Application of Integrals

Area under Simple Curves

• The area of the region bounded by the curve y = f(x), which is continuous and finite in [a, b] and lies above the x-axis and between the lines x = a and x = b (b > a), is given by $A = \int_a^b y \, dx = \int_a^b f(x) \, dx$.

• Area cannot be negative. Hence, the absolute value of the area, $|\int_a^b f(x)dx|$, is taken even if the curve y = f(x) lies below the x-axis (as shown below).

• Let g(y) be continuous and finite in [c, d]. The area of the region bounded by the curve x = g(y) when g(y) lies to the right of the y-axis and between the lines y = c and y = d (d > c) is given by $A = \int_{-\infty}^{d} x \, dy = \int_{-\infty}^{d} g(y) \, dy$

Solved Examples

Example 1

Find the area enclosed by the circle $x^2 + y^2 = 4$.

Solution:

The area enclosed by the given circle is given by

4 ×× Area of the region OPQ0

Area of circle
$$=4\int_0^2 y\,dx$$

=
$$4\int_0^2 \sqrt{4-x^2}$$
 (y lies in the first quadrant $\Rightarrow y = +\sqrt{4-x^2}$)

$$= 4 \left[\frac{x}{2} \sqrt{4 - x^2} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_0^2$$

$$4[0 + 2\sin^{-1} 1 - 0 - 2\sin^{-1} 0]$$

$$= 4 \left[2 \times \frac{\pi}{2} \right]$$
$$= 4\pi$$

Thus, the required area is 4π .

Example 2

Find the area covered by the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$.

Solution:

The equation of the given ellipse is $\frac{x^2}{25} + \frac{y^2}{16} = 1$.

$$\Rightarrow \frac{x^2}{25} = 1 - \frac{y^2}{16} = \frac{1}{16} (16 - y^2)$$
$$\Rightarrow x = \pm \frac{5}{4} \sqrt{16 - y^2}$$

The area of the given ellipse is given by

4 ×× Area of the region OABO

Area of ellipse
$$= 4 \int_0^4 x \, dy$$

$$= 4 \int_0^4 \frac{5}{4} \sqrt{16 - y^2} \, dy$$
(x lies in the first quadrant. Hence, x is positive)
$$= 5 \int_0^4 \sqrt{16 - y^2} \, dy$$

$$= 5 \left[\frac{y}{2} \sqrt{16 - y^2} + \frac{16}{2} \sin^{-1} \frac{y}{4} \right]_0^4$$

$$= 5 \left[\frac{4}{2} \sqrt{16 - 16} + \frac{16}{2} \sin^{-1} 1 - 0 - \frac{16}{2} \sin^{-1} 0 \right]$$

Thus, the required area is 20π .

 $=5\times8\times\frac{\pi}{2}$

 $=20\pi$

Area Bounded by a Curve and a Line

• If a line y = mx + n intersects a curve y = f(x) at a and b, then the area of this curve under the line y = mx + n is given by $A = \int_a^b y dx = \int_a^b f(x) dx$

• If a line y = mx + n intersects a curve x = g(y) at c and d, then the area of this curve under the line y = mx + n is given by $A = \int_{c}^{d} x dy = \int_{c}^{d} g(y) dy$.

Solved Examples

Example 1

Find the area bounded by the parabola $y^2 = 16x$ and its latus rectum.

Solution:

The given equation of the parabola is $y^2 = 16x$. It is symmetrical about the *x*-axis.

The focus of the given parabola is F(4, 0) and its latus rectum is the line parallel to the *y*-axis at a distance of 4 units from it.

The required area is given by the area OABO. Area OABO = $2 \times (Area OAFO)$

$$= 2 \int_0^4 y dx$$

$$= 2 \int_0^4 4 \sqrt{x} dx$$

$$= 2.4 \cdot \frac{2}{3} \left[x^{\frac{3}{2}} \right]_0^4$$

$$= 8 \times \frac{2}{3} \left[4^{\frac{3}{2}} - 0 \right]$$

$$= \frac{16}{3} \left[(4)^{\frac{3}{2}} \right]$$

$$= \frac{16 \times 8}{3}$$

$$= \frac{128}{3}$$

Example 2

Find the area of the region bounded by $x^2 + y^2 \le 1$ and $x + y \ge 1$.

Solution:

The area enclosed by the curve $x^2 + y^2 \le 1$ is the interior of the circle $x^2 + y^2 = 1$.

Also, the area of the region $x + y \ge 1$ is the region lying above the line x + y = 1.

The point of intersection of the circle $x^2 + y^2 = 1$ and the line x + y = 1 is (0, 1) and (1, 0).

The required area is given by area (ACBA).

$$= \int_0^1 \sqrt{1 - x^2} dx - \int_0^1 (1 - x) dx$$

$$= \left[\frac{1}{2} \sin^{-1} x + \frac{x}{2} \sqrt{1 - x^2} \right]_0^1 - \left[x - \frac{x^2}{2} \right]_0^1$$

$$= \frac{1}{2} \sin^{-1} 1 - 1 + \frac{1}{2}$$

$$= \left(\frac{\pi}{4} - \frac{1}{2} \right)$$

Area between Two Curves

• The area of the region enclosed between two curves y = f(x) and y = g(x) and the lines x = a, x = b is given by $A = \int_a^b \Big[f(x) - g(x) \Big] dx$, where $f(x) \ge g(x)$ in [a, b].

• If $f(x) \ge g(x)$ in [a, c] and $f(x) \le g(x)$ in [c, b], a < c < b, then the area enclosed between the curves f(x) and g(x) is given by $A = \int_a \Big[f(x) - g(x) \Big] dx + \int_a^b \Big[g(x) - f(x) \Big] dx$

Solved Examples

Example 1

Find the area of the region included between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$, where a > 0.

Solution:

The equations of the two parabolas are

$$y^2 = 4ax \dots (1)$$

$$x^2 = 4ay \dots (2)$$

From (1), we obtain
$$x = \frac{y^2}{4a}$$

Substituting the value of x in (2), we obtain

$$\frac{y^4}{16a^2} = 4ay$$

$$\Rightarrow y^4 - 64a^3y = 0$$

$$\Rightarrow y \left(y^3 - 64a^3 \right) = 0$$

$$\Rightarrow$$
 y = 0 or y^3 = $64a^3$

$$\therefore y = 0 \text{ or } y = 4a.$$

From (1), we obtain $y = 0 \Rightarrow x = 0$ and $y = 4a \Rightarrow x = 4a$

Thus, the points of intersection of two parabolas are (0, 0) and (4a, 4a)

Now, draw QT perpendicular to XX'.

∴ Required area = Area OPQRO

Area OPQRO = Area (OPQTO) - Area (ORQTO)

$$= \int_0^{4a} 2\sqrt{ax} dx - \int_0^{4a} \frac{x^2}{4a} dx$$

$$= 2\sqrt{a} \times \frac{2}{3} \left[x^{\frac{3}{2}} \right]_0^{4a} - \frac{1}{4a} \left[\frac{x^3}{3} \right]_0^{4a}$$

$$= \frac{4}{3} \sqrt{a} (4a)^{\frac{3}{2}} - \frac{1}{12a} (4a)^3$$

$$= \frac{32}{3} a^2 - \frac{16}{3} a^2$$

$$= \frac{16}{3} a^2$$

Thus, the required area is $\frac{16}{3}a^2$ square units.

Example 2

Find the area of the region bounded by $x^2 + y^2 \le 4x$, $y^2 \ge 2x$, $x \ge 0$, $y \ge 0$.

Solution:

We have to find the area of the region lying in the first quadrant as $x \ge 0$, $y \ge 0$.

The equations of the given curves are

$$x^2 + y^2 \le 4x$$
 and $y^2 \ge 2x$

On substituting $y^2 = 2x$ in the first equation, we obtain

$$x^2 - 2x = 0 \Rightarrow x(x - 2) = 0 \Rightarrow x = 0 \text{ or } x = 2$$

When
$$x = 0$$
, $y = 0$ and when $x = 2$, $y = 2$

Thus, the points of intersection of the two curves are 0 (0, 0) and A (2, 2).

The required area can be diagrammatically represented as

We now draw AC perpendicular to OX.

∴ Required area = Area OBAO

Area OBAO =
$$\int_0^2 \sqrt{4x - x^2} dx - \int_0^2 \sqrt{2x} dx = \int_0^2 \sqrt{4 - (2 - x)^2} dx - \sqrt{2} \int_0^2 \sqrt{x} dx$$

Put
$$2 - x = 2\sin \theta \Rightarrow -dx = 2\cos \theta d\theta$$

$$4 \int_{0}^{\frac{\pi}{2}} \cos^{2}\theta \, d\theta - \frac{2\sqrt{2}}{3} \left[x^{\frac{3}{2}} \right]_{0}^{2}$$

$$= 4 \int_{0}^{\frac{\pi}{2}} \left(\frac{1 + \cos 2\theta}{2} \right) d\theta - \frac{2\sqrt{2}}{3} (2)^{\frac{8}{2}}$$

$$= 4 \left[\frac{\theta}{2} + \frac{\sin 2\theta}{4} \right]_{0}^{\frac{\pi}{2}} - \frac{2}{3} \times 4$$

$$= \left(\pi - \frac{8}{3} \right)$$