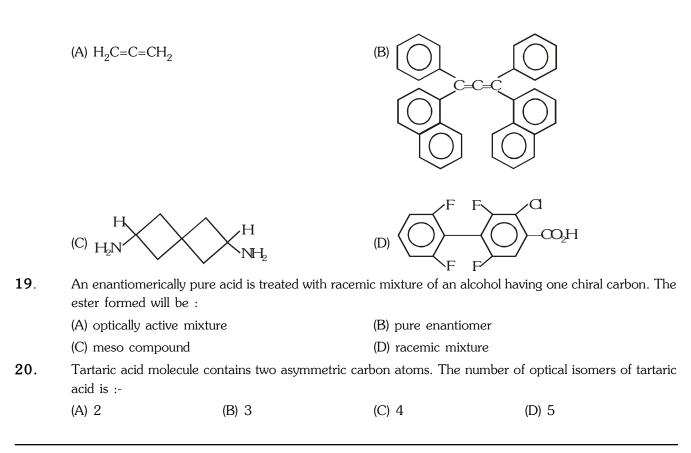
E


Which of the following statements are true regarding following structures :-



- (A) their reactivity with chiral reagents
- (B) their melting points
- (C) their optical rotation of plane polarized light
- (D) their solubility in achiral reagents

. Which of the following statements (s) is (are) incorrect :-



·E

17. Which of the following statements are correct :-

> CH_3 (A) $CH_3CH_2CH_2CH_2OH$ and $CH_3OH HCH_2OH$ represent chain isomerism (B) CH₃CH₂CH₂CH=CH₂ and $CH_3CH_2CH = CHCH_3$ are examples of position isomerism (C) $C_2H_5OCH_3$ and $CH_3CH_2CH_2OH$ represent functional-group isomerism (D) $CH_3CH_2NH_2$ and CH_3NHCH_3 are examples of metamerism Which of the following are optically active :-

18.

BRAII	N TEA	SERS				ANSWER KEY						EXERCISE -2				
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Ans.	A,B,C	B,C,D	B,C	A,B,C	A,B,C,D	A,B	B,C	A,C	B,D	B,C,D	A,C	A,B	A,C	A,C,D	A,C	
Que.	16	17	18	19	20											
Ans.	B,C,D	A,B,C,D	B,C	А	В											

Ε

EXERCISE-03

MISCELLANEOUS TYPE QUESTIONS

TRUE OR FALSE :

- 1. Stereo-isomers which are not mirror image of each other are known as diastereoisomers.
- 2. In every case, a pair of enantiomers have a mirror-image relationship.
- **3.** If a compound has an enantiomer it must be chiral.
- 4. If a compound has a diastereomer it must be chiral
- 5. Any molecule containing a stereocentre must be chiral.
- **6**. Any chiral compound with a single asymmetric carbon must have a positive optical rotation if the compound has the R configuration.

FILL IN THE BLANKS :

- 1. The possible number of dichloro derivatives of propane are
- 2. Ethyl benzene is isomer to xylenes.
- **3**. The compound CHCl = CHCl can show isomerism.
- 4. d- and ℓ lactic acid are known as
- 5. Maleic and fumaric acids are a pair of

MATCH THE COLUMN

1. Match the column I with column II.

\bigcap	Column-I (reaction)	\bigcap	Column-II (stereoisomers)
(A)	CH ₃ —CH—CH—CH—N—OH	(p)	2
(B)		(q)	4
(C)	CH ₃ —CH—CH—CH—CH—CH—CH—CH ₃	(r)	6
(D)	CH ₃ -CH=CH-CH=CH-CH=CH-Ph	(s)	8

2. Match the following compounds of column I with column II.

	Column-I (Molecule)	\bigcap	Column-II (Property)
(A)		(p)	Chiral compound
(B)	$\overset{H}{\overset{CH_3}{}}\overset{CH_3}{}$	(q)	Presence of stereocenter
(C)	Br-F I	(r)	Optically active compound
(D)		(s)	Compound containing plane
			of symmetry

Ε

	e column I with column II. Column-I (reaction)	γ^{-}	Column-II (stereoisomers)
(A)	$\bigvee_{a} & \rightarrow a$	(p)	Homologs
(B)	& COCH ₂ -CH ₃ & COCH ₃ & COCH ₃	(q)	Functional isomers
(C)	& OH & OH GH3	(r)	Metamer
(D)	CH3-CH2-CH2-CH2-CH3 &	(s)	Chain isomers
	CH3-CH2-CH2-CH2-CH3		

ASSERTION & REASON QUESTION :

These questions contains, Statement-I (assertion) and Statement-II (reason).

- (A) Statement-I is True, Statement-II is True ; Statement-II is a correct explanation for Statement-I
- (B) Statement-I is True, Statement-II is True ; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False.
- (D) Statement-I is False, Statement-II is True.
- 1. Statement-I : Staggered and eclipsed ethane can not be separated.

Because

3.

Statement-II : Energy barrier between staggered and eclipsed form of ethane is 12.6 kJ/mole.

2. Statement-I : All double bond containing compounds show geometrical isomerism.

Because

Statement-II : Alkenes have restricted rotation about the double bond.

3. Statement-I : Meso-tartaric acid is optically active.

Because

Statement-II : Optically active molecule is a molecule that cannot be superimposed on its mirror image.

4. Statement-I : Cyclohexanone exhibits keto-enol tautomerism.

Because

Statement-II : In cyclohexanone, one form contains the keto group (C=O) while other contains enolic group (-C=C-OH).

5. Statement-I : Staggered form is less stable than the eclipsed form.

Because

 $\label{eq:statement-II} Statement-II: The conformation in which the bond pairs of two central atoms are very far from one another is called staggered from.$

6. Statement-I : Trans-isomers are more stable than cis-isomer.

Because

Statement-II : The cis-isomer is the one in which two similar groups are on the same side of double bond.

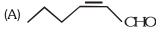
7. Statement-I : Propadiene is optically inactive.

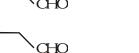
Because

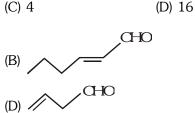
Statement-II : Propadiene has a plane of symmetry.

COMPREHENSION BASED QUESTIONS :

Comprehension # 1

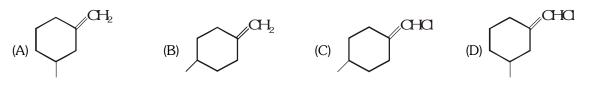

2.


Geometrical isomerism is a kind of stereoisomerism which is present in the compounds containing a double bond (C=C, C=N, N=N) and arise due to the restricted or frozen rotation about the double bond. The atoms or groups attached to the doubly bonded carbons must be different. In aldoximes, the isomer is named as syn if hydrogen and hydroxyl groups are on the same side of C=N bond and if these are on opposite sides, the isomer is named as anti. In ketoximes, the prefixes syn and anti indicate which group of ketoxime is syn or anti to hydroxyl group.


1. Which of the following does not show geometrical isomerism ?

(A) 1,2-Dichloropent-1-ene	(B) 1,3-Dichloropent-2-ene
(C) 1,1-Dichloropent-1-ene	(D) 1,4-Dichloropent-2-ene
On treating with NH ₂ OH, which can	form two products ?
(A) Acetaldehyde	(B) Acetone

- (C) Formaldehyde (D) Benzophenone
- **3**. Number of stereoisomers of the compound 2-chloro-4-methylhex-2-ene is/are (A) 1 (B) 2 (C) 4 (D)
- 4. The correct structure of trans-2-hexenal is -



·E

5. The geometrical isomerism is shown by :

Comprehension # 2

(C)

The optical isomers rotate the plane of plane-polarised light. A sp³-hybridised carbon atom attached to four different atoms or groups is called an asymmetrical centre or chiral centre. Chiral molecules do not possess any of the elements of symmetry. A chiral molecule cannot be superimposed on its mirror image. These stereoisomers are called enantiomers. Molecules having a plane of symmetry or centre of symmetry are superimposable on their mirror images and are achiral. The stereoisomers that are not mirror images of each other are called diastereomers. A mesoisomer has a plane of symmetry and is optically inactive due to internal compensation.

1. Which of the following has a meso isomer also ? (A) 2-Chlorobutane (B) 2-3, Dichlorobutane (C) 2, 3-Dichloropentane (D) 2-Hydroxypentanoic acid 2. Which of the following compounds is not chiral ? (A) DCH₂CH₂CH₂Cl (B) CH₃CH₂CHDCl (C) CH₃CHDCH₂Cl (D) CH₃CHClCH₂D 3. The total number of acylic isomers including the stereoisomers (geometrical and optical) possible with the molecular formula C_4H_7Cl is : (C) 10 (A) 12 (B) 11 (D) 9 4. Which among the following compounds will be dissymmetric but not asymmetric : COOH OH (B) $CH_3 - C - COOH$ (A) H-C-OH H-C-OH CH₂ COOH (C) H-C-Br H-C-Br

5. Two isomeric alkenes A and B have molecular formula C_5H_9Cl . On adding H_2 , A gives optically inactive compound while B gives chiral compound. The two isomers are :

(A) A is 3-Chlorpoent-1-ene and B is 1-chloropent-2-ene

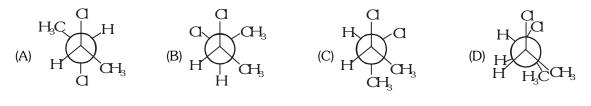
(B) A is 2-Chloro-3-methylbut-2-ene while B is 1-Chloro-3-methylbut-1-ene

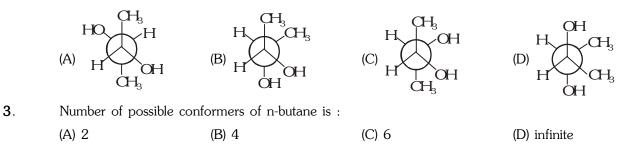
(C) A is 3-Chloropent-2-ene and B is 2-Chloropent-2-ene

(D) A is 4-Chloropent-2-ene and B is 4-Chloropent-1-ene

Comprehension # 3

E

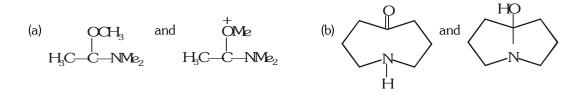

COOH


Different spatial arrangements of the atoms that result from rotation about a single bond are conformers. n-Butane has four conformers eclipsed, fully eclipsed, gauche and anti. The stability order of these conformers are as follows :

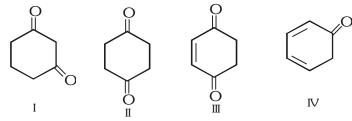
Anti > gauche > Partial eclipsed > Fully eclipsed

Although anti is more stable than gauche but in some cases gauche is more stable than anti.

 $1. \qquad \hbox{ Which one of the following is most stable conformer}:$



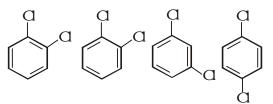
SCELLANEOUS I	YPE QUESTION	A	NSWER K	EY		EXERCISE -3
<u>True / False</u>	2					
1 . T	2. T	3. T	4. F	5. T	6. F	
Fill in the l	Blanks					
1 . four	2. chain	3 . ge	eometrical	4. ena	ntiomer	
5. geometrical						
Match the	<u>Column</u>					
1. (A) \rightarrow q ; B	\rightarrow p ; (C) \rightarrow r ; (D)	\rightarrow s 2. (A	$) \rightarrow p, q, r; (B)$	$\phi \rightarrow q, s ; (C)$	\rightarrow p, q, r ; (D) -	→q, s
3. (A) \rightarrow p ; (B	$p \rightarrow r ; (C) \rightarrow q ; (I)$	$D) \rightarrow r, s$				
Assertion -	Reason Questi	<u>ons</u>				
1 . A	2 . D	3 . D	4 . B	5 . D		
6. B	7 . A					
<u>Comprehen</u> :	sion Based Qu	<u>estions</u>				
Comprehensi	on #1 : 1. (C)	2. (A)	3. (C)	4. (B)	5. (D)	
	#0 1 (D)	2 (A)	3. (C)	4. (D)	5. (C)	
Comprehensi	on #2 : 1. (B)	D . (1 1)	()			


EXERCISE-04 [A]

SUBJECTIVE QUESTIONS :

- 1. How many isomers are there corresponding to the formula $C_4H_{10}O$?
- 2. If the bonds in dichloro benzene, $C_6H_4Cl_2$, were localized between specific carbon atoms, how may isomers of this compound would exist? How many isomers actually exists.
- 3. Which of the following compounds can exist as geometric isomers ? CH_2Cl_2 , CH_2Cl — CH_2Cl , CHBr = CHCl, CH_2Cl — CH_2Br .
- 4. How will you distinguish between Maleic acid and Fumaric acid ?
- 5. Why does cyclopentene not exhibit geometric isomerism though it has a double bond.
- 6. Why does 2-butene exhibit cis-trans isomerism but 2-yne does not ?
- 7. Which of the following pairs show tautomerism.

- **8.** Write structural isomer of C_6H_{14} . What is relation between them ?
- 9. Arrange the following in the order of their enolic content :


10. Which of the following does/do not exhibits tautomerism.

CONCEPTUAL SUBJECTIVE EXERCISE

Ε

- 1. There are 7—1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, diethyl ether, methyl propyl ether, and methylisopropyl ether.
- **2.** If the bonds were localized, there would be 4 isomers ; actually there are only 3 of the following, the first two are identical, because the bods are not localized.

3. Only CHBr = CHCl can exist as geometric isomers :

In CH_2CI — CH_2CI and CH_2CI — CH_2Br , the carbon atoms are connected by a single bond about which the groups can rotate relatively freely. Thus any conformation of the halogen atoms may be converted into any other simply by rotation about the single bond. In CH_2Cl_2 , the configuration of the molecule is tetrahedral and all interchanges of atoms yield exactly equivalent configurations.

Maleic acid forms an anhydride where as fumaric acid does not.

This is cis form. Two H atoms on the same side. To get trans, ring must be twisted.

Double bond becomes severely twisted-destabilized. Effective overlap of P orbitals is missing, so does not exist.

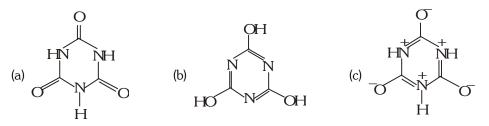
6. The P_z orbitals forming π -bonds and the empty P_z orbital of the carbon with +ve charge are parallel. So the electrons may be delocalized. The +ve charge is effectively spread out over two carbons; delocalized.

$$\begin{array}{c} H & & & & \\ H & & \\ H & & \\ H & & \\ \end{array} \xrightarrow{\pi \text{-orbital}} empty \text{ orbital}$$

 $CH_2=CH_\overset{+}{C}H_2\longleftrightarrow\overset{+}{C}H_2_CH=CH$

In n-propyl cation, + I effect of R increases the stability.

In allyl + M effect increases the stability. But + M effect in allyl cation is more effective. So allyl > propyl.


A group with + M effect stabilizes cation; destabilizes anion.

- 7. Lone pair $p\pi$ conjugation between fluorine and carbon will be more effective than between chlorine and carbon.
- $9. \qquad III > IV > I > II$

EXERCISE-04 [B]

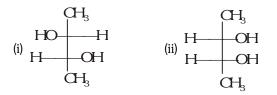
SUBJECTIVE QUESTIONS :

1. What is relation between (a), (b), (c) ?

2. Which side is favoured at equilibrium, provide quantitative explanation :

- **3.** (+) 2-butanol has specific rotation of + 13.9° when measured in pure form. A sample of 2-butanol was found to have an optical rotation of -3° . What is the stereomeric composition of this mixture ?
- **4.** N-methylethenamine as such does not show any stereoisomerism but one of its resonance form exhibit stereoisomerism. Explain.
- 5. Assign Cahn-ingold prelog priorites to the following sets of substituents :

(i)
$$-H$$
, $-Br$, $-CH_2CH_3$, $-CH_2CH_2OH$ (ii) $-COOH$, $-COOCH_3$, $-CH_2OH$, $-OH$
(iii) $-CN$, $-CH_2NH_2$, $-CH_2NHCH_3$, $-NH_2$ (iv) $-Br$, $-CH_2Br$, $-Cl$, $-CH_2Cl$


6. Identify whether the stereogenic centre is present or not :

(i) 2-Cyclo penten-1-ol (ii) 3-cyclo penten-1-ol (iii) 2-bromopentane (iii) 3-bromopentane

- 7. Discuss the optical activity of tertiary amines of the type $R_1R_2R_3N$:
- 8. Draw the enantiomer of the following structure :

- 9. 2,4-Hexadiene has three geometrical isomers. Draw their structures.
- 10. Assign R and S configuration to the chiral carbons in the following :

E١

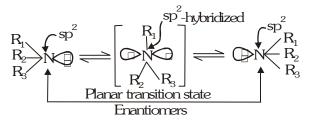
BRAIN STORMING SUBJECTIVE EXERCISE

E ANSWER KEY

- 1. a & b are tautomers and a & c are resonating structures.
- **3.** Let x is the % of (+) 2-butanol.
 - 13.9 x 13.9 (100 x) = -300.
 - $x = 39.2, \% \text{ of } d \text{ form} = 39.2, \% \text{ of } \ell \text{ form} = 60.8.$

4.
$$\begin{array}{c}
\overbrace{H_2}^{\circ}=CH & \overbrace{NH-CH_3}^{\circ} \\
\overbrace{H_2}^{\oplus} & \bigoplus_{1}^{\oplus} \\
\overbrace{H_2}^{\oplus}-CH &= NH-CH_3 \text{ (this shows Geometrical isomerism)} \\
\end{array}$$

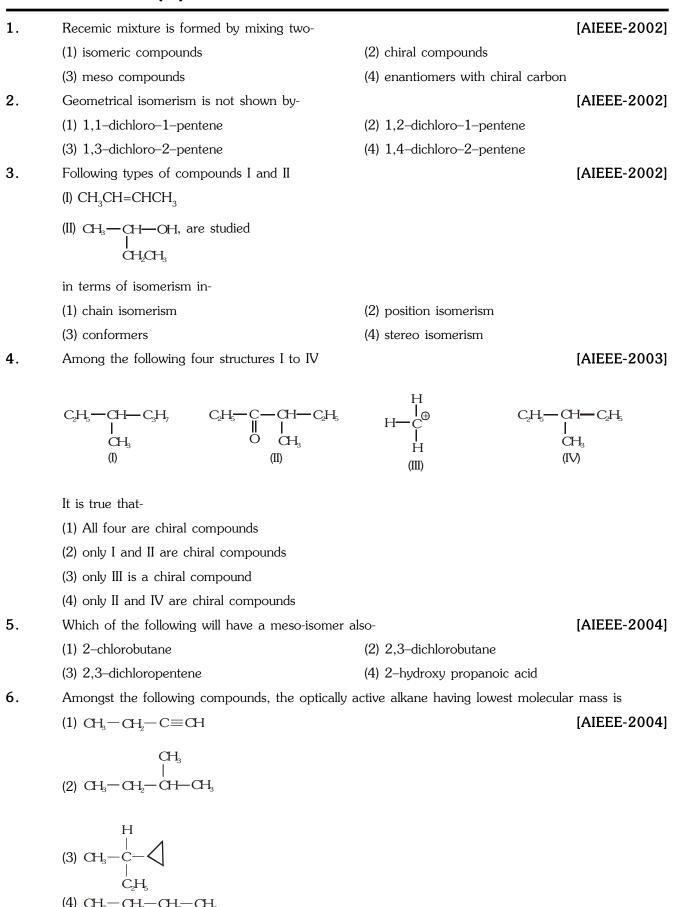
(iii) $CH_3 - C - CH_2 - CH_2 - CH_3$ bromine bearing carbon is stereogenic centre.


(vi) $CH_3 - CH_2 - CH_2 - CH_3$ It has no stereogenic centre.

 Tertiary amines have pyramideal geometry with sp³-hybridization at nitrogen. It should be a chiral molecule (assuming lone pair to be a substituent). Thus, tertiary amines exist as racemic mixture but they cannot be resolved.

Ε

This is due to the reason that the energy difference between the isomer is very small (25 kJ mol⁻¹). Hence, rapid nitrogen or amine inversion takes palce.



Tertiary amine N-oxide has four group hence nitrogen inversion is not possible, thus tertiary amine -N-oxide can be resolved.

10. (i) 2R, 3R (ii) 2S, 3R

EXERCISE-05(A)

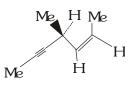
PREVIOUS YEARS QUESTIONS

E٠

		.,	
	(1) conformers(3) anomers	(2) epimers (4) enantiomers	
4.	$\alpha - D - (+) - glu \cos e$ and $\beta - D - (+) - glu \cos e$	ose are	[AIEEE - 2008]
	(1) S, S (2) R, R	(3) R, S	(4) S, R
3.	The absolute configuration of HO_2C HO H H	is OH	[AIEEE - 2008
	(3) $\begin{array}{c} H_2N \\ H \\ H_{Ph} \end{array} \xrightarrow{NH_2} \\ H_{Ph} \end{array}$	(4) H ₂ N H	
	СНО (1) НО————————————————————————————————————	(2) XH	[AIEEE - 2007]
2.	Which of the following molecules is expected	ed to rotated the plane of p	lane-polarised light ?
	(3) Chair	(4) Boat	
1.	Which one of the following conformations (1) Twist boat	of cyclohexane is chiral ? (2) Rigid	[AIEEE - 2007]
	(4) Eclipse, Gauche, Anti		••••
	(3) Anti, Gauche, Eclipse		
	(2) Eclipse, Anti, Gauche		
	2-fluoroethanol is (1) Gauche, Eclipse, Anti	Ň	[AIEEE-2006
0.	Increasing order of stability among the th		i.e. Eclipse, Anti, Gauche) o
	(1) structural (3) optical	(2) geometric (4) diastereo	
•	Which types of isomerism is shown by 2,3- (1) structural	-aicnioro butane- (2) geometric	[AIEEE-2005
	(4) n-hexane	diablana butana	
	(3) 2,3–dimethyl butane		
	(2) 2,2-dimethyl butane		
	(1) 2-methyl pentane		[AIEEE-2005
	Of the five isomeric hexanes, the isomer w	hich can give two monochlo	rinated compounds is-
	(4) 3-chloro-2-methyl pentane		
	(3) 1-chloro-2-methyl pentane		
	(2) 2-chloropentane		
	Which of following compounds is not chiral (1) 1-chloropentane		

15.	The alkene that exh	nibits geometrical isomer	rism is :-	[AIEEE - 2009]
	(1) 2-butene		(2) 2-methyl-2-b	utene
	(3) Propene		(4) 2–methyl prop	oene
16.	The number of ster	eoisomers possible for a	a compound of the molec	ular formula
	CH_3 - $CH = CH$ - CH	H(OH)–Me is :-		[AIEEE - 2009]
	(1) 4	(2) 6	(3) 3	(4) 2
17.	Out of the following	g, the alkene that exhibi	ts optical isomerism is :-	[AIEEE-2010]
	(1) 2-methyl-2-pente	ene	(2) 3-methyl-2-pe	ntene
	(3) 4-methyl-1-pente	ene	(4) 3-methyl-1-pe	ntene
18.	Identify the compou	and that exhibits tautom	erism :-	[AIEEE-2011]
	(1) 2-Pentanone		(2) Phenol	
	(3) 2-Butene		(4) Lactic acid	
19.	How many chiral co	ompounds are possible o	on monochlorination of 2	-methyl butane ? [AIEEE-2012]
	(1) 6	(2) 8	(3) 2	(4) 4
20.	Which branched cha substituted alkyl hali	-	rbon with molecular mass '	72 u gives only one isomer of mono [AIEEE-2012]
	(1) Neohexane		(2) Tertiary butyl	chloride
	(3) Neopentane		(4) Isohexane	
21.	How many cyclic st	ructures are possible for	C ₄ H ₆ :-	[AIEEE-2012(Online)]
	(1) 3	(2) 5	(3) 4	(4) 6
22.	Maleic acid and furr	naric acids are :-		[AIEEE-2012(Online)]
	(1) Tautomers		(2) Chain isomers	5
	(3) Geometrical ison	ners	(4) Functional iso	mers

PRE	νιοι	JS Y	EAR	QUE	STIC	DNS	WE	R KE	Y		EXERCISE-5(A)				
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans	4	1	4	2	2	3	1	3	3	2	1	1	2	3	1
Que.	16	17	18	19	20	21	22								
Ans	1	4	1	4	3	3	3								

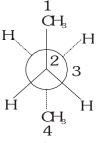

Е-

EXERCISE-05(B)

PREVIOUS YEARS QUESTIONS

MCQ's	WITH ONE CORRECT ANSWER					
1.	The enolic form of acetone contains :		[IIT-90]			
	(A) 9σ bonds, 1π bond and 2 lone pairs	(B) 8σ bonds, 2π bonds	and 2 lone pairs			
	(C) 10σ bonds, 1π bonds and 1 lone pair	(D) 9σ bonds, 2π bond	and 1 lone pair			
2.	An organic molecule necessarity shows optical	activitiy if it :	[IIT-93]			
	(A) Contains asymmetric carbon atoms	(B) is non polar				
	(C) is non superimposable on its mirror image	(D) is superimposable or	n its mirror image			
3.	The compound which is not isomeric with diet	hyl ether is :	[IIT-93]			
	(A) butan–1–ol	(B) butanone				
	(C) 2-methyl propan-2-ol	(D) n–propyl methyl eth	er			
4.	Ordinary light can be converted into plane pol	arized light with the help of	a: [IIT-93]			
	(A) Nickel prism (B) Nicol prism	(C) Diffraction grating	(D) Quartz cell			
5.	The structure shows :		[IIT-95]			
	H _J C H					
	H _s C C C					
	(A) Geometrical isomerism	(B) Optical isomerism				
	(C) Geometrical & optical isomerism	(D) tautomerism				
6.	How many optically active stereoisomers are p	oossible for butane -2,3-diol	: [IIT-97]			
	(A) 1 (B) 2	(C) 3	(D) 4			
7.	Isomers which can be interconverted through r	rotation around of single bo				
			[IIT-97]			
	(A) Conformers (B) Diastereomers	(C) Enantiomers	(D) Positional isomers			
8.	The number of possible enantiomeric pairs that can be produced during monochlorination of 2–methyl butane is : [IIT-97]					
	(A) 2 (B) 3	(C) 4	(D) 1			
9.	Tautomerism is not exhibited by :		[IIT-98]			
		(C) 0	(D) O			
10.	Rotation of polarised light can be measured by	1:	[IIT-98]			
	(A) Monometer (B) Galvanometer	(C) Polarimeter	(D) Viscometer			
11.	The optically active tartaric acid is named as D)–(+) tartaric acid because it	has a positive : [IIT-99]			
	(A) optical rotation and is derived from D–gluc					
	(A) optical rotation and is derived from D-glucose (B) pH in an organic solvent					
	(C) optical rotation and is derived from D-(+)- glyceraldehyde					
	(D) optical rotation only when substituted by deuterium					
E						

12.	The enol form of acetone, after treatment with D_2O gives			[IIT-99]	
	QD		O		
	(A) CH ₃ -C=CH ₂		(B) CD ₃ −C−CD ₃		
	OH		OH		
	(C) CH ₂ -C=CH ₂ I	0	(D) $CD_2 = C - CD_3$		
13.	Which of the following compound will exhibits geometrical isomerism :				[IIT-2000]
	(A) 1-phenyl-2-b	outene	(B) 3-phenyl-1-b	utene	
	(C) 2-phenyl-1-b	outene	(D) 1, 1-diphenyl-	-1-propene	
14.	The number of isomers for the compound with molecular formula $C_2BrCIFI$ is :			₂ BrCIFI is :	[IIT-2000]
	(A) 3	(B) 4	(C) 5	(D) 6	
15.	Which of the following exhibits stereoisomerism-				[IIT-2000]
	(A) 2-Methylbuter	ne-1	(B) 3–Methylbutyn	e-1	
	(C) 3–Methylbuta	noic acid	(D) 2–Methylbutar	ioic acid	
16.	Hydrogen of the following compound in the presence of poisoned palladium catalyst gives : [IIT-2002]				



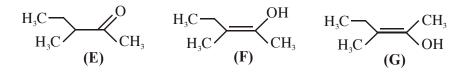
(A) optically active compound (B) an optically inactive compound

- (C) a racemic mixture (D) a diastereomeric mixture
- **17.** Which of the following has the lowest dipole moment :

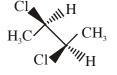
[IIT-2002]

18. If C_2 in below compound is rotated by 120° angle in anticlockwise direction along C_2 - C_3 , which of the following form will be produced : [IIT-2004]

(A) Partial eclipsed (B) Perfectly eclipsed


Е

(C) Perfectly staggered (D) Gauche conformation


19.
$$CH_3 \longrightarrow N$$
 (no. of isomers) Fractional distillation (F), (N) and (F) are :
[IIT-2006]

(A) 6, 4 (B) 4, 4 (C) 6, 6 (D) 3, 3

20. [IIT-2007] The number of structural isomers of C_6H_{14} is : (A) 3 (B) 4 (C) 5 (D) 6 21. The number of stereoisomers obtained by bromination of trans-2-butene is : [IIT-2007] (B) 2 (C) 3 (D) 4 (A) 1 22. Statement-I: Molecules that are not superimposable on their mirror images are chiral Because Statement-II : All chiral molecules have chiral centres. [IIT-2007] (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1 (B) Statement-1 is True, Statement-2 is True ; Statement-2 is NOT a correct explanation for Statement-1 (C) Statement-1 is True, Statement-2 is False. (D) Statement-1 is False, Statement-2 is True. 23. The correct statement(s) concerning the structures E, F and G is (are) [IIT-2008]

- (A) E, F and G are resonance structures
- (B) E, F and E, G are tautomers
- (C) ${\boldsymbol{F}}$ and ${\boldsymbol{G}}$ are geometrical isomers
- (D) \mathbf{F} and \mathbf{G} are diastereomers
- 24. The correct statement(s) about the compound given below is (are) :- [IIT-2008]

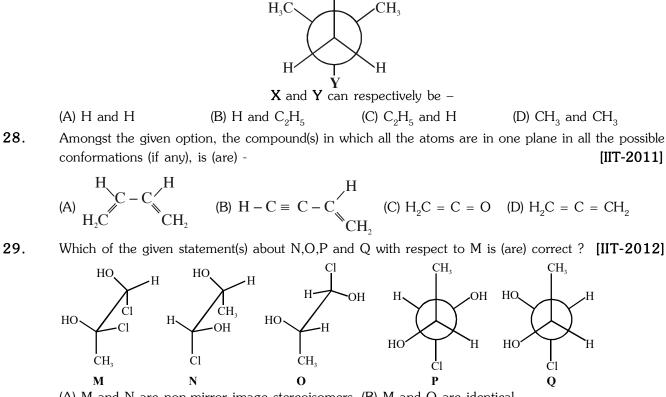
- (A) The compound is optically active
- (B) The compound possesses centre of symmetry
- (C) The compound possesses plane of symmetry
- (D) The compound possesses axis of symmetry

25.

- The correct statement(s) about the compound $H_3C(HO)HC CH = CH CH(OH)CH_3$ (X) is (are) :
 - (A) The total number of stereoisomers possible for X is 6
 - (B) The total number of diastereomers possible for X is 3
 - (C) If the stereochemistry about the double bond in X is trans, the number of enantiomers possible for X is 4

(D) 1000

[IIT-2009]

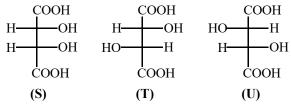

۰E

(D) If the stereochemistry about the double bond in X is cis, the number of enantiomers possible for X is 2

- 26. The bond energy (in kcal mol⁻¹) of a C–C single bond is approximately : [IIT-2010]
 - (A) 1 (B) 10
 - (C) 100

27. In the Newman projection for 2,2–dimethylbutane

[IIT-2010]



(A) M and N are non-mirror image stereoisomers (B) M and O are identical

(C) M and P are enantiomers (D) M and Q are identical

P & Q are isomers of dicarboxylic acid $C_4H_4O_4$. Both decolorize Br_2/H_2O , On heating P forms the cyclic anhydride.

Upon treatment with dilute alkaline KMnO₄, P as well as Q could produce one or more than one from S, T and U. [JEE ADVANCED-2013]

30.

Compounds formed from P and Q are respectively

(A) Optically active S and optically active pair (T, U) $% \left({T_{\rm{A}}} \right) = 0$

(B) Optically inactive S and optically inactive pair (T, U) $% \left({T_{\rm{A}}} \right) = 0$

(C) Optically active pair (T, U) and optically active S

(D) Optically inactive pair (T, U) and optically inactive S

PREVIOUS YEARS QUESTIONS ANSWER KEY EXERCISE -5(B)						
1. (A) 2. (C)	3. (B)	4. (B)	5 . (B)	6. (B)	7. (A)	8. (A)
9. (B) 10. (C)	11. (C)	12. (A)	13 .(A)	14. (D)	15. (D)	16. (B)
17. (B) 18. (D)	19. (B)	20. (C)	21 . (A)	22. (C)		23. (B, C, D)
24. (A, D) 25. (A, D)	26. (C)	27. (B, D)	28. (B, C)	29. (A, B,	C)	30. (B)

E