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4.1. Introduction: 
If an object continuously changes its 

position, it is said to be in motion. Mechanics 
is a branch of Physics that deals with motion. 
There are basically two branches of mechanics 
(i) Statics, where we deal with objects at rest 
or in equilibrium under the action of balanced 
forces and (ii) Kinetics, which deals with actual 
motion.

Kinetics can be further divided into two 
branches (i) Kinematics: In kinematics, we 
describe various motions without discussing 
their cause. Various parameters discussed in 
kinematics are distance, displacement, speed, 
velocity and acceleration. (ii) Dynamics: In 
dynamics we describe the motion along with its 
cause, which is force and/or torque. Parameters 
discussed in dynamics are momentum, force, 
energy, power, etc. in addition to those in 
kinematics.

It must be understood that motion is strictly 
a relative concept, i.e., it should always be 
described in context to a reference frame. For 
example, if you are in a running bus, neither 
you nor your co-passengers sitting in the bus are 
in motion in your reference, i.e., moving bus. 
However, from the ground reference, bus, you 
and all the passengers are in motion.

If not random, motions in real life may 
be understood separately as linear, circular 
or rotational, oscillatory, etc., or some 
combinations of these. While describing any 
of these, we need to know the corresponding 
forces responsible for these motions. Trajectory 
of any motion is decided by acceleration 

&
a  and 

the initial velocity 
&
u .

Laws of Motion4.

 1. What are different types of motions? 
 2.  What do you mean by kinematical equations 

and what are they? 
 3.  Newton’s laws of motion apply to most 

bodies we come across in our daily lives.
 4. All bodies are governed by Newton’s law of 

gravitation. Gravitation of the Earth results 
into weight of objects. 

Can you recall?

 a)  Linear motion: Initial velocity may be 
zero or non-zero. If initial velocity is zero 
(starting from rest), acceleration in any 
direction will result into a linear motion.

  If initial velocity is not zero, the 
acceleration must be in line with the initial 
velocity (along the same or opposite 
direction to that of the initial velocity) for 
resultant motion to be linear.

 b)  Circular motion: If initial velocity is 
not zero and acceleration is throughout 
perpendicular to the velocity, the resultant 
motion will be circular. 

 c)  Parabolic motion: If acceleration is 
constant and initial velocity is not in 
line with the acceleration, the motion is 
parabolic, e.g., trajectory of a projectile 
motion.

 d)  Other combinations of 
&
u  and 

&
a  will result 

into different more complicated motion.

4.2. Aristotle’s Fallacy: 
Aristotle (384BC-322BC) stated that 

“an external force is required to keep a body 
in uniform motion”. This was probably based 
on a common experience like a ball rolling 
on a surface stops after rolling through some 
distance. Thus, to keep the ball moving with 
constant velocity, we have to continuously 
apply a force on it. Similar examples can be 
found elsewhere, like a paper plane flying 
through air or a paper boat propelled with some 
initial velocity.

Correct explanation to Aristotle’s fallacy 
was first given by Galileo (1564-1642), which 
was later used by Newton (1643-1727) in 

 5.  Acceleration is directly proportional to 
force for fixed mass of an object.

 6.  Bodies possess potential energy and kinetic 
energy due to their position and motion 
respectively which may change. Their 
total energy is conserved in absence of any 
external force.
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formulating laws of motion. Galileo showed 
that all the objects stop moving because of 
some resistive or opposing forces like friction, 
viscous drag, etc. In these examples such forces 
are frictional force for rolling ball, viscous 
drag or viscous force of air for paper plane and 
viscous force of water for the boat.

Thus, in reality, for an uninterrupted 
motion of a body an additional external force is 
required for overcoming these opposing forces. 

What is then special about Newton’s 
first law if it is derivable from Newton’s 
second law?

Can you tell?

4.3.1. Importance of Newton’s First Law of 
          Motion:
 (i)  It shows an equivalence between ‘state 

of rest’ and ‘state of uniform motion 
along a straight line’ as both need a net 
unbalanced force to change the state. Both 
these are referred to as ‘state of motion’. 
The distinction between state of rest and 
uniform motion lies in the choice of the 
‘frame of reference’.

 (ii)  It defines force as an entity (or a physical 
quantity) that brings about a change in 
the ‘state of motion’ of a body, i.e., force 
is something that initiates a motion or 
controls a motion. Second law gives 
its quantitative understanding or its 
mathematical expression.

 (iii) It defines inertia as a fundamental property 
of every physical object by which the 
object resists any change in its state of 
motion. Inertia is measured as the mass 
of the object. More specifically it is called 
inertial mass, which is the ratio of net force 
( | F
ur

|) to the corresponding acceleration  
(|a
&

|).

4.3.2. Importance of Newton’s Second Law 
          of Motion:
 (i)  It gives mathematical formulation for 

quantitative measure of force as rate of 
change of linear momentum.

Mathematical expression for force must be 

remembered as F
dp

dt

ur r
  and not as F ma

ur r
 

F
dp

dt

d m

dt

dm

dt
m

d

dt

ur r r
r

r
� �

� �
� � � � �

�
�

�
�
�

v
v v

 

� � � �dm

dt
ma

& &v

For a given body, mass is constant, i.e., 
dm

dt   0  and only in this case, F ma
ur r
 

In the case of a rocket, both the terms 
are needed as both mass and velocity are 
varying. 

Do you know ?

1. Was Aristotle correct? 
2. If correct, explain his statement with an 

illustration. 
3. If wrong, give the correct modified 

version of his statement. 

Can you tell?

4.3. Newton’s Laws of Motion: 
First law: Every inanimate object continues to 
be in its state of rest or of uniform unaccelerated 
motion unless and until it is acted upon by an 
external, unbalanced force. 

Second law: Rate of change of linear momentum 
of a rigid body is directly proportional to the 
applied force and takes place in the direction of 
the applied force. On selecting suitable units, it 

takes the form F
dp

dt

ur r
  (where F

ur
 is the force 

and p
ur r
 m v  is the linear momentum.

Third law: To every action (force), there is an 
equal and opposite reaction (force). 

Discussion: From Newton’s second law of 

motion, F
dp

dt

d

dt
m

ur r
r

� � � �v . For a given body,

mass m is constant. 

� � �F m
d

dt
ma

ur r
rv

… (for constant mass) 

Thus, if F
ur r
 0,� v is constant. Hence if there 

is no force, velocity will not change. This is 
nothing but Newton’s first law of motion. 
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 (ii)  It defines momentum
& &
p m�� �v  instead 

of velocity as the fundamental quantity 
related to motion. What is changed by a 
force is the momentum and not necessarily 
the velocity. 

 (iii) Aristotle’s fallacy is overcome by 
considering resultant unbalanced force.

4.3.3 Importance of Newton’s Third Law of 
         Motion: 
 (i)  It defines action and reaction as a pair of 

equal and opposite forces acting along the 
same line.

 (ii)  Action and reaction forces are always on 
different objects. 

Consequences:
Action force exerted by a body x on body 

y, conventionally written as F yx

ur
, is the force 

experienced by y.
As a result, body y exerts reaction force 

F xy

ur
 on body x. 

In this case, body x experiences the force
F xy

ur
only while the body y experiences the force 

F yx

ur
only.

Forces F xy

ur
 and F yx

ur
 are equal in magnitude 

and opposite in their directions, but there is no 
question of cancellation of these forces as those 
are experienced by different objects.

Forces F xy

ur
 and F yx

ur
 need not be contact 

forces. Repulsive forces between two magnets 
is a pair of action-reaction forces. In this case 
the two magnets are not in contact. Gravitational 
force between  Earth  and moon or between  
Earth  and Sun are also similar pairs of non-
contact action-reaction forces.
Example 4.1: A hose pipe used for gardening is 
ejecting water horizontally at the rate of 0.5 m/s. 
Area of the bore of the pipe is 10 cm2. Calculate 
the force to be applied by the gardener to hold 
the pipe horizontally stationary.
Solution: If ejecting water horizontally is 
considered as action force on the water, the 
water exerts a backward force (called recoil 
force) on the pipe as the reaction force. 

 
F

dp

dt

d m

dt

dm

dt
m
d

dt

ur r r
r

r
� �

� �
� �

v
v v

As v, the velocity of ejected water is 

constant, F
dm

dt
 

&v , where 
dm

dt
is the rate at 

which mass of water is ejected by the pipe.

As the force is in the direction of velocity 

(horizontal), we can use scalars. � �F
dm

dt
v

dm

dt

d V

dt

d Al

dt
A

dl

dt
A�

� �
�

� �
� �

� �
� �v

         

where V = volume of water ejected

        A = area of cross section of bore = 10 cm2

U  = density of water = 1 g/cc

l = length of the water ejected in time t
dl

dt
  v  velocity of water ejected 

       = 0.5 m/s = 50 cm/s

F
dm

dt
A A� � � � � � � �

� �

v v v v

     

� � 2 210 1 50

25000 0 25.dyne N

Equal and opposite force must be applied by 
the gardener.
4.4. Inertial and Non-Inertial Frames of 

Reference 

Consider yourself standing on a railway 
platform or a bus stand and you see a train or 
bus moving. According to you, that train or bus 
is moving or is in motion. As per the experience 
of the passengers in the train or bus, they are at 
rest and you are moving (in backward direction). 
Hence motion itself is a relative concept. To 
know or describe a motion you need to describe 
or define some reference. Such a reference 
is called a frame of reference. In the example 
discussed above, if you consider the platform as 
the reference, then the passengers and the train 
are moving. However, if the train is considered 
as the reference, you and platform, etc. are 
moving.

Usually a set of coordinates with a 
suitable origin is enough to describe a frame 
of reference. If position coordinates of an 
object are continuously changing with time 
in a frame of reference, then that object is in 
motion in that frame of reference. Any frame of 
reference in which Newton’s first law of motion 
is applicable is the simplest understanding of an 
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inertial frame of reference. It means, if there is 
no net force, there is no acceleration. Thus in an 
inertial frame, a body will move with constant 
velocity (which may be zero also) if there is no 
net force acting upon it. In the absence of a net 
force, if an object suffers an acceleration, that 
frame of reference is not an inertial frame and is 
called as non-inertial frame of reference.

Measurements in one inertial frame can be 
converted to measurements in another inertial 
frame  by a simple transformation, i.e., by 
simply using some velocity vectors (relative 
velocity between the two frames of reference).

Illustration: Imagine yourself inside a car 
with all windows opaque so that you can not 
see anything outside. Also consider that there 
is a pendulum tied inside the car and not set 
into oscillations . If the car just starts its motion 
(with reference to outside or ground), you will 
experience a jerk, i.e., acceleration inside the car 
even though there is no force acting upon you. 
During this time, the string of the pendulum  
may be steady, but not vertical. During time 
of acceleration, the car can be considered to 
be a non-inertial frame of reference. Later on 
if the car is moving with constant velocity 
(with reference to the ground), you will not 
experience any jerky motion within the car and 
the car can be considered as an inertial frame of 
reference. In this case, the pendulum string will 
be vertical, when not oscillating. 

The situations/phenomena that can be 
explained using Newton’s laws of motion 
fall under Newtonian mechanics. So far 
as our daily life situations are considered, 
Newtonian mechanics is perfectly applicable. 
However, under several extreme conditions 
we need to use some other theories.

Limitation of Newton’s laws of motion
 (i)  Newton’s laws are applicable only in the 

inertial frames of reference (discussed 
later). If the body is in a frame of 
reference of acceleration (a), we need to 
use a pseudo force �� �ma

&
 in addition 

to all the other forces while writing the 

Do you know ?

force equations.
 (ii)  Newton’s laws are applicable for point 

objects.
 (iii) Newton’s laws are applicable to rigid 

bodies. A body is said to be rigid if the 
relative distances between its particles 
do not change for any deforming force. 

  (iv) For objects moving with speeds 
comparable to that of light, Newton’s 
laws of motion do not give results that 
match with the experimental results and 
Einstein special theory of relativity has 
to be used.

 (v) Behaviour and interaction of objects 
having atomic or molecular sizes cannot 
be explained using Newton’s laws of 
motion, and quantum mechanics has to 
be used.

A rocket in intergalactic space (gravity free 
space between galaxies) with all its engines shut 
is closest to an ideal inertial frame. However, 
Earth’s  acceleration in the reference frame of 
the Sun is so small that any frame attached to 
the  Earth  can be used as an inertial frame for 
any day-to-day situation or in our laboratories.

4.5 Types of Forces:
4.5.1. Fundamental Forces in Nature: 

All the forces in nature are classified into 
following four interactions that are termed as 
fundamental forces. 

 (i)  Gravitational force: It is the attractive 
force between two (point) masses 
separated by a distance. Magnitude of 
gravitational force between point masses 
m

1
 and m

2
 separated by distance r is given 

by F
Gmm

r
 1 2

2  

  where G = 6.67×10-11 SI units. Between 
two point masses (particles) separated by 
a given distance, this is the weakest force 
having infinite range. This force is always 
attractive. Structure of the universe is 
governed by this force.

  Common experience of this force for us is 
gravitational force exerted by  Earth  on 
us, which we call as our weight W. 
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R
mg2 2

, 
  where M and R represent respectivily 

mass and radius of the Earth. Distance 
between ourselves and Earth is taken as 
radius of the Earth when we are on the 
surface of the Earth because our size is 
negligible as compared to radius of the 
Earth (6.4×106 m).
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R2
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.

  #�9.8 m/s2 = g = gravitational acceleration 
or gravitational field intensity.

  We feel this force only due to normal 
reaction from the surface of our contact 
with Earth.

      All individual bodies also exert 
gravitation force on each other but it is 
too small compared to that by the Earth. 
For example, mutual gravitational force 
between two SUMO wrestlers, each 
of mass 300 kg, assuming the distance 
between them is 0.5 m, will be 

   

  This force is negligibly small in 
comparison to the weight of each SUMO 
wrestler #  3000 N.

 (ii)  Electromagnetic (EM) force: It is an 
attractive or repulsive force between 
electrically charged particles. Earlier, 
electric and magnetic forces were 
thought to be independent. After the 
demonstrations by Michael Faraday 
(1791-1867) and James Clerk Maxwell 
(1831-1879), electric and magnetic 
forces were unified through the theory 
of electromagnetism. These forces are 
stronger than the gravitational force. 
Our life is practically governed by these 
forces. Majority of forces experienced in 
our daily life, such as force of friction, 
normal reaction, tension in strings, 

Weak interaction force:
The radioactive isotope C13 is 

converted into N14 in which a neutron is 
converted into a proton. This property is 
used in carbon dating to determine the age 
of a sample.

In radioactive beta decay, the nucleus 
emits an electron (or positron) and an 
uncharged particle called neutrino. There 
are two types of E-decay, E+ and E-. 
During E+decay, a proton is converted 
into a neutron (accompanied by positron 
emission) and during � � decay a neutron 
is converted into a proton (accompanied by 
electron emission).

Another most interesting illustration 
of weak forces is fusion reaction in the 
core of the Sun. During this, protons are 
converted into neutrons and a neutrino is 
emitted due to energy balance. In general, 
emission of a neutrino is the evidence 
that there is conversion of a proton into a 
neutron or a neutron into a proton. This is 
possible only due to weak forces.

collision forces, elastic forces, viscosity 
(fluid friction), etc. are EM in nature. 
Under the action of these forces, there 
is deformation of objects that changes 
intermolecular distances thereby resulting 
into reaction forces. 

 (iii) Strong (nuclear) force: This is the strongest 
force that binds the nucleons together 
inside a nucleus. Though strongest, it is a 
short range (< 10-14 m) force. Therefore is  
very strong attractive force and is charge 
independent.

 (iv)  Weak (nuclear) force: This is the 
interaction between subatomic particles 
that is responsible for the radioactive 
decay of atoms, in particular beta 
emission. The weak nuclear force is not as 
weak as the gravitational force, but much 
weaker than the strong nuclear and EM 
forces. The range of weak nuclear force is 
exceedingly small, of the order of 10-16 m.
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Example 4.2. Three identical point masses are 
fixed symmetrically on the periphery of a circle. 
Obtain the resultant gravitational force on any 
point mass M at the centre of the circle. Extend 
this idea to more than three identical masses 
symmetrically located on the periphery. How 
far can you extend this concept?

Solution: 
 (i)  Figure below shows three identical point 

masses m on the periphery of a circle of 
radius r. Mass M is at the centre of the 
circle. Gravitational forces on M due 
to these masses are attractive and are 
directed as shown. 

  In magnitude, F
MA

 = F
MB

 = F
MC

 = 
GMm

r 2

  
  Forces F

MB
 and F

MC
 are resolved along 

F
MA

 and perpendicular to F
MA

 as shown. 
Components perpendicular to F

MA
 cancel 

each other. Components along F
MA

 are 

F
MB

 cos 600 = F
MC

 cos 600 =  
1
2
FMA each. 

Magnitude of their resultant is F
MA

 and its 
direction is opposite to that of F

MA
. Thus, 

the resultant force on mass M is zero.

 (ii)  For any even number of equal masses, 
the force due to any mass m is balanced 
(cancelled) by diametrically opposite 
mass. For any odd number of masses, as 
seen for 3, the components perpendicular 
to one of them cancel each other while the 
components parallel to one of these add up 
in such a way that the resultant is zero for 
any number of identical masses m located 
symmetrically on the periphery. 

 (iii) As the number of masses tends to 
infinity, their collective shape approaches 
circumference of the circle, which is 
nothing but a ring. Thus, the gravitational 

Do you know ?

Unification	 of	 forces: Newton unified 
terrestrial (related to Earth and hence to 
our daily life) and celestial (related to 
universe) domains under a common law of 
gravitation.  The experimental discoveries 
of Oersted (1777-1851) and Faraday showed 
that electric and magnetic phenomena are in 
general inseparable leading to what is called 
‘EM phenomenon’. Electromagnetism 
and optics were unified by Maxwell with 
the proposition that light is an EM wave.  
Einstein attempted to unify gravity and 
electromagnetism under general relativity 
but could not succeed. The EM and the weak 
nuclear force have now been unified as a 
single ‘electro-weak’ force.

force exerted by a ring mass on any other 
mass at its centre is zero.

In three-dimensions, we can imagine a 
uniform hollow sphere to be made up of infinite 
number of such rings with a common diameter. 
Thus, the gravitational force for any mass kept 
at the centre of a hollow sphere is zero.

4.5.2. Contact and Non-Contact Forces: 
For some forces, like gravitational force, 

electrostatic force, magnetostatic force, etc., 
physical contact is not an essential condition. 
These forces exist even if the objects are distant 
or physically separated. Such forces are non-
contact forces.

Forces resulting only due to contact are 
called contact forces. All these are EM in nature, 
arising due to some deformation. Normal 
reaction, forces occurring during collision, 
force of friction, etc., are contact forces. There 
are two common categories of contact forces. 
Two objects in contact, while exerting mutual 
force, try to push each other away along their 
common normal. Quite often we call it as 
‘normal reaction’ force or ‘normal’ force. While 
standing on a table, we push the table away from 
us (downward) and the table pushes us away 
from it (upward) both being equal in magnitude 
and acting along the same ‘normal’ line. 
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Force of friction is also a contact force that 
arises whenever there is a relative motion or 
tendency of relative motion between surfaces 
in contact. This is the parallel (or tangential) 
component of the reaction force. In this case, 
the molecules of surfaces in contact, which have 
developed certain equilibrium, are required to 
be separated.

4.5.3 Real and Pseudo Forces: 
Consider ourselves inside a lift (or 

elevator). When the lift just starts moving up 
(accelerates upward), we feel a bit heavier as 
if someone is pushing us down. This is not 
imaginary or not just a feeling. If we are standing 
on a weighing scale inside this lift, during this 
time the weighing scale records an increase in 
weight. During travelling with uniform upward 
velocity no such change is recorded. While 
stopping at some upper floor, the lift undergoes 
downward acceleration for decreasing the 
upward velocity. In this case the weighing scale 
records loss in weight and we also feel lighter. 
These extra upward or downward forces are (i) 
Measurable, means they are not imaginary, (ii) 
not accountable as per Newton’s second law in 
the inertial frame and (iii) not among any of the 
four fundamental forces. 

When we are inside a bus such forces 
are experienced when the bus starts to move 
(forward acceleration), when the bus is about 
to stop (backward acceleration) or takes a turn 
(centripetal acceleration). In all these cases 
we are inside an accelerated system (which is 
our frame of reference). If a force measuring 
device is suitably used – like the weighing scale 
recording the change in weight – these forces 
can be recorded and will be found to be always 
opposite to the acceleration of your frame 
of reference. They are also exactly equal to  
-m

&
a , where m is our mass and 

&
a  is acceleration 

of the system (frame of reference). 

We have already defined or described real 
forces to be those which obey Newton’s laws 
of motion and are one of the four fundamental 
forces. Forces in above illustrations do not 
satisfy this description and cannot be called real 
forces. Hence these are called pseudo forces. 

In mathematics we define a number to be 
real if its square is zero or positive. Solution 
set of equations like x2 - 6x + 10 = 0 does 
not satisfy the criterion to be a real number. 
Such numbers are complex numbers which 
include i � �1  along with some real 
part. It means every non-real need not be 
imaginary as in literal verbal sense.

Pseudo in this case does not mean imaginary 
(because these are measurable with instruments) 
but just means non-real. These forces are 
measured to be �� �ma

&
. Hence, a term �� �ma

&
 

added to resultant force enables us to apply 
Newton’s laws of motion to a non-inertial frame 
of reference of acceleration 

&
a . Negative sign 

refers to their direction, which is opposite to 
that of the acceleration of the reference frame.

As per the illustration of the lift with 
downward acceleration 

&
a , the weight 

experienced will be 
& & &
W mg ma� � �� �  

As & &
g a and  are along the same direction 

in this case, W mg ma� � . This explains the 
feeling of a loss in weight.

During upward acceleration, say a1

uru
, we 

have, W mg ma1 1

uru r r
� � �� �

In this case, g a
ur uru

  and 1  are oppositely 
directed. � � � �� � � �W mg ma mg ma1 1 1  that 
explains gain in weight or existence of extra 
downward force.

Example 4.3: A car of mass 1.5 ton is running 
at 72 kmph on a straight horizontal road. On 
turning the engine off, it stops in 20 seconds. 
While running at the same speed, on the same 
road, the driver observes an accident 50 m in 
front of him. He immediately applies the brakes 
and just manages to stop the car at the accident 
spot. Calculate the braking force.

Solution: On turning the engine off, 

u t s

a
u

t

� � �

� �
�

� �

�

�

20 0 20

1

1

2

, ,m s

m s

 v  
v

This is frictional retardation (negative 
acceleration).

After seeing the accident, 
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u s
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u
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�

�
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2
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v

This retardation is the combined effect of 
braking and friction. Thus, braking retardation 
� � � �4 1 3 2m s . 

∴Braking force = mass × braking 
retardation = 1500 × 3 = 4500 N 

4.5.4. Conservative and Non-Conservative 
Forces and Concept of Potential 
Energy: 

Consider an object lying on the ground 
is lifted and kept on a table. Neglecting air 
resistance, the amount of work done is the 
work done against gravitational force and 
it is independent of the actual path chosen 
(Remember, as there is no air resistance, 
gravitational force is the only force). Similarly, 
while keeping the same object back on the 
ground from the table, the work is done by the 
gravitational force. In either case the amount of 
work done is the same and is independent of the 
actual path chosen. The work done by force F

ur
 

in moving the object through a distance dx can 
be mathematically represented as dW  = F dx

ur r.  
=-dU or dU F dx� �

ur r. . 

If work done by or against a force is 
independent of the actual path, the force is said 
to be a conservative force. During the work 
done by a conservative force, the mechanical 
energy (sum of kinetic and potential energy) 
is conserved. In fact, we define the concept 
of potential at a point or potential energy 
(in the topic of gravitation) with the help of 
conservative forces only. The work done by or 
against conservative forces reflects an equal 
amount of change in the potential energy. The 
corresponding work done is used in changing 
the position or in achieving the new position in 
the gravitational field. Hence, potential energy 
is often referred to as the energy possessed on 
account of position. 

In the illustration given above, the work 
done is reflected as increase in the gravitational 
potential energy when the displacement is 

against the (gravitational) force. Same amount 
of potential energy is decreased when the 
displacement is in the direction of force. In 
either case it is independent of the actual path 
but depends only upon the initial and final 
positions. This change in the potential energy 
takes place in such a way that the mechanical 
energy is conserved.

As discussed above, increase in the 

potential energy, dU dxF� �
ur r.  or U dxF� ��

ur r.  
where F

ur
 is a conservative force. This concept, 

will be described in details in Chapter 5 on 
Gravitation in context of gravitational potential 
energy and gravitational potential.

During this process, if friction or air 
resistance is present, additional work is 
necessary against the frictional force (for the 
same displacement). This work is strictly path 
dependent and not recoverable. Such forces 
(like friction, air drag, etc.) are called non-
conservative forces. Work done against these 
forces appears as heat, sound, light, etc. The 
work done against non-conservative forces 
is not recoverable even if the path is exactly 
reversed.

4.5.5. Work Done by a Variable Force: 
The popular formula for calculating work 

done is W s F sF� � �
ur r   cos�  where T is the 

angle between the applied force F
ur

 and the 
displacement 

&
s .

This formula is applicable only if both 
force F

ur
and displacement 

&
s  are constant and 

finite. In several real-life situations, the force 
is not constant. For example, while lifting an 
object through several thousand kilometres, the 
gravitational force is not constant. The viscous 
forces like fluid resistance depend upon the 
speed, hence, quite often are not constant with 
time. In order to calculate the work done by 
such variable forces we use integration.
Illustration: Figure 4.1(a) shows variation 
of a force F

ur
 plotted against corresponding 

displacements in its direction 
&
s . As the 

displacement is in the direction of the applied 
force, vector nature is not used. We need to 
calculate the work done by this force during 
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displacement from s
1
 to s

2
. As the force is 

variable, using W F s s� �� �2 1  directly is not 
possible. In order to use integration, let us 
divide the displacement into a large number of 
infinitesimal (infinitely small) displacements. 
One of such displacements is ds. It is so small 
that the force F is practically constant for this 
displacement. Practically constant means the 
change in the force is so small that the change 
can not be recorded. The shaded strip shows one 
of such displacements. As the force is constant, 
the area of this strip F.ds is the work done dW 
for this displacement. Total work done W for 
displacement s s2 1�� �  can then be obtained by 
using integration. 

� � �W F ds
s

s

1

2

.
 

Method of integration is applicable if the 

exact way of variation in F
ur

 with 
&
s  is known 

and that function is integrable.

The area under the curve between s
1
 and 

s
2
 also gives the work done W (if the force axis 

necessarily starts with zero), as it consists of all 
the strips of ds between s

1
 and s

2
. In Fig. 4.1(b), 

the variation in the force is linear. In this case, 
the area of the trapezium AS

1
S

2
B gives total 

work done W.

 

Fig 4.1 (a): Work done by nonlinearly 
varying force. 

 

Fig 4.1 (b): Work done by linearly varying 
force.

Example 4.4: Over a given region, a force (in 
newton) varies as F = 3x2 - 2x + 1. In this region, 
an object is displaced from x

1
 = 20 cm to x

2 
=

 
40 

cm by the given force. Calculate the amount of 
work done.

Solution:

          

W F ds x x dx

x x x

s

s

� � � �

� ��� ���

� �
1

2

0 2

0 4
2

3 2

0 2

0 4

3 2 1. ( )
.

.

.

.
     

          

� � ��� �� � � ��� ��
� � �

0 4 0 4 0 4 0 2 0 2 0 2

0 304 0 168 0 136

3 2 3 2. . . . . .

. . . �J  
4.6. Work Energy Theorem:

If there is a decrease in the potential energy 
(like a body falling down) due to a conservative 
force, it is entirely converted into kinetic energy. 
Work done by the force then appears as kinetic 
energy. Vice versa if an object is moving 
against a conservative force its kinetic energy 
decreases by an amount equal to the work done 
against the force. This principle is called work-
energy theorem for conservative forces.

Case I: Consider an object of mass m moving 
with velocity 

&
u  experiencing a constant 

opposing force F
ur

 which slows it down to 
&v  during displacement 

&
s . As 

&
u  and F

ur
 are 

oppositely directed, the entire motion will be 
along the same line. In this case we need not use 
the vector form, just r  signs should be good 
enough.

If a
F

m
  is the acceleration, we can write

the relevant equation of motion as v2 - u2 = 2 
(-a)s (negative acceleration for opposing force) 

Multiplying throughout by  m/2, we get

 

1
2

1
2

2 2mu m ma s F s� � � � �v . .

Left-hand side is decrease in the kinetic 
energy and the right-hand side is the work done 
by the force. Thus, change in kinetic energy is 
equal to work done by the conservative force, 
which is in accordance with work-energy 
theorem.

Case II: Accelerating conservative force along 
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with a retarding non-conservative force:

An object dropped from some point at 
height h falls down through air.  While coming 
down its potential energy decreases. Equal 
amount of work is done in this case also. 
However, this time the work is not entirely 
converted into kinetic energy but some part 
of it is used in overcoming the air resistance. 
This part of energy appears in some other forms 
such as heat, sound, etc. In this case, the work-
energy theorem can mathematically be written 
as � �PE KE Wair resistance� �

(Decrease in the gravitational P.E.  
Increase in the kinetic energy + work done 
against non-conservative forces). Magnitude of 
air resistance force is not constant but depends 
upon the speed hence it can be written as ³F ds

ur uru
.  

as seen during work done by (or against) a 
variable force.

4.7. Principle of Conservation of Linear 
      Momentum:

According to Newton’s second law, 
resultant force is equal to the rate of change of 

linear momentum or F
dp

dt

ur r
 

In other words, if there is no resultant 
force, the linear momentum will not change 
or will remain constant or will be conserved. 

Mathematically, if is constant 

Always remember
Isolated system means absence of 

any external force. A system refers to a set 
of particles, colliding objects, exploding 
objects, etc. Interaction refers to collision, 
explosion, etc. During any interaction 
among such objects the total linear 
momentum of the entire system of these 
particles/objects is constant. Remember, 
forces during collision or during explosion 
are internal forces for that entire system. 

During collision of two particles, the 
two particles exert forces on each other. If 
these particles are discussed independently, 
these are external forces. However, for the 
system of the two particles together, these 
forces are internal forces.

(or conserved). This leads us to the principle of 
conservation of linear momentum which can be 
stated as “The total momentum of an isolated 
system is conserved during any interaction.” 

Systems and free body diagrams:
 Mathematical approach for application of 
Newton’s second law: 

Fig 4.2 (a): System for illustration of free 
body diagram.

Consider the arrangement shown in Fig.4.2 
(a). Pulleys P

1
, P

3
 and P

4
 are fixed, while P

2
 is 

movable. Force F = 100 N, applied at an angle 
60q with the horizontal is responsible for the 
motion, if any. Contact surface of the 5 kg 
mass offers a constant opposing force F = 10 
N. Except this, there are no resistive forces 
anywhere. 

Discussion: Until 1 kg mass reaches the pulley 
P

1
, the motion of 1 kg and 2 kg masses is 

identical. Thus, these two can be considered 
to be a single system of mass 3 kg except for 
knowing the tension T

3
. The forces due to 

tension in the string joining them are internal 
forces for this system.

All masses except the 3 kg mass are 
travelling same distance in the same time. 
Thus, their accelerations, if any, have same 
magnitudes. If the string S connecting 1 kg and 
4 kg masses moves by x, the lower string S

1 

holding the 3 kg mass moves through x/2.  

Free body diagrams (FBD): A free body 
diagram refers to forces acting on only one 
body at a time, and its acceleration. 

Free body diagram of 2 kg mass: Let a be 
its upward acceleration. According to Newton’s 
second law, it must be due to the resultant 
vertical force on this mass. To know this force, 
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we need to know all the individual forces acting 
on this mass. The agencies exerting forces on 
this mass are Earth (downward force 1g) and 
force due to the tension T

3
. 

In this case, the lower half of the string 

the vertical forces must cancel. Therefore, 
along the vertical direction, 

N + F sin 60q = 5g  

Along the horizontal direction, 
T F T1

010 60� � � � �opposing force cos cos600

Similar equations can be written for all 
the masses and also for the movable pully. On 
solving these equations simultaneously, we can 
obtain all the necessary quantities.

Example 4.5: Figure (a) shows a fixed pulley. 
A massless inextensible string with masses m

1
 

and m
2
 > m

1
 attached to its two ends is passing 

over the pulley. Such an arrangement is called 
an Atwood machine. Calculate accelerations of 
the masses and force due to the tension along 
the string assuming axle of the pulley to be 
frictionless. 

                Fig. (a).

Solution: Method I: Direct method: As  
m

2
 > m

1
, mass m

2
 is moving downwards and 

mass m
1
 is moving upwards.

Net downward force

 � � � � � � � � �� �F m g m g m m g2 1 2 1

As the string is inextensible, both the 
masses travel the same distance in the same 
time. Thus, their accelerations are numerically 
the same (one upward, other downward). Let it 
be a.

Thus, total mass in motion, M m m� �2 1

� � �a
F

M  

m m

m m
g2 1

2 1

�
�

�

�
�

�

�
�

For mass m
1
, the upward force is the force 

due to tension T and downward force is mg. It 
has upward acceleration a. Thus, T- m

1 
g = ma 

∴ T = m
1
(g + a)  

Using the expression for a, we get 

Practical tip: Easiest way to know the 
direction of forces due to tension is to 
put an X-mark on the string. Two halves 
of this cross indicate the directions of the 
forces exerted by the string on the bodies 
connected to either parts of the string.

is connected to the 2 kg mass. The direction 
of T

3
 for lower part of the string is upwards 

as shown in the Fig. 4.2 (b). Upper part of the 
string is connected to the 1 kg mass. Thus, the 
direction of T

3
 for 1 kg mass will be downwards. 

However, it will appear only for the free body 
diagram of the 1 kg mass and will not appear 
in the free body diagram of 2 kg mass. Hence, 
the free body diagram of the 2 kg mass will 
be as follows: Its force equation, according to 
Newton’s second law will then be T

3 
- 2g = 2a.

  

Fig 4.2 (b): Free body 
diagram for 2 kg mass.

  

       

Fig 4.2 (c): Free 
body diagram for  
5 kg mass.

Free body diagram of mass 5 kg: Its 
horizontal acceleration is also a, but towards 
right. The force exerting agencies are  Earth  
(force 5g downwards), contact surface (normal 
force N, vertically upwards and opposing force 
F = 10 N, towards left), and the two strings 
on either side (Forces due to their tensions T 
and T

1
). All these are shown in its free body 

diagrams in Fig. 4.2 (c). On resolving the force 
F along the vertical and horizontal directions, 
the free body diagram of 5 kg mass can be 
drawn as explained below. 

As this mass has only horizontal motion, 
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T   
2 1 2

1 2

mm

m m
g

�
�

�
�

�

�
�

Method II: (Free body equations)

     

       Fig. (b)        Fig. (b)

Free body diagrams of m
1
 and m

2
 are as 

shown in Figs. (b) and (c). 

Thus, for the first body, T m g ma� �1 1  --- (I)

For the second body, m g T m a2 2� �     --- (II)

Adding (I) and (II), and solving for a, 

we get, a
m m

m m
g�

�
�

�

�
�

�

�
�2 1

2 1
        --- (III)

       Solving Eqs. (II) and (III) for T, we get, 

 
T =m (g -a)2 �

�
�

�
�

�

�
�

2 1 2

1 2

mm

m m
g

 

4.8. Collisions: 
During collisions a number of objects 

come together, interact (exert forces on each 
other) and scatter in different directions.    

Fig. 4.3 (a): Head on collision-before collision. 

                         

Fig. 4.3 (b): Head on collision-during impact. 

            

Fig. 4.3 (c): Head on collision-after collision. 

4.8.1. Elastic and inelastic collisions: 

During a collision, the linear momentum 
of the entire system of particles is always 
conserved as there is no external force acting on 
the system of particles.  However, the individual 
momenta of the particles change due to mutual 
forces, which are internal forces. 

� �� �& &
p pinitial final , during any collision 

(or explosion), where p
ur

's are the linear 
momenta of the particles.

However, kinetic energy of the entire 
system may or may not conserve. 

Collisions can be of two types: elastic 
collisions and inelastic collisions.

Elastic collision: A collision is said to elastic if 
kinetic energy of the entire system is conserved 
during the collision (along with the linear 
momentum). Thus, during an elastic collision,

� ��K E K Einitial final. . . .
 

An elastic collision is impossible in 
daily life. However, in many situations, the 
interatomic or intermolecular collisions are 
considered to be elastic (like in kinetic theory 
of gases, to be discussed in the next standard). 

Inelastic Collision: A collision is said to be 
inelastic if there is a loss in the kinetic energy 
during collision, but linear momentum is 
conserved. The loss in kinetic energy is either 
due to internal friction or vibrational motion of 
atoms causing heating effect. Thus, during an 
inelastic collision, 

� ��K E K Einitial final. . . .
.

During an explosion as energy is supplied 
internally. Thus,

 � ��K E K Efinal initial. . . . . 

As stated earlier, � ��& &
p pinitial final  for 

inelastic collisions or explosion also. In fact, 
this is always the first equation for discussing 
these interactions or while solving numerical 
questions.

4.8.2. Perfectly Inelastic Collision: 
This is a special case of inelastic collisions. 

If colliding bodies join together after collision, 
it is said to be a perfectly inelastic collision. 
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In other words, the colliding bodies have a 
common final velocity after a perfectly inelastic 
collision. Being an inelastic collision, obviously 
there is a loss in the kinetic energy of the system 
during a perfectly inelastic collision. In fact, the 
loss in kinetic energy is maximum in perfectly 
inelastic collision.

Illustrations: 
 (i)  Consider a bullet fired towards a block 

kept on a smooth surface. Collision 
between bullet and the block will be elastic 
if the bullet rebounds with exactly the 
same initial speed and the block remains 
stationory. If the bullet gets embedded into 
the block and the two move jointly, it is 
perfectly inelastic collision. If the bullet 
rebounds with smaller speed or comes 
out of the block on the other side with 
some speed, it is an inelastic (or partially 
inelastic) collision. Remember, there is 
nothing called a partially elastic collision 
Elastic collisions are always perfectly 
elastic. An inelastic collision however, 
may be partially or perfectly inelastic.

 (ii)  Visualise a ball dropped from some height 
on a hard surface, the entire system being 
in an evacuated space. If the ball rebounds 
exactly to the same height from where it 
was dropped, the collision between the 
ball and the surface (in turn, with the 
Earth) is elastic. As you know, the ball 
never reaches the same initial height or 
a height greater than the initial height. 
Rebounding to smaller height refers to 
inelastic collision. Instead of ball, if mud 
or clay is dropped, it sticks to the surface. 
This is perfectly inelastic collision.

4.8.3.	Coefficient	of	Restitution	e: 
For collision of two objects, the negative 

of ratio of relative velocity of separation to 
relative velocity of approach is defined as the 
coefficient of restitution e. 

One dimensional or head-on collision: A 
collision is said to be head-on if the colliding 
objects move along the same straight line, 
before and after the collision. Here, we use u

1
, 

u
2
, v

1
, v

2
 as symbols.

Consider such a head-on collision of two 
bodies of masses m

1
 and m

2
 with respective 

initial velocities u
1
 and u

2
. As the collision is 

head on, the colliding masses are along the 
same line before and after the collision. Hence, 
vector treatment is not necessary. (However, 
velocities must be substituted with proper  
signs in actual calculation). Relative velocity 
of approach is then u u ua � �2 1

Let v
1
 and v

2
 be their respective velocities 

after the collision. The relative velocity of 
recede (or separation) is then v = v - vs 2 1

    
---(4.1)

For a perfectly inelastic collision, the 
colliding bodies move jointly after the collision, 
i.e., v = v2 1  or v - v = 02 1 . Hence, for a perfectly 
inelastic collision, e =0. In other words, if e = 
0, the head-on collision is perfectly inelastic 
collision.

Coefficient	 of	 restitution	 during	 a	 head-on,	
elastic collision:

Consider the collision described above 
to be elastic. According to the principle of 
conservation of linear momentum, 

Total initial momentum = Total final 
momentum.

   � � � �m u m u m m1 1 2 2 1 1 2 2v v   --- (4.2) 

   � �� � � �� �m u m u1 1 1 2 2 2v v   --- (4.3)

As the collision is elastic, total kinetic 
energy of the system is also conserved.

   
� � � �

1
2

1
2

1
2

1
21 1

2
2 2

2
1 1

2
2 2

2m u m u m mv v
 
--- (4.4)

   
� �� � � �� �m u m u1 1

2
1
2

2 2
2

2
2v v

 

   

� �� � �� �
� �� � �� �
m u u

m u u

1 1 1 1 1

2 2 2 2 2

v v

v v   --- (4.5)

Dividing Eq. (4.5) by Eq. (4.3), we get
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u u1 1 2 2� � �v v     --- (4.6)
� � � �u u2 1 1 2v v  
For an elastic collision,

e
u u

�
�
�

�
v v1 2

2 1

1
     

--- (4.7)
 

Thus, for an elastic collision, coefficient 
of restitution, e =1. For a perfectly inelastic 
collision, e =0 (by definition). Thus, for any 
collision, the coefficient of restitution lies 
between 1 and 0.

Above expressions (Eq. (4.1) Eq. (4.7)) 
are general. While substituting the values of 
u1, u2, v1, v2, their algebraic values must be 
used in actual calculation.

For example referring to the 

Fig. 4.3 (a), (b) and (c)

Eq (4.1) gives

e
ua

� �
vs

Here u
a 
= u

1 
- u

2  
since u

1
> u

2  

and v
s 

= v
1 

+ v
2 

since the objects go in 
opposite directions. 

� � �
�
�

e
u u

v v1 2

1 2          
--- (a)

Using Eq (4.6), 

u
1 
+ v

1 
= u

2 
+ v

2

∴ According to Fig. 4.3,

u
1 
- v

1 
=

 
 u

2 
+ v

2

∴
  
v

1 
+ v

2 
= u

2 
- u

1 
--- (b)

By substituting in (a),

e
u u

u u
� �

�
�

�
( 2 1

1 2

1)
( )

,

which is the case of a perfectly elastic 
collision.
4.8.4.	Expressions	for	final	velocities	after	a	
          head-on, elastic collision:

From Eq. (4.6), v v2 1 1 2� � �u u

Using this in Eq. (4.2), we get 
m u m u m m u u1 1 2 2 1 1 2 1 1 2� � � � �� �v v

 

� �
�
�

�

�
�

�

�
� �

�
�

�
�

�

�
�v1

1 2

1 2
1

2

1 2
2

2m m

m m
u

m

m m
u

 
--- (4.8)

Subscripts 1 and 2 were arbitrarily chosen. 
Thus, just interchanging 1 with 2 gives us v

2
 as 

v2
2 1

1 2
2

1

1 2
1

2
�

�
�

�

�
�

�

�
� �

�
�

�
�

�

�
�

m m

m m
u

m

m m
u

   
--- (4.9)

Equation (4.9) can also be obtained by 
substituting v

1
 from Eq. (4.8) in Eq. (4.6).

Particular cases: 
(i) If the bodies are of equal masses (or 

identical), m m1 2 , Eqs. (4.8) and (4.9) give

v v1 2 2 1  u u .and  
Thus, the bodies just exchange their 

velocities.
(ii) If colliding body is much heavier and 

the struck body is initially at rest, i.e.,   

  m m u1 2 2 0� ,and  

we can use

 
m m m

m

m m1 2 1
2

1 2

0� �
�

�and

� � �v v1 1 2u and  2 1u , i.e., the massive 
striking body is practically unaffected and the 
tiny body which is struck, travels with double 
the speed of the massive striking body.

(iii) The body which is struck is much 
heavier than the colliding body and is initially 
at rest, i.e., m m u1 2 2 0� .and  

Using similar approximations, we get,
v v1 1 2 0� � �u and , i.e., the tiny (lighter) object 
rebounds with same speed while the massive 
object is unaffected. This is as good as dropping 
an elastic object on hard surface of the  Earth .

Do you know ?

Are you aware of elasticity of materials? Is 
there any connection between elasticity of 
materials and elastic collisions?

Example 4.6: One marble collides head-on with 
another identical marble at rest. If the collision 
is partially inelastic, determine the ratio of 
their final velocities in terms of coefficient of 
restitution e.
Solution: According to conservation of 
momentum, m u m u m m1 1 2 2 1 1 2 2� � �v v
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As m m1 2 , we get, u u1 2 1 2� � �v v

� � � �If� we�get �u u2 1 2 10,� , v v ... (I)

Coefficient of restitution, 

e
u u

�
�
�

v v2 1

1 2
  � � �v v2 1 1eu  ... (II)

Dividing Eq. (I) by Eq. (II),

 
v v
v v
1 2

2 1

1�
�

�
e

Using componendo and dividendo, we get, 

v
v
2

1

1
1

�
�
�

e

e
4.8.5. Loss in the kinetic energy during a 
       perfectly inelastic head-on collision:

Consider a perfectly inelastic, head on 
collision of two bodies of masses m

1
 and m

2
 

with respective initial velocities u
1
 and u

2
. As 

the collision is perfectly inelastic, they move 
jointly after the collision, i.e., their final velocity 
is the same. Let it be v.

According to conservation of linear 

momentum, m u m u m m1 1 2 2 1 2� � �� �v

 � �
�
�

v m u m u

m m
1 1 2 2

1 2
   --- (4.10)

This is the common velocity after a 
perfectly inelastic collision

Loss in K.E. = ' (K.E.) 

= Total initial K.E. -  Total final K.E.

� � � � � � �� �

� � � �

� K E. . 1
2

1
2

1
2

1
2

1
2

1
2

1 1
2

2 2
2

1 2
2

1 1
2

2 2
2

1

m u m u m m

m u m u m

v

mm
m u m u

m m2
1 1 2 2

1 2

2

� � �
�

�

�
�

�

�
�

 
� � � � � �

�� �
�� �

� K E. . 1
2

1
2

1
21 1

2
2 2

2 1 1 2 2
2

1 2

m u m u
m u m u

m m
 

On simplifying, we get,

� K E. .� � �
�

�

�
�

�

�
� �� �mm

m m
u u1 2

1 2
1 2

2

  
--- (4.11)

Masses are always positive and u u1 2
2

�� �  
is also positive. Hence, there is always a loss 
in the kinetic energy in a perfectly inelastic 
collision.

Final velocities and loss in K.E. in an 
inelastic head-on collision: 
If e is the coefficient of restitution, using Eq. 
(4.2), the expressions for final velocities after 
an inelastic collision can be derived as

v1
1 2

1 2
1

2

1 2
2

1
�

�
�

�

�
�

�

�
� �

�� �
�

�

�
��

�

�
��

m em

m m
u

e m

m m
u

 

�
�� � � �

�
em u u m u m u

m m
2 2 1 1 1 2 2

1 2  and

v2
2 1

1 2
2

1

1 2
1

1
�

�
�

�

�
�

�

�
� �

�� �
�

�

�
��

�

�
��

m em

m m
u

e m

m m
u

 

�
�� � � �

�
em u u m u m u

m m
1 1 2 1 1 2 2

1 2

Loss in the kinetic energy is given by

      
� K E. .� � �

�
�

�
�

�

�
� �� � �� �1

2
11 2

1 2
1 2

2 2mm

m m
u u e

. 
As e < 1, (1- e2) is always positive. Thus, there 
is always a loss of K.E. in an inelastic collision. 
Also, for a perfectly inelastic collision, e  0 . 
Hence, in this case, the loss is maximum.
Using e  1 , these equations lead us to an 
elastic collision and for e  0  they lead us to 
a perfectly inelastic collision. Verify that they 
give the same expressions that are derived 
earlier.

The quantity � �
�

m m

m m
1 2

1 2
 is the reduced mass 

of the system.
Impulse or change in momenta of the 
bodies:
During collision, the linear momentum 
delivered by first body (particle) to the second 
body must be equal to change in momentum 
or impulse of the second body, and vice versa.

∴ Impulse,
J p p

m m u m m u

� �

� � � �

� �1 2

1 1 1 1 2 2 2 2v v
On substituting the values of v

1
 and v

2
  and 

solving, we get

J
m m

m m
e u u

e u

�
�

�

�
�

�

�
� �� � �� �

� �� �

1 2

1 2
1 21

1     � relative

u u u1 2� � �relative velocity�of�approach
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4.8.6. Collision in two dimensions, i.e., a 
           nonhead-on collision: 

In this case, the direction of at least 
one initial velocity is NOT along the line of 
impact. In order to discuss such collisions 
mathematically, it is convenient to use two 
mutually perpendicular directions as shown in 
Fig. 4.4. One of them is the common tangent 
at the point of impact, along which there is 
no force (or along this direction, there is no 
change in momentum). The other direction is 
perpendicular to this common tangent through 
the point of impact, in the two-dimensional 
plane of initial and final velocities. This is 
called the line of impact. Internal mutual forces 
exerted during impact, which are responsible 
for change in the momenta, are acting along 

this line. From Fig. (4.4), u u
& &

1 2 and , initial 
velocities make angles D

1
 and D

2 
respectively 

with the line of impact while v  and v
& &

1 2 , final 
velocities make angles E

1
 and E

2 
respectively 

with the line of impact.

According to conservation of linear 
momentum along the line of contact,

 
Fig. 4.4: Oblique or non head-on collision. 

m u m u

m m
1 1 1 2 2 2

1 1 1 2 2 2

cos cos
cos cos
� �
� �
�

� �v v   --- (4.12)

As there is no force along the common 
tangent (perpendicular to line of impact),

m u m1 1 1 1 1 1sin sin� �� v    --- (4.13) 
and m u m2 2 2 2 2 2sin sin� �� v   --- (4.14)

For coefficient of restitution, along the line 
of impact,

  
--- (4.15)

Example 4.7: A shell of mass 3 kg is dropped 
from some height. After falling freely for 2 
seconds, it explodes into two fragments of 
masses 2 kg and 1 kg. Kinetic energy provided 
by the explosion is 300 J. Using g = 10 m/s2, 
calculate velocities of the fragments. Justify 
your answer if you have more than one options.

Solution: m m1 2 3� �  kg.

After falling freely for 2 seconds,

v � � � � � � � � ��u at ms u u0 10 2 20 1
1 2

According to conservation of linear 
momentum, m u m u m m1 1 2 2 1 1 2 2� � �v v

� � � �3 20 2 11 2v v  � � �v v2 160 2  --- (I)

K.E. provided   Final K.E. – Initial 

K.E.� � � �� �1
2

1
2

1
21 1

2
2 2

2
1 2

2m m m m uv v

� � � � � �
1
2
2 1

2
1
2
3 20 3001

2
2
2 2v v J

 
or v v2 18001

2
2
2� �

 

or v v2 60 2 18001
2

1
2

� �� � �  using Eq. (I)

� � � �3600 240 6 18001 1
2v v    

        � � � �v v1
2

140 300 0  
  and

 
There are two possible answers since the 

positions of two fragments can be different as 
explained below. 

Magnitude of the impulse, along the line of 
impact, 

 

J
m m

m m
e u u

e u

�
�

�

�
�

�

�
� �� � �� �

� �� �

1 2

1 2
1 1 2 21

1

cos cos

relative

� �

�

along line of impact.
Loss in the kinetic energy = ' (K.E.) 

1
2

1

1
2

1

1 2

1 2
1 1 2 2

2 2

2

mm

m m
u u e

u

�
�

�
�

�

�
� �� � �� �

� � �

cos cos

relative

� �

� ��� �e2

Equations (4.12), (4.13), (4.14) and (4.15) 
are to be solved for the four unknowns  v

1
, v

2
, 

E
1 
and E

2
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Always remember: 
1) Colliding objects experience forces along 

the line of impact which changes their 
momenta. For their system, these forces are 
internal forces. These forces form an action-
reaction pair, which are equal and opposite, 
and act on different objects.

2) There is no force along the common tangent, 
i.e., perpendicular to the line of contact.

3) In reality, the impact is followed by emission 
of sound and heat and occasionally light. 
Thus, in general, part of mechanical 
energy- kinetic energy - is lost (i.e., 
converted into some other non-recoverable 
forms). However, total energy of the system 
is conserved.

4) In reality, velocity of separation (relative 
final velocity) is less than velocity of 
approach (relative initial velocity) along 
the line of impact. Thus coefficient of 
restitution e < 1. 

5) Only during elastic collisions (atomic and 
molecular level only, never possible in real 
life), the kinetic energy is conserved and the 
velocity of separation is equal to the velocity 
of approach or the initial relative velocity is 
equal to the final relative velocity.

If v
1
 = 30 m s-1 and v

2
 = 0, lighter fragment 

2 should be above.  On the other hand, if v
1
 = 10 

m s-1 and v
2
 = 40 m s-1, lighter fragment 2 should 

be below, both moving downwards.

Example 4.8: Bullets of mass 40 g each, are 
fired from a machine gun at a rate of 5 per 
second towards a firmly fixed hard surface 
of area 10 cm2. Each bullet hits normal to the 
surface at 400 m/s and rebounds in such a way 
that the coefficient of restitution for the collision 
between bullet and the surface is 0.75. Calculate 
average force and average pressure experienced 
by the surface due to this firing.

Solution: For the collision,

u e1
1400 0 75� �� , .m s  , v1  ?

For the firmly fixed hard surface, u2 2 0  v  

 m/s.

-ve sign indicates that the bullet rebounds in 
exactly opposite direction.

 Change in momentum of each bullet  
= m (v

1
-u

1
) 

Equal and opposite will be the momentum 
transferred to the surface, per collision.

∴ Momentum transferred to the surface, 
per collision

p m u� �� � � � �� �� � �1 1 0 04 400 300 28v .  N s

The rate of collision is same as rate of firing.
∴ Momentum received by the surface per 

second, 
dp

dt
� � �28 5 140 N

This must be the average force experienced 
by the surface of area A  10 cm �m2 3 210� �

∴ Average pressure experienced,

 
| 1.4 times the atmospheric pressure.

4.9. Impulse of a force: 
According to Newton’s first law of 

motion, any unbalanced force changes linear 
momentum of the system, i.e., basic effect of an 
unbalanced force is to change the momentum.

According to Newton’s second law of 

motion, F
dp

dt

ur r
 

� �dp F dt
r ur

.  

The quantity ‘change in momentum’ is 
separately named as Impulse of the force 

&
J .

If the force is constant, and is acting for a 
finite and measurable time, we can write

The change in momentum in time t
r r r r ur
J dp p p F t� � � �2 1 .   ---(4.16)

For a given body of mass m, it becomes

        
r r r r r ur
J p p m v v F t� � � �� � �2 1 2 1 .   ---(4.17)

If F
ur

 is not constant but we know how it 
varies with time, then 

r r r ur
J p dp F dt� � �� �� .    --- (4.18)

4.9.1.	Necessity	of	defining	impulse: 
As discussed above, if a force is constant 

over a given interval of time or if we know 
how it varies with time, we can calculate the 
corresponding change in momentum directly 
by multiplying the force and time.

However, in many cases, an appreciable 
force acts for an extremely small interval of 
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time (too small to measure the force and the 
time independently). However, change in the 
momentum due to this force is noticeable and 
can be measured. This change is defined as 
impulse of the force.

Real life illustrations: While (i) hitting a ball 
with a bat, (ii) giving a kick to a foot-ball, (iii) 
hammering a nail, (iv) bouncing a ball from a 
hard surface, etc., appreciable amount of force 
is being exerted. In such cases the time for 
which these forces act on respective objects is 
negligibly small, mostly not easily recordable. 
However, the effect of this force is a recordable 
change in the momentum of that object. Thus, it 
is convenient to define the change in momentum 
itself as a physical quantity.

Fig. 4.5: Graphical representation of impulse 
of a force.

Figure 4.5 shows variation of a force as a 
function of time e.g., for a collision between bat 
and ball with the force axis starting with zero.  
The shaded area or the area under the curve 
gives the product of force against corresponding 
time (in this case, 't ), hence gives the impulse. 
For a constant force it is obviously a rectangle. 
Generally, force is zero before the impact, rises 
to a maximum and decreases to zero after the 
impact. For softer tennis ball, the collision 
time is larger and the maximum force is less. 
The area under the (F - t) graph is the same. 
Wicket keeper eases off (by increasing the 
time of collision) while catching a fast ball. 
As mentioned earlier, it is absolutely necessary 
that the force axis must start from zero. 

Recall from Chapter 3, analogues concepts 
using area under a curve are (i) Obtaining 
displacement in a given time interval as area 
under the curve for v- t graph, with zero origin 

for velocity axis. (ii) Obtaining work done by a 
force as the area under the curve for F- s graph, 
with zero origin for force axis.
Example 4.9: Mass of an Oxygen molecule is 
5.35 × 10-26 kg and that of a Nitrogen molecule 
is 4.65 ×10-26 kg. During their Brownian motion 
(random motion) in air, an Oxygen molecule 
travelling with a velocity of 400 m/s collides 
elastically with a nitrogen molecule travelling 
with a velocity of  500 m/s in the exactly opposite 
direction. Calculate the impulse received by 
each of them during collision. Assuming that 
the collision lasts for 1 ms, how much is the 
average force experienced by each molecule?

Let
m m

m m

1
26

2
26

5 35 10

4 65 10

� � �

� � �

�

�

O

N kg

.

. .

kg ,

� � � �� �u and u1
1

2
1400 500m s m s  

taking direction of motion of Oxygen 
molecule as the positive direction.

For an elastic collision,

v1
1 2

1 2
1

2

1 2
2

2
�

�
�

�

�
�

�

�
� �

�
�

�
�

�

�
�

m m

m m
u

m

m m
u    and

v2
2 1

1 2
2

1

1 2
1

2
�

�
�

�

�
�

�

�
� �

�
�

�
�

�

�
�

m m

m m
u

m

m m
u  

� � � �� �v v1
1

2
1437 463m s m sand  

� � �� � � � �

� �� � � � �

�

�

J m u

J m u

O O

N N

v

v
1 1

23

2 2

4 478 10

4 478 10

.

.

N s ,
223 N s

 As expected, the net impulse or net change 
in momentum is zero.

F
dp

dt

J

tON
O O

 N

� � �
� �

� � �

�

�

�

�
.

.

4 478 10
10

4 478 10

23

3

20

and F FNO ON� � � � �.4 478 10 20  N

4.10.  Rotational analogue of a force -          
moment of a force or torque: 
While opening a door fixed to a frame 

on hinges, we apply the force away from the 
hinges and perpendicular to the door to open 
it with ease. In this case we are interested in 
achieving some angular displacement for the 
door. If the force is applied near the hinges or 
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nearly parallel to the door, it is very difficult to 
open the door. Similarly, if the door is heavier 
(made up of iron instead of wood or plastic), 
we need to apply proportionally larger force for 
the same angular displacement. 

It shows that rotational ability of a force 
not only depends upon the mass (greater force 
for greater mass), but also upon the point of 
application of the force (the point should be as 
away as possible from the axis of rotation) and 
the angle between direction of the force and the 
line joining the axis of rotation with the point 
of application (effect is maximum, if this angle 
is 900).  

Taking into account all these factors, the 
quantity moment of a force or torque is defined 
as the rotational analogue of a force. As rotation 
refers to direction (sense of rotation), torque 
must be a vector quantity. In its mathematical 
form, torque or moment of a force is given by 

r r ur
� � �r F      --- (4.17)

where F
ur

 is the applied force and 
&
r  is the 

position vector of the point of application of the 
force from the axis of rotation, as shown in the 
Figs. 4.6 (b) and 4.6 (c).

 

Figs. 4.6(a): Illustration 
of moment of force 
with object and axis of 
rotation in 3D view.

Figs. 4.6(b): Top view 
for moment of force F

ur
  

in anticlockwise rotation 
with F

ur
 and 

&
r  in the 

plane of paper.

Figs. 4.6(c): Top view 
of moment of force F

ur
 

in clockwise rotation F
ur

 
and 

&
r  in the plane of 

paper.

Figures 4.6(a), 4.6(b) and 4.6(c) illustrate 

the directions involved. Figure 4.6(a) is a 3D 
drawing indicating the laminar (plane or two 
dimensional) object rotating about a (fixed) axis 
of rotation AOB, the axis being perpendicular 
to the object and passing through it. Figure 
4.6(b) indicates the top view of the object 
when the rotation is in anticlockwise direction 
and Fig. 4.6(c) shows the view from the top, if 
rotation is in clockwise direction. (In fact, Figs. 
4.6(b) and 4.6(c) are drawn in such a way that 
the applied force F

ur
 and position vector 

&
r  of 

the point of application of the force are in the 
plane of these figures). Direction of the torque 
is always perpendicular to the plane containing 
the vectors 

&
r  and F

ur
 and can be obtained 

from the rule of cross product or by using 
the right-hand thumb rule. In Fig. 4.6(b), it is 
perpendicular to the plane of the figure (in this 
case, perpendicular to the body) and outwards, 
i.e., coming out of the paper while in the Fig. 
4.6(c), it is inwards, i.e., going into the paper.  

In order to indicate the directions which 
are not in the plane of figure, we use a special 
convention: � for perpendicular to the plane of 
figure and outwards and � for perpendicular to 
the plane of figure and inwards. 

   

 (a)        (b)

  

      (c)        (d)

Fig. 4.7: Convention of pictorial 
representation of vectors as shown in (a) 
acting in a direction perpendicular to the 
plane of paper (b) coming out of paper, (c) 
going in to the paper and (d) perpendicular 
to the plane of paper.    

This convention depends upon a traditional 
arrow shown in Fig. 4.7 (a). Consider yourself, 
looking towards the figure from the top. If this 
arrow approaches you, the tip of the arrow 
will be prominently seen. Hence circle with a 
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dot in it [Fig. 4.7 (b)] refers to perpendicular 
and outwards (or towards you). When you 
are leaving an arrow, i.e., if an arrow is going 
away from you, the feathers like a cross will be 
seen. Hence, a circle with a cross [Fig. 4.6 (c)] 
indicates perpendicular and inwards (or away 
from you). Circle with cross and dot indicates 
a line perpendicular to the plane of figure [Fig. 
4.6 (d)].

Magnitude of torque, W�  r F sin T  --- (4.18)

where T  is the smaller angle between the 
directions of r F

r ur
 and .

Consequences: (i) If r or F is greater, the 
torque (hence the rotational effect) is greater. 
Thus, it is recommended to apply the force 
away from the hinges.

(ii) If � � 900 , � �� �max rF . Thus, the 
force should be applied along normal direction 
for easy rotation.

(iii) If T = 0q or 180q, � �� �min 0.  Thus, if 
the force is applied parallel or anti-parallel to 

&
r

, there is no rotation.

(iv) Moment of a force depends not only on 
the magnitude and direction of the force, but also 
on the point where the force acts with respect 
to the axis of rotation. Same force can have 
different torque as per its point of application.
4.11. Couple and its torque: 

In the discussion of the torque given above, 
we had considered rotation of the body about a 
fixed axis and due to a single force. In real life, 
quite often we apply two equal and opposite 
forces acting along different lines of action in 
order to cause rotation. Common illustrations 
are turning a bicycle handle, turning the steering 
wheel, opening a common water tap, opening 
the lid of a bottle (rotation type), etc. Such a 
pair of forces consisting of two forces of equal 
magnitude acting in opposite directions along 
different lines of action is called a couple. It 
is used to realise a purely rotational motion. 
Moment of a couple or rotational effect of a 
couple is also called a torque.  

It may be noted that in the discussion of 
rotation of a body about a fixed axis due to 
a single force, there is a reaction force at the 
fixed axis. Hence, for rotation one always 

needs two forces acting in opposite direction 
along different lines of action.   

Torque or Moment of a couple: Figure 4.8 
shows a couple consisting of two forces 

&
F and1  &

F2  of equal magnitudes and opposite directions 
acting along different lines of action separated 
by a distance r.  Corresponding position vectors 
should now be defined with reference to the 
lines of action of forces. Position vector of any 
point on the line of action of force 

&
F1  from the 

line of action of force 
&
F2  is 

&
r12.  Similarly, the 

position vector of any point on the line of action 

of force 
&
F2  from the line of action of force 

&
F1  

is  
&
r21.  Torque or moment of the couple is then 

given mathematically as 

Fig. 4.8: Torque of a couple.
& & & & &
� � � � �r F r F12 1 21 2    --- (4.19)

From the figure, it is clear that 
r r r12 21  sin sin� �� �

If 
& &
F F F1 2  ,  the magnitude of torque 

is given by

 W = r
12

 F
1
 sin D = r

21
 F

2
 sin E = r F  --- (4.20)

It clearly shows that the torque 
corresponding to a given couple, i.e., the 
moment of a given couple is constant, i.e., it 
is independent of the points of application of 
forces or the position of the axis of rotation, 
but depends only upon magnitude of either 
force and the separation between their lines of 
action. 

The direction of moment of couple can 
be obtained by using the vector formula of 
the torque or by using the right-hand thumb 
rule. For the couple shown in the Fig. 4.8, it 
is perpendicular to the plane of the figure and 
inwards. For a given pair of forces, the direction 
of the torque is fixed.
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4.11.1. To prove that the moment of a couple 
              is independent of the axis of rotation: 

Figure 4.9 shows a rectangular sheet (any 
object would do) free to rotate only about a fixed 
axis of rotation, perpendicular to the plane of 
figure, as shown. A couple consisting of forces 
F
ur

 and - F
ur

 is acting on the sheet at different 
locations. 

Here we are considering the torque of a 
couple to be two torques due to individual forces 
causing rotation about the axis of rotation. In 
Fig. 4.9(a), the axis of rotation is between the 
lines of action of the two forces constituting the 
couple. Perpendicular distances of the axis of 
rotation from the forces F

ur
 and - F

ur
 are x and y 

respectively. Rotation due to the pair of forces 
in this case is anticlockwise (from top view), 
i.e., directions of individual torques due to the 
two forces are the same.

� � � � � � �� � �� �� � � xF yF x y F rF  (4.21)

   (a)

  (b)
Fig. 4.9: Same couple on same object with 
fixed axis of rotation at different locations 
in (a) and (b).

In the Fig. 4.9 (b), lines of action of both 
the forces are on the same side of the axis of 
rotation. Thus, in this case, the rotation of + F

ur

is anticlockwise, while that of - F
ur

 is clockwise 
(from the top view). As a result, their individual 
torques are oppositely directed. Perpendicular 
distance of the forces F and -F from the axis of 
rotation are q and p respectively.

� � � � �

� �� � �
� �� � � qF pF

q p F rF   --- (4.22)

From equations (4.21) and (4.22), it is clear 
that the torque of a couple is independent of the 
axis of rotation.

4.12. Mechanical equilibrium: 
As a consequence of Newton’s second law, 

the momentum of a system is constant in the 
absence of an external unbalanced force. This 
state is called mechanical equilibrium.

A particle is said to be in mechanical 
equilibrium, if no net force is acting upon it. 
For a system of bodies to be in mechanical 
equilibrium, the net force acting on any part 
of the system should be zero. In other words, 
velocity or linear momentum of all parts of the 
system must be constant or (zero) for the system 
to be in mechanical equilibrium. Also, there is 
no acceleration in any part of the system.

Mathematically, � �F
ur

0 , for any part of 
the system for mechanical equilibrium.

In many situations the word couple is 
used synonymous to moment of the couple or 
its torque, i.e., every time we may not say it as 

torque due to the couple, but say that a couple 
is acting.

Moment of a force Moment of a couple
1

& & &
� � �r f  

& & & & &
� � � � �r F r F12 1 21 2  

2
&W  depends upon the axis of rotation and 
the point of application of the force.

&W  depends only upon the two forces, i.e., it 
is independent of the axis of rotation or the 
points of application of forces.

3
It can produce translational acceleration 
also, if the axis of rotation is not fixed or if 
friction is not enough.

Does not produce any translational 
acceleration, but produces only rotational or 
angular acceleration.

4
Its rotational effect can be balanced by a 
proper single force or by a proper couple.

Its rotational effect can be balanced only by 
another couple of equal and opposite torque.
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4.12.1 Stable, unstable and neutral             
           equilibrium: 

Figures 4.10 (a), (b) and (c) show a ball 
at rest in three situations under the action of 
balanced forces. In all these cases, it is under 
equilibrium. However, potential energy-wise, 
the three cases differ.

(a)

(b)

(c) ’
Fig. 4.10: states of mechanical equilibrium 
(a) stable, (b) unstable and (c) neutral. 

Stable equilibrium: In Fig. 4.9(a), the 
ball is most stable and is said to be in stable 
equilibrium. If it is disturbed slightly from 
its equilibrium position and released, it tends 
to recover its position. In this case, potential 
energy of the system is at its local minimum.
Unstable equilibrium: In Fig. 4.9(b), the ball 
is said to be in unstable equilibrium. If it is 
slightly disturbed from its equilibrium position, 
it moves farther from that position. This 
happens because initially, potential energy of 
the system is at its local maximum. If disturbed, 
it tries to achieve the configuration of minimum 
potential energy.

Neutral equilibrium: In Fig. 4.9(c), potential 
energy of the system is constant over a plane and 
remains same at any position. Thus, even if the 
ball is disturbed, it still remains in equilibrium 
at practically any position. This is described as 
neutral equilibrium.

Example 4.10: A uniform wooden plank of 
mass 30 kg is supported symmetrically by two 
light identical cables; each can sustain a tension 
up to 500 N. After tying, the cables are exactly 
vertical and are separated by 2 m. A boy of mass 
50 kg, standing at the centre of the plank, is 
interested in walking on the plank. How far can 
he walk? (g = 10 ms-2)

Solution: Let T
1
 and T

2
 be the tensions along 

the cables, both acting vertically upwards. 

Weight of the plank 300 N is acting 
vertically downwards through the centre, 1 m 
from either cable. Weight of the boy, 500 N is 
vertically downwards at the point where he is 
standing. 

� � � � �T T1 2 300 500 800  N
Suppose that the boy is able to walk x m 

towards the right. Obviously, the tension in the 
right side cable goes on increasing as he walks 
towards the cable. 

Moments of 300 N and 500 N forces about 
left end A are clockwise, while that of T

2
 is 

anticlockwise.

As the cable can sustain 500 N, (T
2
)

max
 = 

500 N

Thus, for the equilibrium about A, we can 
write,

300 1 500 1 500 2 0 4� � � �� � � � � �x x . m

Thus, the boy can walk up to 40 cm on 
either side of the centre.
Example 4.11: A ladder of negligible mass 
having a cross bar is resting on a frictionless 
horizontal floor with angle between its legs  
to be 400. Each leg is 1 m long. Calculate the 

If potential energy function is known for the 
system, mathematically, the three equilibria 
can be explained with the help of derivatives 
of that function. At any equilibrium position, 
the first derivative of the potential energy 

function is zero 
dU

dx
��

�
�

�
�
�0 . 

The sign of the second derivative
d U

dx

2

2

�

�
�

�

�
�   

decides the type of equilibrium. It is positive  

at stable equilibrium (or vice versa), negative 
at unstable equilibrium and zero (or does not 
exist) at neutral equilibrium configuration.

(a)



force experienced by the cross bar when a 
person of mass 50 kg is standing on the ladder. 
(g = 10 m s-2)
Solution: Tension T along the cross bar is 
horizontal. Let L be the length of each leg, 
which is 1 m.

As there is no friction, there is no horizontal 
reaction at the floor. Reaction N given by the 
floor at the base of the ladder will then be only 
vertical. Thus, along the vertical, two such 
reactions balance weight W = mg of the person. 

� � �N
mg

2
 250 N

At the left leg, about the upper end, the 
torque due to N is clockwise and that due to 
the tension T is anticlockwise. For equilibrium, 
these two torques should have same magnitude.

4.13. Centre of mass: 
As discussed earlier, Newton’s laws of 

motion and many other laws are applicable for 
point masses only. However, in real life, we 
always come across finite objects (objects of 
measurable sizes). Concept of centre of mass 
(c.m.) helps us in considering these objects to 
be point objects at a particular location, thereby 
allowing us to apply Newton’s laws of motion.
4.13.1. Mathematical understanding of 
             centre of mass:

(i) System of n particles: Consider a system 
of n particles of masses m

1
, m

2
 ... m

n
. 

  
1

n

im��  =  M the total mass.  

Let   be their respective position 
vectors from a given origin O (Fig. 4.11) . 

Fig. 4.11: Centre of mass for n particles. 

Position vector 
&
r  of their centre of mass 

from the same origin is then given by

&
& &

r
m r

m

m r

M

n

i i

n

i

n

i i� ��
�

�1

1

1

 
If the origin itself is at the centre of mass,

 
& &
r m r

n

i i� � ��0 0
1

  , then

1

n

i im r¦ &
 gives the moment of masses 

  
(similar to moment of force) about the centre 
of mass. 

Thus, centre of mass is a point about which 
the summation of moments of masses in the 
system is zero.

If   x
1
,  x

2
,  ... x

n
    are the respective x- 

coordinates of  r
1
,
 
r

2
, ... r

n
, the x-coordinate of 

the centre of mass is given by

 x
m x

m

m x

M

n

i i

n

i

n

i i� ��
�

�1

1

1

Similarly, y and z-coordinates of the centre 
of mass are respectively given by 

 

and

 

y
m y

m

m y

M

z
m z

m

m z

M

n

i i

n

i

n

i i

n

i i

n

i

n

i i

� �

� �

�
�

�
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�
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1

1

1
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(i) Continuous mass distribution: For a 

continuous mass distribution with uniform 
density, we need to use integration instead of 
summation. In this case, the position vector of 
the centre of mass is given by

&
& &

r
r dm

dm

r dm

M
� ��
�

�  
,
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where � �dm M  is the total mass of the object. 
Then the Cartesian coordinates of c.m. are   

 

x
x dm

dm

x dm

M
� ��
�

�  

y
y dm

dm

y dm

M
� ��
�

�  

z
z dm

dm

z dm

M
� ��
�

�  

 

Using the expressions given above, the 
centres of mass of uniform symmetric objects 
can be obtained. Some of these are listed in the 
Table 4.1 given below:

Table 4.1: Coordinate of the centre of mass 
(c.m.) for some symmetrical objects
Coordinates of 

c.m.
Uniform Symmetric 

Objects
System of two point 
masses: c.m. divides 
the distance in in-
verse proportion of 
the masses
Any geometrically 
symmetric object of 
uniform density.

Centre of mass at a 
geometrical centre of 
the  object

Isosceles triangular 
plate

x y
H

c c  0
3

, 
  

Right angled 
triangular plate

 
x

p
y

q
c c  

3 3
,  

 
Thin semicircular
ring of radius R

x y
R

c c� �0 2,  
�

Thin semicircular
 disc of radius R

x y
R

c c� �0 4
3

,  
�

Hemispherical shell
 of radius R

x y
R

c c  0
2

,  

Solid hemisphere of 
radius R

x y
R

c c  0 3
8

,  

Hollow right circu-
lar cone of height h

x y
h

c c  0
3

,  

Solid right circular 
cone of height h

x y
h

c c  0
4

,  

Example 4.12: A letter ‘E’ is prepared from a 
uniform cardboard with shape and dimensions 
as shown in the figure. Locate its centre of mass.

Solution: As the sheet is uniform, each square 
can be taken to be equivalent to mass m 
concentrated at its  respective centre. These 
masses will then be at the points labelled with 
numbers 1 to 10, as shown in figure. Let us 
select the origin to be at the left central mass m

5
, 

as shown and all the co-ordinates to be in cm.

By symmetry, the centre of mass of m
1
, m

2
 

and m
3
 will be at m

2 
(1, 2) having effective mass 

3m. Similarly, effective mass 3m due to m
8
, m

9
 

and m
10

 will be at m
9 
(1, -2).  Again, by symmetry, 

the centre of mass of these two (3m each) will 
have co-ordinates (1, 0). Mass m

6
 is also having 

co-ordinates (1, 0). Thus, the effective mass at 
(1, 0) is 7m.

Using symmetry for m
4
, m

5
 and m

7
, there 

will be effective mass 3m at the origin (0, 0). 
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Thus, effectively, 3m and 7m are separated 
by 1 cm along x-direction. y-coordinate is not 
required.

x
m x m x

m mc �
�
�

�
� � �

�
�1 1 2 2

1 2

3 0 7 1
3 7

0 7. �cm
 

Alternately, for two point masses, the centre 
of mass divides the distance between them in 
the inverse ratio of their masses. Hence, 1 cm is 

divided in the ratio 7:3.  
from 3m, i.e., from the origin at m

c

Example 4.13: Three thin walled uniform 
hollow spheres of radii 1cm, 2 cm and 3 cm 
are so located that their centres are on the three 
vertices of an equilateral triangle ABC having 
each side 10 cm. Determine centre of mass of 
the system.

Solution: Mass of a thin walled uniform hollow 
sphere is proportional to its surface area, (as 
density is constant) hence proportional to r2. 
Thus, if mass of the sphere at A is m

A
   m, then 

m
B
   4m and m

C
   9m. By symmetry of the 

spherical surface, their centres of mass are at 
their respective centres, i.e., at A, B and C.

Let us choose the origin to be at C, where 
the largest mass 9m is located and the point B 
with mass 4m on the positive x-axis. With this, 
the co-ordinates of C are (0, 0) and that of B 
are (10, 0). (Locating the origin at the larger 
mass here save our efforts of calculations like 
multiplications with larger numbers). If A of 
mass m is taken in the first quadrant, its co-

ordinates will be 

x
m x m x m x

m m m

m m m

m m m

c
A A B B C C

A B C

�
� �
� �

�
� � � � �

� �
�     5 4 10 9 0

4 9
45
14

ccm

y
m y m y m y

m m m

m m m

m m m

c
A A B B C C

A B C

�
� �
� �

�
� � � � �

� �
�     

10 3
2

4 0 9 0

4 9
10 33

28
cm

Example 4.14: A hole of radius r is cut from a 
uniform disc of radius 2r. Centre of the hole is 
at a distance r from centre of the disc. Locate 
centre of mass of the remaining part of the disc.

Solution: Method I: (Using entire disc):  
Before cutting the hole, c.m. of the full disc was 
at its centre. Let this be our origin O. Centre of 
mass of the cut portion is at its centre D. Thus, 
it is at a distance x1  r form the origin. Let C 
be the centre of mass of the remaining disc. 
Obviously, it should be on the extension of the 
line DO. Let it be at a distance x x2   from the 
origin. As the disc is uniform, mass of any of its 
part is proportional to the area of that part.

Thus, if m is the mass of the cut disc, mass 
of the entire disc must be 4m and mass of the 
remaining disc will be 3m.

x
m x m x

m mc �
�
�

1 1 2 2

1 2   As centre of mass of the 
full disc is at the origin, we can write,

 
0

3
3 3

�
� � �� �

�
� �

�m r m x

m m
x

r

Method II: (Using negative mass): Let &
R  be the position vector of the centre of mass 
of the uniform disc of mass M. Mass m is with 
centre of mass at position vector 

&
r  from the 

centre of the disc. Position vector of the centre 
of mass of the remaining disc is then given by
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&
& &

r
MR mr

M mc �
�
�  ….. (as if there is a negative 

mass, i.e., m
2
 = - m)

With our description, M = 4m,  m =m,   

R  =  0  and  r  = r � �
�

�
�

r
mr

m

r
c 3 3   ... Same 

as method I.

4.13.2. Velocity of centre of mass: 
Let v

1
, v

2
, ... v

n
 be the velocities of a system 

of point masses m
1
, m

2
, ... m

n
. Velocity of the 

centre of mass of the system is given by

 
x, y and z components of 

&v  can be obtained 
similarly.

For continuous distribution, &
&

v
v 

cm � � dm

M
4.13.3. Acceleration of the centre of mass: 

Let a
1
, a

2
, ... a

n
 be the accelerations 

of a system of point masses m
1
, m

2
, ... m

n
. 

Acceleration of the centre of mass of the system 
is given by

 x, y and z components of 
&
a  can be obtained 

similarly.

For continuous distribution, 
&

&

a
a dm

Mcm � �  

4.13.4. Characteristics of centre of mass:
 1.  Centre of mass is a hypothetical point 

at which entire mass of the body can be 
assumed to be concentrated. 

 2.  Centre of mass is a location, and not a 
physical quantity. 

 3.  Centre of mass is particle equivalent of a 
given object for applying laws of motion.

 4.  Centre of mass is the point at which, if 
a force is applied, it causes only linear 
acceleration and not angular acceleration.

 5.  Centre of mass is located at the centroid, 
for a rigid body of uniform density.

 6.  Centre of mass is located at the geometrical 
centre, for a symmetric rigid body of 
uniform density.

 7. Location of centre of mass can be changed 
only by an external unbalanced force.

 8. Internal forces (like during collision or 
explosion) never change the location of 
centre of mass.

 9.  Position of the centre of mass depends 
only upon the distribution of mass, 
however, to describe its location we may 
use a coordinate system with a suitable 
origin. In statistical terms the centre of 
mass is decided by the weighted average 
of individual masses. This is obtained 
by giving proper mass weightage to the 
distance. This should be clear from the 
mathematical expression for the location 
of the centre of mass.

 10. For a system of particles, the centre of 
mass need not coincide with any of the 
particles.

 11.  While balancing an object on a pivot, the 
line of action of weight must pass through 
the centre of mass and the pivot. Quite 
often, this is an unstable equilibrium.

 12. Centre of mass of a system of only two 
particles divides the distance between 
the particles in an inverse ratio of their 
masses, i.e., it is closer to the heavier 
mass.

 13. Centre of mass is a point about which the 
summation of moments of masses in the 
system is zero.

 14.  If there is an axial symmetry for a given 
object, the centre of mass lies on the axis 
of symmetry.

 15.  If there are multiple axes of symmetry 
for a given object, the centre of mass is at 
their point of intersection.

 16.  Centre of mass need not be within the 
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body (See the photograph given below: 
Picture 4.1). Other examples are a ring, a 
horse shoe, etc.

Picture 4.1: Courtesy Wikipedia: Estimated 

center of mass/gravity of a high jumper doing 

a Fosbury Flop. Note that it is below the bar in 

this position. This is possible because our head 

and legs are much heavier than the fleshy part. 

Increase in the gravitational potential energy of 

the high jumper depends upon this point.

4.14. Centre of gravity 
Centre of gravity (c.g.) of a body is the 

point around which the resultant torque due to 
force of gravity on the body is zero. Analogous 
to centre of mass, it is the weighted average of 
the gravitational forces (weights) on individual 
particles.

For uniform gravitational field (in simple 
words, if g is constant), c.g. always coincides 
with the c.m. Obviously it is true for all the 
objects on the  Earth  in our daily life. Thus, 
in common usage, the terms c.g. and c.m. are 

used for same purpose. This property can be 
used to determine the c.g. (or c.m.) of a laminar 
(laminar means like a leaf – two dimensional) 
object.

In Fig. 4.12, a laminar object is suspended 
from a rigid support at two orientations. Lines 
are to be drawn on the object parallel to the 
plumb line shown. Plumb line is always vertical, 
i.e., parallel to the line of action of gravitational 
force. Intersection of the lines drawn is then 
the point through which line of action of the 
gravitational force passes for any orientation. 
Thus, it gives the location of the c.g. or c.m. 

    

Centre of mass is a fixed property for a 
given rigid body in spite of any orientation. 
The centre of gravity may depend upon non-
uniformity of the gravitational field, in turn, 
will depend upon the orientation. For objects on 
the  Earth , this will be possible only if the size 
of an object is comparable to that of the  Earth  
(size at least few thousand km). In such cases, 
the c.g. will be slightly lower than the c.m. as on 
the lower side of an object the gravitational field 
is stronger. Of course, we shall not come across 
such an object.

Exercises Exercises
1. Choose the correct answer.
 i) Consider following pair of forces of equal 

magnitude and opposite directions:
  (P) Gravitational forces exerted on each 

other by two point masses separated 
by a distance.

  (Q) Couple of forces used to rotate a water 
tap.

  (R) Gravitational force and normal force 
experienced by an object kept on a 
table.

  For which of these pair/pairs the two forces 

do NOT cancel each other’s translational 
effect?

  (A) Only P (B) Only P and Q 
(C) Only R (D) Only Q and R

 ii) Consider following forces: (w) Force due 
to tension along a string, (x) Normal force 
given by a surface,  (y) Force due to air 
resistance and (z) Buoyant force or upthrust 
given by a fluid.

  Which of these are electromagnetic forces?
  (A) Only w, y and z 



74

  (A) Centre of mass of a ‘C’ shaped uniform 
rod can never be a point on that rod.

  (B) If the line of action of a force passes 
through the centre of mass, the moment 
of that force is zero.

  (C) Centre of mass of our Earth is not at its 
geometrical centre.

  (D) While balancing an object on a pivot, 
the line of action of the gravitational 
force of the earth passes through the 
centre of mass of the object.

viii. For which of the following objects will the 
centre of mass NOT be at their geometrical 
centre?

  (I)    An egg  
  (II)   a cylindrical box full of rice 
  (III) a cubical box containing assorted 
                sweets
    (A) Only (I)
    (B) Only (I) and (II)
    (C) Only (III)
    (D) All, (I), (II) and (III).

2. Answer the following questions. 
 i)  In the following table, every entry on the 

left column can match with any number of 
entries on the right side. Pick up all those 
and write respectively against A, B, C and 
D.

Name of the force Type of the force
A Force due to 

tension in a string
P EM force

B Normal force Q Reaction force

C Frictional force R Conservative 
force

D Resistive force 
offered by air or 
water for objects 
moving through it.

S Non-
conservative
force

 ii)   In real life objects, never travel with 
uniform velocity, even on a horizontal 
surface, unless something is done? Why 
is it so? What is to be done?

 iii)  For the study of any kind of motion, we 
never use Newton’s first law of motion 
directly. Why should it be studied?

 iv)   Are there any situations in which we 
cannot apply Newton’s laws of motion? 
Is there any alternative for it?

  (B) Only w, x and y 
  (C) Only x, y and z 
  (D) All four.
iii)  At a given instant three point masses m, 

2m and 3m are equidistant from each other. 
Consider only the gravitational forces 
between them. Select correct statement/s 
for this instance only:

  (A) Mass m experiences maximum force.
  (B) Mass 2m experiences maximum force.
  (C) Mass 3m experiences maximum force.
  (D) All masses experience force of same 
              magnitude.
 iv) The rough surface of a horizontal table 

offers a definite maximum opposing force 
to initiate the motion of a block along the 
table, which is proportional to the resultant 
normal force given by the table. Forces  
F

1
 and F

2
 act at the same angle T with the 

horizontal and both are just initiating the 
sliding motion of the block along the table. 
Force F

1
 is a pulling force while the force 

F
2 
is a pushing force.  F

2
 > F

1 
, because

  (A) Component of F
2
 adds up to weight to 

        increase the normal reaction.
  (B) Component of F

1 
 adds up to weight to 

               increase the normal reaction.
  (C) Component of F

2
 adds up to the               

opposing force.
  (D) Component of F

1
 adds up to the               

opposing force.
 v.  A mass 2m moving with some speed is 

directly approaching another mass m 
moving with double speed. After some 
time, they collide with coefficient of 
restitution 0.5. Ratio of their respective 
speeds after collision is

  (A) 2/3  (B) 3/2  
  (C) 2  (D) ½
 vi.  A uniform rod of mass 2m is held horizontal 

by two sturdy, practically inextensible 
vertical strings tied at its ends. A boy of 
mass 3m hangs himself at one third length 
of the rod. Ratio of the tension in the string 
close to the boy to that in the other string is

  (A) 2  (B) 1.5  
  (C) 4/3  (D) 5/3
 vii. Select WRONG statement about centre of 

mass:
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 v)  You are inside a closed capsule from where 
you are not able to see anything about 
the outside world. Suddenly you feel 
that you are pushed towards your right. 
Can you explain the possible cause (s)? 
Is it a feeling or a reality? Give at least 
one more situation like this.

 vi)  Among the four fundamental forces, 
only one force governs your daily life 
almost entirely. Justify the statement by 
stating that force.

 vii)  Find the odd man out: (i) Force 
responsible for a string to become taut 
on stretching (ii) Weight of an object (iii) 
The force due to which we can hold an 
object in hand. 

 viii) You are sitting next to your friend on 
ground. Is there any gravitational force 
of attraction between you two? If so, why 
are you not coming together naturally? 
Is any force other than the gravitational 
force of the earth coming in picture?

 ix)  Distinguish between: (A) Real and 
pseudo forces, (B) Conservative and 
non-conservative forces, (C) Contact 
and non-contact forces, (C) Inertial and 
non-inertial frames of reference.

 x)  State the formula for calculating work 
done by a force. Are there any conditions 
or limitations in using it directly? If 
so, state those clearly. Is there any 
mathematical way out for it? Explain.

 xi)  Justify the statement, “Work and energy 
are the two sides of a coin”.

 xii)  From the terrace of a building of height 
H, you dropped a ball of mass m. It 
reached the ground with speed v. Is 

the relation mgH m 
1
2

2v  applicable 
exactly? If not, how can you account 
for the difference? Will the ball bounce 
to the same height from where it was 
dropped?

 xiii) State the law of conservation of linear 
momentum. It is a consequence of which 
law? Given an example from our daily 
life for conservation of momentum. Does 
it hold good during burst of a cracker?

 xiv) Define coefficient of restitution and 

obtain its value for an elastic collision 
and a perfectly inelastic collision.

 xv)  Discuss the following as special cases of 
elastic collisions and obtain their exact 
or approximate final velocities in terms 
of their initial velocities.

      (i)  Colliding bodies are identical.
     (ii)  A veru heavy object collides on a               
                 lighter object, initially at rest.
   (iii) A very light object collides on a 

comparatively much massive object, 
initially at rest.

 xvi) A bullet of mass m
1
 travelling with a 

velocity u strikes a stationary wooden 
block of mass m

2
 and gets embedded into 

it. Determine the expression for loss in 
the kinetic energy of the system. Is this 
violating the principle of conservation of 
energy? If not, how can you account for 
this loss?

 xvii) One of the effects of a force is to change 
the momentum. Define the quantity 
related to this and explain it for a variable 
force. Usually when do we define it 
instead of using the force?

 xviii) While rotating an object or while 
opening a door or a water tap we apply a 
force or forces. Under which conditions 
is this process easy for us? Why? Define 
the vector quantity concerned. How does 
it differ for a single force and for two 
opposite forces with different lines of 
action? 

 xix) Why is the moment of a couple 
independent of the axis of rotation even 
if the axis is fixed?

 xx)  Explain balancing or mechanical 
equilibrium. Linear velocity of a rotating 
fan as a whole is generally zero. Is it in 
mechanical equilibrium? Justify your 
answer.

 xxi) Why do we need to know the centre of 
mass of an object? For which objects, 
its position may differ from that of the 
centre of gravity?

Use g = 10 m s -2, unless, otherwise stated.

3. Solve the following problems.
 i) A truck of mass 5 ton is travelling on a 



76

horizontal road with 36 km hr -1 stops 
on traveling 1 km after its engine fails 
suddenly. What fraction of its weight is the 
frictional force exerted by the road? 

  If we assume that the story repeats for a 
car of mass 1 ton i.e., can moving with 
same speed stops in similar distance same  
how much will the fraction be? 

     [Ans: 
1
200

in the both]

 ii) A lighter object A and a heavier object B 
are initially at rest. Both are imparted the 
same linear momentum. Which will start 
with greater kinetic energy: A or B or both 
will start with the same energy?

      [Ans: A]
 iii) As I was standing on a weighing machine 

inside a lift it recorded 50 kg wt. Suddenly 
for few seconds it recorded 45 kg wt. What 
must have happened during that time? 
Explain with complete numerical analysis. 
[Ans: Lift must be coming down with 

acceleration 
g m s

10
1 2� � ]

 iv) Figure below shows a block of mass 35 kg 
resting on a table. The table is so rough that 
it offers a self adjusting resistive force 10% 
of the weight of the block for its sliding 
motion along the table. A 20 kg wt load is 
attached to the block and is passed over a 
pulley to hang freely on the left side. On the 
right side there is a 2 kg wt pan attached to 
the block and hung freely. Weights of 1 kg 
wt each, can be added to the pan. Minimum 
how many and maximum how many such 
weights can be added into the pan so that 
the block does not slide along the table? 

    [Ans: Min 15, maximum 21].

           

35 kg wt
on rough table

20kg wt
load

2kg wt
pan

 v) Power is rate of doing work or the rate at 
which energy is supplied to the system. 
A constant force F is applied to a body 
of mass m. Power delivered by the force 
at time t from the start is proportional to 

  (a) t   (b) t2   

(c)  t    (d) t0 
  Derive the expression for power in terms 

of F, m and t.      

   [Ans: p
F t

m
p t� �

2

, �  ]

 vi) 40000 litre of oil of density 0.9 g cc is 
pumped from an oil tanker ship into a 
storage tank at 10 m higher level than the 
ship in half an hour. What should be the 
power of the pump? 

      [Ans: 2 kW]
 vii) Ten identical masses (m each) are 

connected one below the other with 
10 strings. Holding the topmost string, 
the system is accelerated upwards with 
acceleration g/2. What is the tension 
in the 6th string from the top (Topmost 
string being the first string)?

      [Ans: 6 mg]
 viii) Two galaxies of masses 9 billion solar 

mass and 4 billion solar mass are 5 
million light years apart. If, the Sun has 
to cross the line joining them, without 
being attracted by either of them, through 
what point it should pass? 

  [Ans: 3 million light years from the 9 
billion solar mass]

 ix) While decreasing linearly from 5 N to 3 
N, a force displaces an object from 3 m 
to 5 m. Calculate the work done by this 
force during this displacement. 

      [Ans: 8 N]
 x) Variation of a force in a certain region 

is given by F = 6x2 - 4x - 8. It displaces 
an object from x = 1 m to x = 2 m in this 
region. Calculate the amount of work 
done. [Ans: Zero]

 xi) A ball of mass 100 g dropped on the 
ground from 5 m bounces repeatedly. 
During every bounce 64% of the 
potential energy is converted into kinetic 
energy. Calculate the following:

  (a) Coefficient of restitution.
  (b) Speed with which the ball comes up 

from the ground after third bounce.
  (c) Impulse given by the ball to the 

ground during this bounce.
  (d) Average force exerted by the ground 
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if this impact lasts for 250 ms.
  (e) Average pressure exerted by the 

ball on the ground during this impact if 
contact area of the ball is 0.5 cm2.

    [Ans: 0.8, 5.12 m/s, 1.152N s, 
              4.608 N, 9.216×104 N/m2]
 xii) A spring ball of mass 0.5 kg is dropped 

from some height. On falling freely for 
10 s, it explodes into two fragments of 
mass ratio 1:2. The lighter fragment 
continues to travel downwards with 
speed of 60 m/s. Calculate the kinetic 
energy supplied during explosion. 

      [Ans: 200 J]
 xiii)  A marble of mass 2m travelling at 6 

cm/s is directly followed by another 
marble of mass m with double speed. 
After collision, the heavier one travels 
with the average initial speed of the two. 
Calculate the coefficient of restitution.

      [Ans: 0.5]
 xiv) A, 2 m long wooden plank of mass 20 

kg is pivoted (supported from below) at 
0.5 m from either end. A person of mass 
40 kg starts walking from one of these 
pivots to the farther end. How far can the 
person walk before the plank topples? 

      [Ans: 1.25 m]
 xv) A 2 m long ladder of mass 10 kg is kept 

against a wall such that its base is 1.2 m 

away from the wall. The wall is smooth 
but the ground is rough. Roughness of the 
ground is such that it offers a maximum 
horizontal resistive force (for sliding 
motion) half that of normal reaction at 
the point of contact. A monkey of mass 
20 kg starts climbing the ladder. How 
far can it climb along the ladder? How 
much is the horizontal reaction at the 
wall? 

     [Ans: 1.5 m, 15 N]
 xvi) Four uniform solid cubes of edges 10 

cm, 20 cm, 30 cm and 40 cm are kept on 
the ground, touching each other in order. 
Locate centre of mass of their system.  
    [Ans: 65 cm, 
17.7 cm]

 xvii) A uniform solid sphere of radius R has a 
hole of radius R/2  drilled inside it. One 
end of the hole is at the centre of the 
sphere while the other is at the boundary. 
Locate centre of mass of the remaining 
sphere.      
[Ans: -R/14 ] 

 xviii) In the following table, every item on the 
left side can match with any number of 
items on the right hand side. Select all 
those.

***

Types of collision Illustrations
(a) Elastic collision
(b) Inelastic collision
(c) Perfectly inelastic collision
(d) Head on collision

(i) A ball hit by a bat.
(ii) Molecular collisions responsible for pressure exerted by 
       a gas.
(iii) A stationary marble A is hit by marble B and the marble   
        B comes to rest.
(iv) A blob of clay dropped on the ground sticks to the ground.
(v) Out of anger, giving a kick to a wall.
(vi) A striker hits the boundary of a carrom board in a direction 
       perpendicular to the boundary and rebounds.


