Trains having length a and b and Speeds x and ycrossing each other then,

Time =
$$\begin{cases} \frac{a+b}{x+y} & \text{(Opposite direction)} \\ \frac{a+b}{x-y} & \text{(Same direction)} \end{cases}$$

Total Distance = Distance + Length of the train

Length of a train = Speed \times Time

Distance = Speed \times Time

Trains of equal lengths crossing each other

Time =
$$\begin{cases} \frac{2t_1t_2}{t_1+t_2} & \text{(Opposite direction)} \\ \frac{2t_1t_2}{t_2-t_1} & \text{(Same direction)} \end{cases}$$

 $Speed = S_B - S_S$

Conversion of units of speed

Speed =
$$\frac{\text{Distance}}{\text{Time}}$$

$$1 \text{ km/h} = \frac{5}{18} \text{ m/s}$$
$$1 \text{ m/s} = \frac{18}{5} \text{ km/h}$$

Average speed when distance is same

Avg. Speed =
$$\frac{2AB}{A+B}$$

(where A and B are

two speeds)

Speed, Time and Distance

Average speed when time is

same =
$$\frac{A+B}{2}$$
, where A and B

are two speeds

Total distance Average speed =

Total time

If a:b is the ratio of speed, then b:a is the ratio of time

Speed = $S_{R} + S_{c}$

speed)

Problem on Trains

Distance travelled to cross a

bridge/platform of length y m, by a train of x m is (x + y)

Relative speed

Train 1 - x km/h

Train 2 - y km/h

Same direction

Relative Speed = (x - y) km/h

Opposite direction Relative Speed = (x + y)km/h

Average speed =

Distance travelled to cross a pole/man by a train of length x.

Downstream speed × Upstream speed

Speed in still water

Speed of stream =
$$\frac{1}{2}$$
 (Downstream speed \boxtimes Upstream speed)

Speed of Boat in still water $\rightarrow x \text{ km/h}$ Speed of stream $\rightarrow y \text{ km/h}$

Downstream

Upstream speed = (x-y) km/h

Downstream speed = (x + y) km/h

Boat and Stream

Upstream

Speed of Boat in still water = $\frac{1}{2}$ (Downstream speed + Upstream

Trace the Mind Map

- ▶ First Level ▶ Second Level ▶ Third Level