Dispersion and Spectra

Exercise Solutions

Solution 1:

Refractive index of flint glass = μ_f = 1.620 Refracting angle of flint prism = A_f = 6.0° Refractive index of crown glass = μ_c =1.518

Now, For zero net deviation of mean ray: $(\mu_c - 1)A_c = (\mu_f - 1)A_f$

=> $A_c = [(\mu_f -1)/(\mu_c - 1)]A_f$

= [1.620-1]/[1.518-1] x 6°

= 7.2 °

Solution 2:

(a) Dispersive power = $\omega = [\mu_v - \mu_r]/[\mu_v - 1]$ Where μ_r = Refractive index of red light = 1.56 μ_v = Refractive index of yellow light = 1.60 and μ_v = Refractive index of violet light = 1.68

 $=> \omega = 0.2$

(b) Angular dispersion = $\delta = [\mu_v - \mu_r]A$ Here, Refracting angle of prism = A = 6.0°

 $=> \delta = (1.68 - 1.56)6^{\circ} = 7.2^{\circ}$

Solution 3:

The focal length of a lens is given by

$$1/f = (\mu - 1)[1/R_1 - R_2]$$
$$(\mu - 1) = \frac{1}{f} \frac{1}{(\frac{1}{R_1} - \frac{1}{R_2})}$$
Let k = 1/[1/R_1 - 1/R_2]

Then, $\mu - 1 = k/f$

So, $\mu_r - 1 = k/100 \dots (1)$ $\mu_v - 1 = k/98 \dots (2)$ and $\mu_v - 1 = k/96 \dots (3)$

Where, μ_r = Refractive index for the red color μ_v = Refractive index for the violet color μ_y = Refractive index for the yellow color

Now, Dispersive power = $\omega = [\mu_v - \mu_r]/[\mu_v - 1]$

```
= [(\mu_v - \mu_r) - (\mu_r - 1)]/[\mu_y - 1]
```

= [k/96 - k/100]/[k/98]

=> ω = 0.0408

Solution 4:

 $\mu_v - \mu_r = 0.014$ [given]

 μ_y = [Real depth]/[Apparent depth] = 2/1.30 = 1.515

```
Dispersive power = \omega = [\mu_v - \mu_r]/[\mu_v - 1]
```

= 0.014/[1.515 -1]

= 0.027

Solution 5:

Dispersive power = $\omega = [\mu_v - \mu_r]/[\mu_y - 1]$ Here, $\mu_v = 1.65$, $\mu_r = 1.61$, $\omega = 0.07$ and $\delta_y = 4^\circ$ => 0.07 = $[1.65 - 1.61]/[\mu_v - 1]$ => $\mu_v - 1 = 0.04/0.07 = 4/7$ Again, $\delta = (\mu - 1)A$

$$=> A = \delta_y / [\mu_y - 1] = 4 / (4/7) = 7^\circ$$

Solution 6:

Minimum Deviations by Red = δ_r = 38.4° Minimum Deviations by Yellow = δ_y = 38.7° Minimum Deviations by Violet = δ_v = 39.2°

Dispersive power = $\omega = [\mu_v - \mu_r]/[\mu_y - 1]$

We know, $\delta = (\mu - 1)A$

 $\omega = [\mu_v - \mu_r]/[\mu_v - 1] = [(\mu_v - 1) - (\mu_r - 1)]/[\mu_v - 1]$

=
$$[(\delta_v/A) - (\delta_r/A)]/[(\delta_v/A)]$$

 $= [\delta_v \! - \! \delta_r]/\delta_v$

= [39.2-38.4]/38.7

= 0.0204

Solution 7: Two prisms of identical geometrical shape are combined. Let A = Angle of the prisms.

 $\delta = (\mu_{v1} - 1)A - (\mu_{v2} - 1)A$

Where, Refractive index of violet light through first prism = μ_{v1} = 1.52 Refractive index of violet light from second prism = μ_{v2} = 1.62 Deviation of violet light through prism = $\delta = 1^0$

Or, $\delta = (\mu_{v1} - \mu_{v2})A$ =>A = $\delta/(\mu_{v1} - \mu_{v2})$ On substituting the values, we get A = 10°

Solution 8:

Total deviation for yellow ray produced by the prism combination:

 $\delta_v - \delta_r = \delta_{cy} - \delta_{fy} + \delta_{cy} = 2\delta_{cy} - \delta_{fy} = 2(\mu_{cy} - 1)A - (\mu_{fy} - 1)A'$

Similarly, angular dispersion produced by the combination: $\delta_v - \delta_r = 2(\mu_{vc} - 1)A - (\mu_{vf} - 1)A'$

(a) for net angular dispersion to be zero, $\delta v - \delta r = 0$

$$=>2(\mu_{vc} - 1) A - (\mu_{vf} - 1) A' = 0$$

=>2(μ_{vc} - 1) A = (μ_{vf} - 1) A'

 $=>A'/A = [2(\mu_{vc} - 1)]/[(\mu_{vf} - 1)]$

(b) For net deviation in the yellow ray to be zero, $\delta y=0$ 2($\mu_{cy} - 1$) A - ($\mu_{fy} - 1$) A'= 0 =>A'/A = [2($\mu_{cy} - 1$)]/[$\mu_{fy} - 1$]

Solution 9:

A thin prism of crown glass ($\mu_r = 1.515$, $\mu_v = 1.525$) and a thin prism of flint glass (($\mu_r = 1.612$, $\mu_v = 1.632$) are placed in contact with each other.

Since, they are similarly directed, the total deviation produced

$$\begin{split} &\delta = \delta_c + \delta_f = (\mu_c - 1)A + (\mu_f - 1)A \\ &= (\mu_c + \mu_f - 2)A \\ &\text{So, angular dispersion of the combination:} \\ &\delta_v - \delta_r = (\mu_{cv} + \mu_{fv} - 2)A - (\mu_{cr} + \mu_{fr})A \end{split}$$

= (1.525 + 1.632 - 1.515 - 1.612)5 = 0.15°

= $(\mu_{cv} + \mu_{fv} - \mu_{cr} - \mu_{fr})A$

Solution 10:

Here, For first prism: A₁ = 60, ω_1 = 0.07, μ_1 = 1.50

For Second Prism $A_2 = ?$, $\omega_2 = 0.08$ and $\mu_2 = 1.60$

The combination produces no deviation in the mean ray.

(a) $\delta = (\mu_2 - 1)A_2 - (\mu_1 - 1)A_1 = 0$

 $=>(1.6-1)A_2 - (1.5-1)6 = 0$ $=> A_2 = 5^{\circ}$

(b) When a beam of white light passes through it, Net angular dispersion = $(\mu_2 - 1)\omega_2A_2 - (\mu_1 - 1)\omega_1A_1$

= (1.60 - 1)5° - (1.60 - 1)5°

= 0.03°

(c) If the prisms are similarly directed.

$$\begin{split} \delta &= (\mu_2 - 1)A_2 - (\mu_1 - 1)A_1 = 0 \\ &= (1.60 - 1)5^\circ - (1.50 - 1)6^\circ \\ &=> \delta = 6^\circ \\ \end{split}$$
(d) Similarly, if the prisms are similarly directed, Net angular dispersion : $\mu_v - \mu_r = (\mu_2 - 1)\omega_2A_2 - (\mu_1 - 1)\omega_1A_1$

 $= (1.6 - 1) \times 0.08 \times 5 - (1.50 - 1) \times 0.07 \times 6$

```
= 0.45°
```

Solution 11:

Refractive index of a material M1 changes = $(\mu_{v1} - \mu_{r1}) = 0.014$ Refractive index of a material M2 changes = $(\mu_{v2} - \mu_{r2}) = 0.024$ Prism angle of a material M₁ = A₁ = 5.3⁰ Prism angle of a material M₂ = A₂ = 3.7⁰

(a) When the prisms are oppositely directed,

Angular dispersion = δ = ($\mu_{v2} - \mu_{r2}$) $A_2 - (\mu_{v1} - \mu_{r1})A_1$

 $> \delta = (0.024)x3.7^{\circ} - (0.024)x5.3^{\circ} = 0.0146^{\circ}$

(b) When they are similarly directed, Angular dispersion = $\delta = (\mu_{v2} - \mu_{r2})A_2 + (\mu_{v1} - \mu_{r1})A_1$

 $=> \delta = (0.024) \times 3.7^{\circ} + (0.024) \times 5.3^{\circ} = 0.0163^{\circ}$