Chapter 1

INTRODUCTION
TO MATHEMATICAL ANALYSIS

§ 1.1. Real Numbers.
The Absolute Value of a Real Number

Any decimal fraction, terminating or nonterminating, is called

a real number.
Periodic decimal fractions are called rational numbers. Every

rational number may be written in the form of a ratio, % , of two

integers p and ¢, and vice versa.

Nonperiodic decimal fractions are called irrational numbers.

If X is a certain set of real numbers, then the notation x€ X
means that the number x belongs to X, and the notation xQEX
means that the number x does not belong to X.

A set of real numbers x satisfying the inequalities a < x < b,
where a and b are fixed numbers, is called an open interval (a, b).
A set of real numbers x satisfying the inequalities a<Cx<{b is
called a closed interval [a, b]. A set of real numbers x, satisfying
the inequalities a<Cx <b or a<<x<(b, is called a half-open in-
terval [a, b) or (a, b]. Open, closed, and half-open intervals are
covered by a single term interval.

Any real number may be depicted as a certain point on the
coordinate axis which is called a proper point. We may also intro-
duce two more, so-called improper points, oo and —oo infinitely
removed from the origin of coordinates in the positive and nega-
tive dircctions, respectively. By definition, the inequalities —oo <
< x < 4 oo hold true for any real number x.

The interval (a—e, a+¢) is called the e-neighbourhood of the
number a.

The set of real numbers x > M is called the M-neighbourhood
of the improper point 4 oo.

The set of real numbers x << M is called the M-neighbourhood
of t.e improper point —oo.

The absolute value of a number x (denoted |x|) is a number
that satisfies the conditions

|x|=—x if x<O0;
[x|=x if x=0.
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The properties of absolute values are:

(1) the inequality |x|<<a means that —a<<x<{a;

(2) the inequality |x|>a means that x >a or x << —a;
@) lxxy|<|x|+1yl;

@ lxxy|=[lxl—1yll;

©6) lxyl=1xllyl;

©) |2|= 1@+ 0.

m
1.1.1. Prove that the number
0.1010010001...1000...01...

——
n

is irrational.

Solution. To prove this, it is necessary to ascertain that the
given decimal fraction is not a periodic one. Indeed, there are n
zeros between the nth and (n- 1)th unities, which cannot occur
in a periodic fraction.

1.1.2. Prove that any number, with zeros standing in all deci-
mal places numbered 10” and only in these places, is irrational.

1.1.3. Prove that the sum of, or the difference between, a ra-
tional number @ and an irrational number P is an irrational
number.

Solution. Consider the sum of a and B. Suppose a+f=79y is a
rational number, then p=vy—a is also a rational number, since
it is the difference between two rational numbers, which contra-
dicts the condition. Hence, the supposition is wrong and the number
o+ P is irrational.

1.1.4. Prove that the product af and the quotient a/f of a
rational number e =40 and an irrational number P is an irraticnal
number.

1.1.5. (a) Find all rational values of x at which y=} x*+x+3
is a rational number.

Solution. (a) Suppose x and y=l/x2—|-x+3 are rational num-
bers. Then the diflerence y—x=gq is also a rational number. Let
us now express x through ¢

y—x=l/x“+x+3—x:q,
Ve+x+3=q+x,
X4 x4+ 3=+ 2qx - X%,
=3

X=1—g,

By a direct check it is easy to ascertain that g=41/,.
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Prove the reverse, namely, y=l/x2+x+3 is a rational number

if x=‘|7—2:—2‘3, where ¢ is any rational number not equal to /.
Indeed,
RV P (¢*—3)* | ¢*—3 _
_ l/q“—?a”+7q'-’—64+9 _ 1/ @—=g+3* _¢*—q+3 = i)
T—2° =2 ~Ti—27 \777%2)"

The latter expression is rational at any rational ¢ not equal to /,.
(b) Prove that V2 is an irrational number.

1.1.6. Prove that the sum V§+V§ is an irrational number.

Solution. Assume the contrary, i.e. that the number V3+V2
is rational. Then the number

= 5 I
V3-Va= V3+V2

is also rational, since it is the quotient of two rational numbers.
Whence the number

VEI=1(V3+V2)—(V3—VD)]

is Lational, which contradicts the irrational nature of the number
V2 (sce Problem 1.1.5). Hence, the supposition is wrong, and the
number /' 3+V'2 is irrational.

1.1.7. Prove that for every positive rational number r satisfying
the condition r? < 2 one can always find a larger rational number
r+h(h > 0) for which (r+h)* < 2.

Solution. We may assume h<<1. Then h*<h and (r4+h)*<
< r*42rh-+h. That is why it is sufficient to put r?4-2rh4h=2,
i.e. h=(2—r?)/(2r+1).

1.1.8. Prove that for every positive rational number s satisfying
the condition s? > 2 one can always find a smaller rational number
s—k (k> 0) for which (s—£&)>> 2.

1.1.9. Solve the following inequalities:

(@ |2x—3| < I;

(b) (x—2)* =4

(c) x*+2x—8<0;

(d) |#2—=Tx412] > x*—=Tx+ 12.

Solution. (a) The inequality |2x—3]< 1 is eqivalent to the
inequalities

—l<2x—3<1,
whence
2<2x <4 and 1 <x<2.
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(d) The given inequality is valid for those values of x at which
x*—Tx+12 < 0, whence 3 < x < 4.

1.1.10. Find out whether the following equations have any
solutions:

(@) |x|=x+5; (b) |x]=x—5?

Solution. (a) Atx>=0 we have x=x-45. Hence, there are no
solutions. At x <0 we have —x=2x-+5, whence x=—5/2. This
value satisfies the initial equation.

(b) At x>0 we have x=x—>5. Hence, there are no solutions.
At x< 0 we have —x=x—>5, whence x=25/2, which contradicts
our supposition (x < 0). Thus, the equation has no solution.

1.1.11. Determine the values of x satisfying the following equa-
lities:
x—1] x—1,

(a) oy | Rl &
(b) |x*—5x+6|=— (x*—5x -+ 6).

1.1.12. Determine the values of x satisfying the following equ-
alities:

@) | (R +4x+9)+ (2x—3)|=|x*+4x+9|+|2x—3

(b) |(x*—4)— (x*+2) | = |x*—4|—|x2+2].

Solution. (a) The equality |a+b|=|a|+|b| is valid if and
only if both summands have the same sign. Since

XAy 4+ 9=(x+ 2245 >0

at any values of x, the equality is satisfied at those values of x
at which 2x—32>0, i.e. at x> 3/2.

(b) The equality |a—b|=|a|—]|b| holds true if and only if a
and b have the same sign and |a|>=|b]|.

In our case the equality will hold true for the values of x at
which

xt—4=x242.
Whence .
2—2>=>1; |x|=V3.

1.1.13. Solve the inequalities:
(@) |3x—5|—|2x+3|>0;
(b) |x*—5x| > x| —|5x].

1.1.14. Find the roots of the following equations.

(a) |sinx|=sinx+1;

(b) x*—2|x|—3=0.

Solution. (a) This equation will hold true only for those values
of x at which sinx <0, that is why we may rewrite it in the
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following way:
—sinx =sinx+1, or sinx=—!/,;

whence x =nk—(—1)*n/6 (=0, =1, £2, ...).

(b) This equation can be solved in a regular way by considering
the cases x>0 and x<{0. We may also solve this equation re-
writing it in the form

|x|2—2|x]—3=0.
Substituting y for |x|, we obtain
y'—2y—3=0,

whence y, =3, y,=—1. Since y=|x|>=0, the value y,=—1 does
not fit in. Hence

y=|x|=3,
ie. x,=-—3, x,=3.

§ 1.2. Function. Domain of Definition

The independent variable x is defined by a set X of its values.

If to each value of the independent variable x€& X there corres-
ponds one definite value of another variable y, then y is called
the function of x with a domain of definztzon (or domain) X or,
in functional notation, y=y (x), =f(x), or y=¢(x), and so
forth. The set of values of the functlon y (x) is called the range
of the given function.

In particular, the functions defined by the set of natural num-
bers 1, 2, 3, ..., are called numerical sequences. They are written
in the following way: x;, X,, ..., %, ... or {x,}.

1.2.1. Given the function f(x) = (x4 1)/(x—1). Find f(2x), 2f (x),
F ), [F ()]

Solutton
2 1
feo=2El of (=2l

Fot =5t [ el = ("*’) :
1.2.2. (a) Given the function

l—x
f()C) = ‘Ogm .
Show that at x,, x,€(—1, 1) the following identity holds true:

Pl T = (ke ),




16 Ch. 1. Introduction to Mathematical Analysis

Solution. At x€(—1, 1) we have (1—x)/(1 +x) >0 and hence

x1) (1 —x,)
AIEEARAL

f +f 2)—]0g l-{— +logl—|—x log(l+
On the other hand,

_ Xitxe
X1+ %, )__ I+ X%y I +xX—X—Xp
f<l+x,x2 =log 1+ X11%, = log T xto+x +x
1 xyx,

—x1) (1 —x5)
= log { u+xl)<1+xz> ’

which coincides with the right-hand member of expression (1).
(b) Given the function f(x)=(a*+a~*)/2 (a>0). Show that
fx+y9)+Fx—y) =2 ()] (y)

1.2.3. Given the function f(x)=(x4+1)/(x*—1). Find f(—1);
f@+1); f(a)+1

1.2.4. Given the function f(x)=x*—1. Find
[(O)—] (a) a-th
-—bT-—-(b;&a) andi< 5 )

a

1.2.5. Given the function

3-*—1 —1<<x<0
fx)= < tan(x/2), 0 x < m,
x/(x*—2), n<x<6b.

Find f(=1), f(n/2), f(2n/3), [ (4), [ (6).

Solution. The point x=—1 lies within the interval [—1, 0).
Hence
f(—=1)=3"‘"""—1=2.

The points x=mn/2, x=2n/3 bhelong to the interval [0, =).
Hence
f(m)2) =tan (n/4)=1; f(27/3) =tan(7/3)=)3.
The points x=4, x=6 belong to the interval [xn, 6]. Hence
4 2 _ 3
@ =fp==7 1O =g%—=1"

1.2.6. The function f(x) is defined over the whole number scale
by the following law:
2x3 4 1. if x<{2,
o]

1/(x—2), if 2<x<3,
2x —D, if x> 3.
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Find: f(VV'2), f(V/'8), f(/ log, 1024).

1.2.7. In the square ABCD with side AB=2 a straight line
MN is drawn perpendicularly to AC. Denoting the distance from
the vertex A to the line MN as x, express through x the area S
of the triangle AMN cut off from the square by the straight

line MN. Find this area at x=}/2/2

!

and at x=2 (Fig. 1). 8 N
Solution. Note ’_t_hat AC =2 I/_Q_, M\ Q
hence 0<{x<C2V 2. fx<<V 2, N
then N
S(x)=Sp amn =x%. <
If x>1V2, then s
S(x) =4—Q2V2 —xp=—x+
+4x)V2 —4. A N D
Thus, Fig. 1
S(x)={ A Isx<V2,
—x*+4xV2 —4, V2<x<2V2.

Since V2/2<V2,S1V2/2=2/22="1, Since 2>V72,
S2)=—4+8V2 —4=8(J/2 —1).

1.2.8. Bring the number a,, which is equal to the nth decimal
place in the expansion of /2 into a decimal fraction, into cor-
respondence with each natural number a. This gives us a certain
function a, =¢ (n). Calculate ¢ (1), ¢(2), ¢ (3), ¢ (4).

Solution. Extracting a square root, we find V2 =1.4142... .
Hence

e()=4 ¢@2) =1L ¢@B) =4 ¢@H=2
1.2.9. Calculate f (x)=49/x? 4 x? at the points for which 7/x + x=3.

Solution. f(x)=49/x*+ x*=(T/x+ x)*— 14, but 7/x+4 x=3, hence
f(x) =9—14=—5.

1.2.10. Find a function of the form f(x)=ax*+bx+ec, if it is
known that [(0)=5; f(—1)=10; f(1)=6.
Solution.

f(0)=5=a-024+b-04c,
f(—y=10==a—b-+c,
f(l)=6=a-+40b-+c.
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Determine the coefficients a, b, ¢ from the above system. We have:
a=3; b=—2; ¢=>5; hence f(x) 3x2—2x+5.

1.2.11. Find a function of the form
f(x)=a+b0” (€ >0),
il f(0)=15; f(2)=30; f(4)=
1.2.12. Find ¢ [¢(x)] and ¢[e (x)] if
@ (x)=x* and ¢ (x) =2*%
Solution.
¢y )] =[px]= @ =2%,
¥ [ (x)] =27 ® =2+,

1.2.13. Given the function

Find f@3x); f*%); 3f (x); [f(x)]°.
1.2.14. Let

at 0<<x<,
3x—1 at 1<<x<3.

1.2.15. Prove that if for an exponential function y=a*(a > 0;
a==1) the values of the argument x=x, (n=1, 2, ...) form an
arithmetic progression, then the corresponding values of the func-
tion y,=a*»(n=1, 2,...) form a geometric progression.

1.2.16. f(x)= x>+ 6, ¢ (x) =5x. Solve the equation f(x)=|¢(x)].
1.2.17. Find f(x) if

3% at —1 <x<0,
f(x) [

fx+1)=x2—3x+2.
1.2.18. Evaluate the functions
f()=x*+1/x* and @ (x) =x*4 1/x*
for the points at which 1/x+x=5.
1.2.19. f(x)=x+1; ¢ (x) =x—2; solve the equation
T +e@[=F(x)|+]eox)].

1.2.20. A rectangle with altitude x is inscribed in a triangle
ABC with the base b and altitude h. Express the perimeter P and
area S of the rectangle as functions of x.
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1.2.21. Find the domains of definition of the following functions:
@fE=Vx—14+Vb—x;

b) F () =V P—x—2+ ‘

l/3+2x—x2;

X
() f(x)= V—-:;—:-Q

(d) f(x)=Vsinx—1;

@ (=1 log 275
(

f) f(x)=1log,5;
2 —5x+46
(@) f (x)=log ;zﬁ% ;

(h) f (x) = arcsin *¥=3_ log (4 — x);

2
(l) f(x)= log“ x)ﬂ-Ver?

) f(x)=logcosx;
(k) f (x) = arc cos
1

(M y=]f—|x|_x .

Solution. (a) The domain of definition of the given function
consists of those values of x at which both items take on real
values. To ensure this the following two conditions must be satis-

fied:
x—12>0,
6—x=>=0.
By solving the inequalities we obtain x>1; x<C6. Hence,

the domain of definition of the function will be the segment [1,6].
(e) The function is defined for the values of x for which

By — x2
x4x >0.

3 .
442sinx’

log
This inequality will be satisfied if
HE >0, or 2 —5r+4<0.

Solving the latter mequallty, we find 1 <Cx<{4. Thus, the seg-
ment [1,4] is the domain of definition of the function.

(f) The function is defined for all positive x different from unity,
which means that the domain of definition of the function consists
of the intervals (0, 1) and (1, + oo).
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(k) The function is defined for the values of x for which

3
-1 <4—|—2$inx< L.

Since 44-2sinx >0 at any x, the problem is reduced to solving

the inequality
3

41-2sinx <l

Whence
3<{4+2sinx, i.e. sinx>=—1/,.

By solving the latter inequality we obtain

+2kn<x —|—2kn (=0, £1, £2, ...).

() The function Iis deﬁned for the values of x for which
lxl—x>0 whence |x|> x. This inequality is satisfied at x <O.
Hence, the function is defined in the interval (—oo, 0).

1.2.22. Fmd the domains of definition of the following functions:
(a) f(x)=V arcsin (log, x);

(b) f(x) log, log, log, x;
(C) f(X) =_)1(_+2arc sin L

(d) f(x)=log|4—x*|;
(e) f(x) =V cos(sin x) 4 arc sin l;‘f )

Find the ranges of the following functions:

1 .
(f) y= 2—cos 3x ’

Vx——2’

@® y =1_—|}ft7 :
Solution. (a) For the function f(x) to be defined the following
inequality must be satisfied

arc sin (log, x) =0,

whence 0<Clog, x<C 1 and 1<{x<C2.
(b) The function log,log,log,x is defined for log,log, x >0,
whence log,x >1 and x> 4. Hence, the domain of definition is

the interval 4 < x<< + 0.
c) The given function is defined if the following inequalities are

satisfied simultaneously:
x5#=0; —1<<x<1 and x> 2,

but the inequalities —1<C x<C1 and x > 2 are incompatible, that
is why the function is not deﬁned for any value of x.
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(e) The following inequalities must be satisfied simultaneously:

1+ x2
2x <l

cos(sinx) >0 and '

The first inequality is satisfied for all values of x, the second,
for |x|=1. Hence, the domain of definition of the given function
consists only of two points x=+1.

(f) We have

cos 3x = Zy—1 .

Since
2y—1
Yy

whence, taking into account that y > 0, we obtain

—1<{cos3x<< 1, we have —1< <l,
—y<2y—1<y or %<y<l-

(@) Solving with respect to x, we obtain
e L VT4

2y
The range of the function y will be determined from the relation
1—4y? > 0.
Whence
1 1
—e SYS 5o

1.2.23. Solve the equation
arc tanV/ x(x + 1)+ arc sinV/ X+ x+ 1 = n/2.

Solution. Let us investigate the domain of definition of the func-
tion on the left side of the equation. This function will be defined
for

4+x=0 0 ®+x+1<1,

whence x>+ x=0.

Thus, the left member of the equation attains real values only
at x,=0 and x,=—1. By a direct check we ascertain that they
are the roots of the given equation.

This problem shows that a study of domains of definition of a
function facilitates the solution of equations, inequalities, etc.

1.2.24. Find the domains of definition of the following functions:

Vit 2x+3
(b) y=log sin(x—3)+ ) 16 —x%
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x—2,
3 ’

(¢) y=V'3—x-+arc cos

X
(d) y=log(l+x)'

1.2.25. The function f(x) is defined on the interval [0, 1]. What
are the domains of definition of the following functions:

(@) FBx; (b) fF(x—5); (c) f(tanx)?

Solution. The given functions are functions of functions, or su-
perpositions of functions, i. e. composite functions.

a) Let us introduce an intermediate argument u =3x2. Then the
function f(3x?) =f(u) is defined if 0<Cu<Cl1, i.e. 0<C3x2< 1,
whence —1/)/ 3<x<< 1/)/3.

(c) Similarly: 0<Ctanx<C1, whence

En<x<mAtkn (k=0, =1, £2, ...).

1.2.26. The function f (x) is defined on the interval [0, 1]. What
are the domains of definition of the functions

(a) f(sinx); (b) f(2x+3)?

§ 1.3. Investigation of Functions

A function f(x) defined on the set X is said to be non-decreasing
on this set (respectively, increasing, non-iricreasing, decreasing), if
for any numbers x,, x,€ X, x, <x,, the inequality f(x,)<<f(x,)
(respectively, f(x,) < f (), F(x) =1 (), F(x) > (x) is satisfied.
The function f(x) is said to be monotonic on the set X if it pos-
sesses one of the four indicated properties. The function f(x) is
said to be bounded above (or below) on the set X if there exists a
number M (or m) such that f(x)<<M for all x€ X (or m<f(x)
for all x€ X). The function f(x) is said to be bounded on the set X
if it is bounded above and below.

The function f(x) is called periodic if there exists a number
T >0 such that f(x+T)=f(x) for all x belonging to the domain
of definition of the function (together with any point x the point
x-+T must belong to the domain of definition). The least number T
possessing this property (if such a number exists) is called the
period of the function f(x). The function f(x) takes on the maxi-
mum value at the point x,€ X if f(x,) >f(x) for all x€ X, and
the minimum wvalue if f(x,))<{f(x) for all x€ X. A function f (x)
defined on a set X which is symmetric with respect to the origin
of coordinates is called even if f(— x)=f(x), and odd if [(—x)=
)

In analysing the behaviour of a function it is advisable to de-
termine the following:
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The domain of definition of the function.
Is the function even, odd, periodic?
The zeros of the function.
The sign of the function in the intervals between the zeros.
. Is the function bounded and what are its minimum and ma-
ximum values?
The above items do not exhaust the analysis of a function, and
later on their scope will be increased.
1.3.1. Find the intervals of increase and decrease of the func-
tion f(x)=ax*+bx+c, and its minimum and maximum values.
Solution. lIsolating a perfect square from the square trinomial,
we have

TR

dac— b2

f(x):a(x—l—z—b&)?—l——m——

If a> 0, then the function f(x) will increase at those values of x
satisfying the inequality x-+0b/(2a) >0, i. e. at x >—b/(2a), and
decrease when x--b/(2a) <0, i.e. at x <—>b/(2a). Thus, if a >0,

the function f(x) decreases in the interval (——oo, —% and inc-

reases in the interval (— b/(2a), -+ o0). Obviously, at x=—b/(2qa)
the function f (x) assumes the minimum value

fminzf (_2%) =41104—l-1—b2
At a > 0 the function has no maximum value.
Similarly, at a < 0 the function f(x) will increase in the inter-
val /—oo, —2% and decrease in the interval (— b/(2a), oo); at
x=— b/(2a) the function f(x) takes on the maximum value

b 4ac— b
fmax=f<—2_a>=T»
whereas it has no minimum value.
1.3.2. (a) Find the minimum value of the function
y=3x2+bx—1.

(b) Find the rectangle with the maximum area from among all
rectangles of a given perimeter.
Solution. (a) Apply the results of Problem 1.3.1: a =3 >0, b= 5,

¢=— 1. The minimum value is attained by the function at the
point x=—>5/6
_dac—b* 37
ymin_T—_'l_Q'

(b) We denote by 2p the length of the perimeter of the required
rectangle, and by x the length of one of ils sides; then the area S
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of the rectangle will be expressed as
S=x(p—x) or S=px—x_

Thus, the problem is reduced to the determination of the maximum
value of the function S(x)=— x*+4 px. Apply the results of Prob-
lem 1.3.1: a=—1<0, b=p, ¢c=0. The maximum value is attai-
ned by the function at the point x=— b/(2a) =p/2. Hence, one
of the sides of the desired rectangle is p/2, the other side being
equal to p—x=p/2, i. e. the required rectangle is a square.

1.3.3. Show that

(a) the function f(x) =x®*+43x-+5 increases in the entire domain
of its definition;

(b) the function g (x) = x/(1 + x?) decreases in the interval (1, + oco).

Solution. The function is defined for all points of the number
scale. Let us take arbitrary points x, and x,, x, < x, on the number
scale and write the following difference:
[ (xa)—F (%)) = (%3 + 3%, +5) — (x} + 3%, +5) =

= (x2—x1) (X; + X%, + X+ 3) =

= (X,—x,) [(x1+—;-x2>2+%x§ +3]-

Since x,—x, >0 and the expression in the brackets is positive
at all x, and x,, then f(x,)—f(x) >0, i.e. f(x) >f(x,), which
means that the function f(x) increases for all values of x.

1.3.4. Find the intervals of increase and decrease for the follo-
wing functions:
(a) f(x) =sin x-cosx;
(b) tan (x -+ m/3).
Solution. (a) Using the familiar trigonometric formulas, we find
f(x) =V 2cos (x—m/4).
It is known that the function cosx decreases in the intervals
nn<x<L(2n+1)m
and increases in the intervals
@Cn—NnLx<<2nmn (n=0, =1, =2, ...).
Hence, the intervals of decrease of the function f(x) are:
a/d+2nn<<x<n/4+2n+1)n (n=0, £1, ...),
and the intervals of increase of the same function are:
n/d+2n—Dn<x<<n/4+2nn (n=0, =1, ...).
1.3.5. Find the minimum and maximum values of the function
f)y=acosx-t+bsinx (a*+0* > 0).
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Solution. The given function can be represented as:
f(x) =V a*+b® cos (x—a),

where cosa=a/}/ a* + b, sin a = b/} a® + b*. Since |cos(x—a) | < 1,
the maximum value of f(x) equals -+ )} a®+b* (at cos(x—a) =1),
the minimum value of f(x) being equal to —} a®*+b® (at
cos (x—a) = —1).

1.3.6. Find the minimum value of the function

f(x) — 3(x*=2)*+8
Solution. We denote by ¢ (x) the exponent, i. e.
P (X) = (x2—2)*+ 8.

The function f(x)=3¥® takes on the minimum value at the
same point as the function g (x).
Hence

@ (x) = x*—6x% - 12x% = x% [(x*—3)* 4 3].
Whence it is clear that the function ¢ (x) attains the minimum

value (equal to zero) at x=0. That is why the minimum value of
the function f (x) is equal to 3°=1.

1.3.7. Test the function
f (x) =tan x+cot x, where 0 < x < m/2,
for increase and decrease.

1.3.8. Given: n numbers a,, a,, ..., a, Determine the value
of x at which the function

f)=(x—a)*+ (x—a)*+ ...+ (x—a,)

takes on the minimum value.
Solution. Rewrite the function f(x) in the following way:

fx)y=n—2(a,+a,+ ... +a,)x+ @ +a;-+ ... +a}),

wherefrom it is clear that f(x) is a quadratic trinomial ax? + bx 4,
where a=n > 0. Using the results of Problem 1.3.1, we find that
the function assumes the minimum value at x=—b/(2a), i. e. at
x=(a,+a,+...+a,)/n.

Thus, the sum of the squares of deviations of the value of x
from n given numbers attains the minimum value when x is the
mean arithmetic value for these numbers.

1.3.9. Which of the given functions is (are) even, odd; and
which of them is (are) neither even, nor odd?
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(a) f(x) =log (x+ V' 1T+ x*);
l—x

(b) f(x) =log1—;

() f(x) 23 —x+ 1,

@ f 0 =x55.

Solution. (a) It can be seen that f(+ x)+4f(— x) =0. Indeed,

F(+x)+f(—x)=log (x+V TH )+ log(—x+VT+x) =
=log (1 +x2—x?) =0,

hence, f (x) = — f (— x) for all x, which means that the function is odd.
_ 14+x 1—x\-1 1—x
(b) f(—x)—logl_x_log<l+x> ——logl+x
Thus, f(—x)=—Ff(x) for all x from the domain of definition

(—1, 1). Hence, the function is odd.

1.3.10. Which of the following functions is (are) even and which
is (are) odd?

@) f(x)=4—2x*+sin%x;

(b) fx)= l/1+x—|-x2—V1—x+x2;

© fx)= ]__.akx’

(d) f(x)=sinx+cosx;

(e) f(x)=-const.

1.3.11. Prove that if f(x) is a periodic function with period T,
then the function f (ax 4 b), where a > 0, is periodic with period T/a.
Solution. Firstly,

fla(x+T/a)+b] =f[(ax+b)+T]=f(ax+b),

since T is the period of the function f(x). Secondly, let T, be a
positive number such that

fla(x+T,)+b]=F(ax+b).

Let us take an arbitrary point x from the domain of definition
of the function f(x) and put x"=(x—b)/a. Then

Flav +0)=f (a2 b) =[ () =F[a (¢ +T,) +5] =

=f(ax’+b+aT)=f (x+aT)).

Whence it follows that the period T <(aT,, i.e. T,>=T/a and
T/a is the period of the function f(ax-+¥b).

Note. The penodlc function f(x) = 4 sin (0x+ @), where A, o, ¢
are constants, is called a harmonic with amplitude |A |, frequency o
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and initial phase @. Since the function sinx has a period 2m:, the
function A sin(ewx- @) has a period T =2n/w.

1.3.12. Indicate the amplitude | A|, frequency w, initial phase ¢
and period T of the following harmonics:

(@) f(x)=>5sin4x;

(b) f(x)=4sin (3x+ m/4);

(¢) f(x)=3sin(x/2)+ 4cos(x/2).

1.3.13. Find the period for each of the following functions:

(a) f(x)=tan2x;

(b) f (x) = cot (x/2);

(¢) f(x)==sin2mnx.
Solution. (a) Since the function tanx has a period =, the function
tan 2x has a period m/2.

1.3.14. Find the period for each of the following functions:
(@) f(x)=sin*x+ costx;

(b) F(x)=|cos x|

Solution. (a) sin® x4 cos* x = (sin? x -+ cos? x)?* —2sin® xcos® x =

| - | 3 1 . L1
=1——-2—sm22x= I—T(l—cos4x)=T+Tsm(4x—|—?);

whence T =2n/0=2n/4=n/2.

(b) f(x)y=|cosx|=V cos®*x=} (1+cos2x)/2; but the function
cos2x has a period T =m; hence, the given function has the same
period.

1.3.15. Prove that the function f (x) = cos x* is not a periodic one.
Solution. l.et us prove the contrary. Suppose the function has a
period T; then the identity cos(x+ T)*=cosx? is valid.
By the conditions of equality of cosines for a certain integer k
we have
x4+ 2Tx+T? 4+ x* = 2nk.

But this identity is impossible, since £ may attain only integral
values, and the left member contains a linear or quadratic function
of the continuous argument wx.

1.3.16. Find the greatest value of the function

109 =2

2x2 —4x-+3°

1.3.17. Which of the following functions are even, and which are
odd:

@ f=y T=xP+ i/ 0+25
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(b) [(x)=x"—|x};
(©) f(x)=xsin®x—x3;
(d) f(x)=(1+2%)%/2%?
1.3.18. Find the period for each of the following functions:
(a) f(x)=arctan (tan x);
X—n

(b) f(x)=2cos—;

1.3.19. Prove that the functions 3
@) f(x)=x+sinx; (b) f(x)=cosV x

are non-periodic.

§ 1.4. Inverse Functions

Let the function y=7f(x) be defined on the set X and have a
range Y. If for each y €Y there exists a single value of x such that
f (x) =y, then this correspondence defines a certain function x == g(y)
called inverse with respect to the given function y={(x). The suf-
ficient condition for the existence of an inverse function is a strict
monotony of the original function y=/f(x). If the function increases
(cecreases), then the inverse function also increases (dccreases).

The graph of the inverse function x=g (y) coincides with that of
the function y=7f (x) if the independent variable is marked off along
the y-axis. If the independent variable is laid off along the x-axis,
i. e. if the inverse function is written in the form y=g(x), then
the graph of the inverse function will be symmetric to that of the
function y=f(x) with respect to the bisector of the first and third
quadrants.

1.4.1. Find the inverse to the function y=3x+5.

Solution. The function y=3x-5 is defined and increases through-
out the number scale. Hence, an inverse function exists and in-
creases. Solving the equation y=3x-5 with respect to x we obtain
x=(y—>5)/3.

1.4.2. Show that the function y=k/x (k=£0) is inverse to itself.

Solution. The function is defined and monotonic throughout the
entire number scale except x=0. Hence, an inverse function exists.
The range of the function is the entire number scale, except y =0.
Solving the equation y=k/x with respect to x, we get x==Fk/y.

1.4.3. Find the inverse of the function
y=log, (x+Vx*+1), (@>0, as=1).

Solution. The function y=1log, (x+} x4 1) is defined for all x,
since Y x2 41> | x|, and is odd [see Problem 1.3.9 (a)]. It increases



§ 1.4. Inverse Functions 29

for positive values of x, hence, it increases everywhere and has an
inverse function. Solving the equation

y=log, (x+V ¢+1)
with respect to x, we find
@=x+ Vet ar=—x+Vi+],
whence
x=%(ay—a‘y)=sinh (y Ina).

1.4.4, Show that the functions
fxy=x*—x+1, x>1/2 and ¢ (x)=1/2+V x—3/4
are mutually inverse, and solve the equation
—x+1=1/2 4V x—3/4

Solution. The function y=x*—x-+4+1=(x—1/2)243/4 increases
in the interval 1/2<Cx < oo, and with x varying in the indicated
interval we have 3/4<Cy < oo. Hence, defined in the interval
3/4<{y< o is the inverse function x=g(y), x=1/2, which is
found from the equation

x*—x+4(1—y)=0.
Solving the equation with respect to x, we obtain
x=gW)=12+Vy—=3/A=¢ .
Let us now solve the equation
—x+1=1/24Vx—3/4.

Since the graphs of the original and inverse functions can intersect
only on the straight line y=x, solving the equation x*—x-+1=x
we find x=1.

1.4.5. Find the inverse of y=sinx.

Solution. The domain of definition of the function y=sinx is
the entire number scale, the range of the function is the interval
[—1, 1]. But the condition of existence of an inverse function is
not fulfilled.

Divide the x-axis into intervals nn—n/2 < x<nn+n/2. If nis
even, then the function increases on the intervals nn—mn/2 << x<
<nn+n/2; if n is odd, the function decreases on the intervals
nn—mn/2 < x<nn+mn/2. Hence, on each of the indicated intervals
there exists an inverse function defined on the interval [— I, 1].
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In particular, for an interval — n/2<{x<{m/2 there exists an in-
verse function x=arcsiny.

The inverse of the function y=sinx on the interval niu—mn/2<<
< x<<nn+n/2 is expressed through arcsin y in the following way:

x=(— Drarcsiny+nn (n=0, =1, =2, ...).
1.4.6. Find the inverse of the given functions:

(a) y=sin Bx—1) at— (/64 1/3) < x < (/6 + 1/3);
(b) y=arcsin (x/3) at—3 << x<<3;

(C) y=5logx;

(d) y=2x(x—1)_

1.4.7. Prove that the function y=(1—x)/(14x) is inverse to
itself.

§ 1.5. Graphical Representation of Functions

1.5.1. Sketch the graph of each of the following functions:
(@) [(x)=x*—2x"+3;
2x
(b) F(x) =T’
(c) f(x)=sin?x—2sinx;
(d) f (x)=arccos(cos x);

() f(x)=Vsinx
(f) [ (x)=x"/tog x,

Solution. (a) The domain of definition of the function f(x) is the
entire number scale. The function f(x) is even, hence its graph is
symmetrical about the ordinate axis and it is

y sufficient to investigate the function at x>0.

Let us single out a perfect square f(x)=
= (x*—1)>4-2. Since the first summand
(x*—1)2>0, the minimum value of the func-
. tion, equal to 2, is attained at the points
Z g9 7 2% x==+1 (see Fig. 2).

The function f(x) decreases from 3 to 2 on
the closed interval 0<Cx<C1 and increases
unboundedly on the open interval 1 < x < oo.

Fig. 2 (b) The domain of definition of the func-

tion f(x) is the entire number scale. The fun-

ction f(x) is odd, therefore its graph is symmetrical about the origin

of coordinates and it is sufficient to investigate the function at
x =0.

Since f(0)=0, the graph passes through the origin. It is obvious
that there are no other points of intersection with the coordinate

al
T
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axes. Note that |f(x)|<{1. Indeed, (1—|x|)*>=00r 1 4+x*>2]|x|,
whence

Since f(x) >0 at x>0 and f(l)=1, in the interval [0, oco) the
maximum value of fhe function f (x) equals 1, the minimum value
being zero (see Fig. 3).

y
e e, . . e . e e, e e e e, . . 1 ———————————————
1 1 1 1 1 1
3 2 71 2 3 z
Fig. 3

Let usprove that the function increaseson the closed interval 0<C
<x<<1. Let 0<<x, <x,<<1. Then

2%, 2x, 2x +2x2x1——2x1—2x1x2
X,)— =
Fe) =T (%) 4 148 (B U+
2 (%5—xy) (1 —x1%y) 0
(14 x3) (1 4 x3) =
and f(x,) >f(x

Slmllarly, we. can show that on the interval (1, oo) the function
decreases. Finally,

f () =2x/(1 4 x?) < 2x/x* =2/x,

whence it is clear that f(x) tends to zero with an increase in x.
(c) The domain of definition of the function f(x) is the entire
number scale. The function has a period 2m, that is why it is quite
sufficient to investigate it on the interval [0, 2n], where it beco-
mes zero at the points x=0; x=m; x=2m.
Writing the given function in the form

f(x)=(1—sinx)*—1,

we note that it increases with a decrease in the function sinx and
decreases as sinx increases. Hence, the function f(x) decreases on
the intervals [0, n/2] and [3m/2, 2n] and increases on the interval
[7/2, 3n/2]. Since f(n/2)=—1, and f(3n/2) 3, the range of the
function is — 1< f(x) <3 (Fig. 4).
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(d) The domain of definition of the function is the entire number
scale. Indeed, |cosx|<Cl at any x, hence, arc cos (cosx) has a
meaning. The function f(x) is a periodic one with the period 2m,
hence, it is sufficient to sketch its graph on the interval [0, 2n].
But on this interval the following
equality is true:

- f(x)=l X, 0<x<m,
\ 2n—x, n<<x< 2m.
Indeed, the first assertion follows
z from the definition of the function
arc cos x, while the second one can be
proved in the following way. Let us

put ¥ =2n—x, a<x<2n; then
0<x" << nand

f (x) =arc cos [cos (2n—x')] =arc cous (cos x’) = x" = 2n—x.
Taking all this into consideration, we draw the graph (see Fig. 5).

(e) The function y=Vsinx is a periodic one with period 2m;
that is why we may confine ourselves to the interval [0, 2n]. But

1

)
)
ng\n I,

Fig. 4

the function is not defined in the whole interval [0, 2x], it is
defined only in the interval [0, m], as in the interval (=, 2m) the
radicand is negative. The graph is symmetrical about the straight
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line x =m/2, as well as the graph y=sinx (see Fig. 6). Here we
have an example of a periodic function which does not exist in
the infinite set of intervals.

(f) The domain of definition of the function is

0<x<!l and | <x < oo.
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Reduce the formula to the form
f(x)=xl/log x — ylogy 10 — 10.
Hence, the graph of the given function is the half-line y=10

in the right-hand halfplane with the point x=1 removed (see Fig. 7).
1.5.2. Sketch the graphs of funections defi-

ned by different formulas in different inter- A4
vals (and in those reducible to them):
sinx at —n<<x<<O, & ;
(a) y={ 2 at 0<x<, :
l/(x—1) at 1<x<4 1
—2 at x>0, | _
(byy={ 1/2 at x=0, 0 1 z
—x% at x <0; Fig. 7

©) y=x+Vx%

() y=2/(x+V .

Solution. (a) The domain of definition of the function is the
interval [—m, 4]. The graph of the function consists of a portion
of the sinusoid y=sinx on the interval —n<{x <0, straight line

Ay
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Fig. 8 Fig. 9

y=2 on the interval (0, 1] and a part of the branch of the hyper-
bola y=1/(x—1) on the interval (1,4] (see Fig. 8).

(b) The graph of the function consists of a portion of a cubic
parabola. an isolated point and a half-line (see Fig. 9).

(c) The function may be given by two formulas:

2%, if x>0,
y 0, if x<0.
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Thus, the graph of our function is a polygonal line (see Fig. 10).

(d) From (c) it follows that the function is defined only in the
interval (0, + o0), y being equal to 1/x (x > 0). Thus, the graph
of our function is the right-hand part of an equilateral hyperbola
(see Fig. 11).

¥
P |
&
2 fy
, 3
40 —— —_
ol 1 o 1 z
Fig. 10 Fig. 11

1.5.3. Sketch the graphs of the following functions:
(a) y=cosx-+|cosx];

(b) y=|x+2|x.
. 2cosx at cosx =0,
Solution. (a) cosx+-|cosx|= 0 at cosx < 0.

Doubling the non-negative ordinates of the graph for the func-
tion y=cosx (the broken line in Fig. 12) and assuming y=0 at

\\ ,/ // \\
L L. | N
N - 7 P
-3712 \\\ni//_/% 0 _lzt_\\\\f’//%z_ 24 ‘2—’) z
Fig. 12

the points where cosx < 0, we can sketch the desired graph (the
solid line in the same figure).
(b) The function |x+2|x may be given by two formulas:

(x+2)x at x>=>—2,
Y=\ —(x+2)x at x<<—2.

Plotting separately both parabolas: y=(x+42)x=(x+1)*—1,
and y=—[(x+1)* — 1], retain only the parts corresponding to
the above indicated intervals. Drawn in a solid line in Fig. 13 is
the graph of the given function, the broken line showing the de-
leted parts of the constructed parabolas.
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1.5.4. Sketch the graph of the function

y=2|x—2|—|x+1|4+x.

Solution. At x >2

Yy=2(x—2)—(x+ 1)+ x=2x—5.
At —1<Cx<?2
Yy=—2x—2)—(x+1)+x=— 2x43.
\ v 1Y
\‘ 5k
\ 1\
\\ | 1
\ : 3 i
\\ /"\1' I :
v, N0, T : |
=2/\-1 \\ 1 | {- ..._:__
\ } lz |
\ : 1 I\ |
\ -1 0 1 \If 3
\ |
Fig. 13 Fig. 14

Finally, at x <—1

=—2(x—2)+(x+1)+x=5.

Hence, the given function can be rewritten in the following way:

59 xg_ly
y={ —2+3, —1<x<?,
2x—5, x=2.

Therefore the graph is a polygonal line
(see Fig. 14).

1.5.5. Sketch the graph of the function

y=2x_2-x'

Solution. Draw graphs for the functions
y,=2* and y,=—27* (broken lines in
Fig. 15), and add graphically their ordina-
tes. In doing so bear in mind that y, <y <

Vi

Fig. 15

<<y, and that y, tends to zero with an increase in x, whereas y,
tends to zero with a decrease in x (the solid line in Fig. 15).

1.5.6. Sketch the graph of the function
y=xsin x.
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Solution. Being the product of two odd functions y, =x and
y,=sinx, the function y is an even one, that is why we shall
analyse it for x>=0.

We draw graphs for y,=x and y,=sinx (the broken lines in
Fig. 16).

At the points where y,=sinx=0, y=y,-y,=0, and at the
points where y,=sinx=4 1, y==4 y, = 4 x. The latter equality

Fig. 16

indicates the expedience of graphing the auxiliary function y, = — x.
Marking the indicated points and joining them into a smooth
curve, we obtain the required graph (the solid line in Fig. 16).

1.5.7. Sketch the graph of the function y=x (x*—1) by multi-
plying the ordinates of the graphs y,=x and y,=x*—1.

1.5.8. Graph the following functions:

(a) y=x/(x*—4), (b) y=1/arc cosx.

Solution. (a) Since the function is odd, it is sufficient to inves-
tigate it for x >0.

Let us consider it as the quotient of the two functions:

y,=x and y,=x*—4.

Since at x=2 the denominator y,=0, the function is not de-
fined at the point 2. In the interval [0, 2) the function y, increases
from 0 to 2, the function y, is negative and |y, |=4—x? decreases
from 4 to O; hence, the quotient f(x)=uy,/y, is negative and in-
creases in absolute value, i.e. f(x) decreases in the interval [0,2)
from 0 to —oo.

In the interval (2, oo) both functions are positive and increasing.
Their quotient decreases since from 2 <{x, < x, it follows that

) X (ri—x,) (x1x2+4) < 0.

BTATE T E T W e
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1/x
—ae 0
The general outline of the graph is presented in Fig. 17 (three
solid lines).

(b) Denote y, =arccosx. The domain of definition of this func-
tion |x|<<1. At x=1 we have y,=0, hence, y=1/y,— oo at

The indicated quotient tends to zero asx — oo, since y =
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Fig. 17 Fig. 18
x—1, i. e. x=1 is a vertical asymptote. The function y, decreases
on the entire interval of definition [—1, 1), hence y=1/y, incre-
ases. The maximum value y,=n is attained at x=— 1. Accor-

dingly, the minimum value of the function is 1/m. The solid line
in Fig. 18 represents the general outline of the graph.

Simple Transformations of Graphs

[. The graph of the function y=f(x+a) is obtained from the
graph of the function y=f(x) by translating the latter graph along
the x-axis by |a| scale units in the direction opposite to the sign
of a (see Fig. 19).

1. The graph y=f(x)+0b is obtained from the graph of the
function y=7f(x) by translating the latter graph along the y-axis
by |0] scale units in the direction opposite to the sign of b (see
Fig. 20).

%II. The graph of the function y=f (kx) (k> 0) is obtained from
the graph of the function y={f (x) by “compressing” the latter graph
against the y-axis in the horizontal direction % times at 2> 1 and
by “stretching” it in the horizontal direction from the y-axis 1/&
times at £ <1 (see Fig. 21).
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IV. The graph of the function y=kf (x) (k> 0) is obtained from
the graph of function y=/f(x) by “stretching” it in the horizontal
direction %k times at £ > 1 and “compressing” it against the x-axis
(i. e. vertically) 1/k times at £ << 1 (see Fig. 21).

Ay
y=f(e)+b,b>0

ALY =fi @)
7 y=f)+bb<l

g z

Fig. 20

V. The graph of the function y=— f(x) is symmetrical to that
of the function y=/f(x) about the x-axis, while the graph of the
function y=f(—x) is symmetrical to that of the function y=f (x)
about the y-axis.

g
I @ \ / y=f(=)
z,

7
yfa) !

Fig. 21 Fig. 22

VI. The graph of the function y=f(|x|) is obtained from the
graph of the function y=f(x) in the following way: for x >0 the
graph of the function y=f(x) is retained, then this retained part
of the graph is reflected symmetrically about the y-axis, thus de-
termining the graph of the function for x <0 (see Fig. 22).

VII. The graph of the function y=|f(x)| is constructed from
the graph y=f(x) in the following way: the portion of the graph
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of the function y=f(x) lying above the x-axis remains unchanged,
its other portion located below the x-axis being transformed sym-
metrically about the x-axis (see Fig. 23).

VIII. The graphs of the more complicated functions

y=M (kx+a)+b
are drawn from the graph of y=f(x) ap-
plying consecutively transformations I to V.
1.5.9. Graph the function y=If(z)| /
y=3V —=2(x+2.5)—0.8

by transforming the graph y=1'x.
Solution. Sketch the graph of the function / 7 > Z
y=V x (which is the upper branch of the

¥

parabola y?*=x) (Fig. 24, a), and transform /!
it in the following sequence. . '9-7)
Sketch the graph of the function y =3 2x Fig. 23

by enlarging 3}/ 2 times the ordinates of )
the points on the graph of the function y=V x and leaving their
abscissas unchanged (see Fig. 24, b).

Then sketch the graph of the function y=23) —2x which will
be the mirror image of the preceding graph about the y-axis (see
Fig. 24, ¢).

4 Ay
y3V225-08
y 13
y’ﬁ T 2‘2
> i
: z [ ) =T R I/
o 1 @ ‘ @ 26F

By shifting the obtained graph 2.5 scale units leftward and then
0.8 unit downward draw the desired graph of the function

y=3V —2 (¥} 2.5)—0.8 (see Fig. 24, d).

1.5.10. Graph the function y=3cosx—}/ 3sinx by transforming
the cosine curve.
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Solution. Transform the given function
y=3cosx— )/ 3sinx=2 ]/’37(-'—/—”?’— C0S X — - sin x> =

2 2
=213 cos (x—}—%—) .
Thus, we have to sketch the graph of the function
y=2V 3 cos (x+ n/6),

which is the graph of the function y=2) 3cosx translated by n/6
leftward. The function has a period of 2m, hence it is sufficient to
draw its graph for —n<x<{ n
ZyVS’ (see Fig. 25).

\,

-3k

Fig. 25 Fig. 26

The graph of any function of the form y=acos x+bsin x, where
a and b are constants, is sketched in a similar way.

1.5.11. Graph the following functions:
_x+3,
(a) y= JC—I-I ’

1

(b) Yy=m—93

(©) x24+x4+1, if —1<<x<0,

={ sin%x, if 0o<x<<m,

E—=1/x4+1), I "<x<5;

(d) y=x+1/x;

() y=x*—x%

(f) y=x-+sinx;

(8) y=1/cosx;

(h) y=3sin (2x—4);

(i) y=2)V —3(x+1.5)—1.2;
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() y=|x*—2x—1};
k) y=|[x]|—1];
(1) y=cos (sinx);
(m) y=|sinx|+sinx on the interval [0,3 n];
1 at x>0,
(n) y=x*®signx, where signx= 0 at x=0,
—1 at x <.
1.5.12. The function y={f(x) is given graphically (Fig. 26).
Sketch the graphs of the following functions:
(@) y=F(x+1)
(b) y=F(x/2);
)y If X [;
(d) y=(|f (x)Iif(x))/Q
) y=1F ) /f (x).

$§ 1.6. Number Sequences. Limit of a Sequence

The number a is called the limit of a sequence x,, x,, ..., X,
... a n—oo, a= limx, if for any ¢ > 0 there exists a number

N (¢) > 0 such that the inequality |x,—a|< e holds true for all
n> N (e).

A sequence which has a finite limit is said to be convergent.

A sequence {x,} is called infinitely small if limx,=0, and infi-
nitely large if limx, = oo.

1.6.1. Given the general term of the sequence {x,}:

__sin (am/2)
n = 4

Write the first five terms of this sequence.
Solution, Putting consecutively n=1, 2, 3, 4, 5 in the general
term x,, we obtain
__sin(w/2) 1
1 1 —

Y. — sin (27/2) =0;

2 2
o= sin (f;n/Q) - _;_;
X = sin (in/?) —0;
Xy = sin (5n/2) L

5 5
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1.6.2. Knowing the first several terms of the sequence, write one

of the possible expressions for the general term:
5 10 17 2.

(a) 3813’ 18! 23’

® 13,2 +,3 1,4 5

Note. A knowledge of the first several terms of a sequence is not
sufficient to define this sequence. That is why this problem should
be understood as one of finding a certain simple inductive regula-
rity compatible with the given terms.

Solution. (a) Note that the numerator of each of the given terms
of the sequence equals the square of the number of this term plus
unity, i.e. n*+4 1, while the denominators form the arithmetic prog-
ression 3, 8, 13, 18, ... with the first term a,=3 and the com-
mon difference d=>5. Hence,

a,=a,+dn—1)=3+4+5n—1)=5n—2,
thus we have
_n*41
" bn—2°
(b) Here the general term of the sequence can be written with
the aid of two formulas: one for the terms standing in odd places,
the other for those in even places:
{ k at n=2k—1,
WE\ k1) at n=2k.

It is also possible to express the general term by one formula,
which will be more complicated, for instance,

+1 n 1 n
K=" (1= (=] 455 [T+ (=17

1.6.3. Find the first several terms of the sequence if the general
term is given by one of the following formulas:

(a) x,=sin (nmn/3);

(b) x,=2""cos nm;

©) %, =1+ 1/n)".

1.6.4. Using the definition of the limit of a sequence, prove that

(a) lim x,=1 if x,=2n—1)/2n+1),

(b) limx,=23/5 if x,=(3n*+ 1)/(5n*—1). Beginning with which
n is the inequality |x,—3/5| < 0.01 fulfilled?

Solution. (a) For any € > 0 let us try to find a natural number

N (g) such that for any natural number n > N (e) the inequality
|x,— 1| <e is fulfilled.
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For this purpose let us find the absolute value of the difference

on—1_, ’ 2
2n+-1 2n+1 |~ 2a+1°

Thus, the inequality |x,—1|<e is satisfied if 5= +1 < e, whence

n > l/e—1/,. Hence the integral part of the number 1/e—1/, may
be taken as N (g), i.e. N=E(l/e—1/,).

So, for each ¢ >0 we can find a nuinber N such that from the
inequality n > N it will follow that |x,—1| < e, which means that

2n—
Jim S =1.
(b) Let us find the absolute value of the difference |x,—3/5 |:
3n24-1 3 '_ 8
5n2_1 5| 5(Br2—1)
Let e > 0 be given. Choose n so that the inequality
8
5Em =D <&

is fulfilled.
Solving this inequality, we find

8 1 1
">5tss >3 l/

1 8+ 52
N=E (? 1/ e ) ’
we conclude that at n > N
| x,—3/5] <e,

which completes the proof.
If e=0.01, then

—E(5 )R ) =E(LV805) =
and all terms of the sequence, beginning with the 6th, are contai-
ned in the interval (3/6—0.01; 3/54-0.01).
1.6.5. Given a sequence with the general term xn=?ﬁ—i. It is
known that lim x,=1/3. Find the number of points x, lying out-

8+5e

Putting

side the ope'lz-lai:terval
1 1 1 1
L= (?—m 3+ 1—)
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Solution. The distance from the point x, to the point 1/3 is
equal to

lx __il__)___ 19 | 19
s 3| T T30 +4) | T 30n4)

Outside the interval L there will appear those terms of the se-
quence for which this distance exceeds 0.001, i.e

19
T4 — 1000 1000’

whence
18 988
I<n < ——= 703
Hence, 703 points (x,, x,, ..., X,,) are found outside the inter-
val L.

1.6.6. Prove that the number /=0 is not the limit of a sequen-
ce with the general term x,= (n*—2)/(2n2—9).

Solution. Estimate from below the absolute value of the diffe-
rence

n?— —0|= | n2—2|
2n2—9 |2n2—9 |~

At n>3 the absolute value of the difference remains greater
than the constant number !/,; hence, there exists such ¢ >0, say,
g=1/,, that the inequality

n2—

s —0|> 7

holds true for any n>3.
The obtained inequality proves that /=0 is not the limit of the
given sequence.

1.6.7. Prove that the sequence

1 1 1 2

1 1 4
v?y ?v ?’-5_’

3
ToT T

with the general term
1/n, if n=2k—1,
*n { nf(n+9), if n=2k,
has no limit.

Solution. 1t is easy to show that the points x, with odd num-
bers concentrate about the point 0, and the points x, with even
numbers, about the point 1. Hence, any neighbourhood of the point 0,
as well as any neighbourhood of the point I, contains an infinite
set of points x,. Let a be an arbitrary real number. We can always
choose such asmall e > 0 that the e-neighbourhood of the point a will
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not contain at least a certain neighbourhood of either point 0 or
point 1. Then an infinite set of numbers x, will be found outside
this neighbourhood, and that is why one cannot assert that all the
numbers x,, beginning with a certain one, will enter the e-neigh-
bourhood of the number a. This means, by definition, that the
number « is not the limit of the given sequence. But a is an arbit-
rary number, hence no number is the limit of this sequence.

1.6.8. Prove that limx,=1 if x,= (3" 1)/3".

1.6.9. Prove that limx,=2 if x,=(@2nrn+3)/(n+1). Find the
number of the term beginning with which the inequality
|(2n+3)/(n+1)—2]| <e, where ¢=0.1; 0.01; 0.001, is fulfilled,

1.6.10. Prove that the sequence
1 1 3 1 7 1
Tz—» PR T’ —4_') §7 _8—’...’
with the general term

1
- o(n+ 1)/2

1
2'2/2

1

if n is odd,

if n is even,

/
=]

|

\

has no limit.

1.6.11. Prove that at any arbitrarily large a >0 limx,=0 if

x,=a"/n!

Solution. Let a natural number & > 2a. Then at n >k
an a 14 a a a a a a a
N S B

1 \n—-k 1\~
<at ()" =@ar(5)"

Since lim (1/2)"=0 (prove it!), then at a sufficiently large n we

have: (—;T)n<  and, hence, a”/n! <e, which means that

lim (@"/n!) =0.

(2a)k

1.6.12. Test the following sequences for limits:
(@) x,=1/(2n),
1 for an even n,
(b) x”:{ 1/n for an odd n;
(c) x,,=anos '%;
() x,=n[l—(=1)"].
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1.6.13. Prove that the sequence with the general term
x,=1/nF (k> 0)

is an infinitely small sequence.
Solution. To prove that the sequence x, is infinitely small is to
prove that lim x,=0.

Take an ;r_l;i?rary e > 0. Since |x,|=1/n*, we have to solve the
inequality
1/nk < e,

whence n > v/ 1Je. Hence _N may be expressed as the integral part
of /e, i. e. N=E (}/Tf).

1.6.14. Prove that the sequences with the general terms

(a) xn=—~—(hﬂ, (b) x,,=%sin [(2n——l)%]

are infinitely small as n— oo.

1.6.15. Show that the sequence with the general term
x,=(—1)"2/(5 ¥/ 'n+1) is infinitely small as n— oo. Find a num-
ber N beginning with which the points x, belong to the interval
(—1/10, 1/10).

Solution. Take an arbitrary € >0 and estimate |x,]|:

2 2 2 1
X, = < - ==
I | 531/:;1-1 5?/n 23;/11 Vn
That is why |x,| <e a: soon as n > l/e®. Hence limx,=0, i.e.

n - o

the sequence is infinitely small. 3
We take now e=1/10. Since |x,| < 1/}/n, x, will necessarily

be smaller than 1/10 if 1%/ n < 1/10 or n > 1000. Hence N may
be taken equal to 1000. But we can obtain a more accurate result
by solving the inequality

It holds true at n > (19/5)>=3.8°=54.872. Hence N may be
taken equal to 54 £ 1000.

1.6.16. It is known that if x,=a-a,, where a, is an infinite-
simal as n-— oo, then lim x,=a. Taking advantage of this rule,

find the limits: S
3n+1 4 sin (nm/4) |

on —1)n
(a) x’l=-_——3;l——" b) x”=L2(n-——)—.
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Solution. (a) x,,=ii—1-—§i"¢t/i)=3+an, where o, =

an infinitesimal as n— oo, hence lim x,=3.

n—-» o

1.6.17. Prove that lim /n=1.

n -+ o

sin (nrm/4)

T 1S

Solution. Let us prove that the variable }/n can be represented
as the sum 1+a,, where o, is an infinitesimal as n— oo.

Let us put y/n=1+a, Raising to the nth power we obtain
n=(1+a,)=1+na,+——5— oc,,+ . +ap,

n(n

wherefrom we arrive at the conclusion that for any n> 1 the fol-
lowing inequality holds true:
n(n-—l)

n>l+ an

(since all the terms on the right are non-negative). Transposing the
unity to the left and reducing the inequality by n—1 we obtain

1> a2,

whence it follows that 2/n> a2 or V'2n>a,>0. Since
lim V'2/n=0, lim a, also equals zero, i. e. a, is an infinitesimal.

n - o

Hence it follows that

lim y/n=1.

n - ®

1.6.18. Prove that the sequence with the general term
3,
x =31/ "

is infinitely large as n— oo.
Solution. Let us take an arbitrary positive number M and solve
the inequality

s,
3V > M.
Taking the logarithm, we obtain
v/ n>log, M, n> (log, M)*.

I we now take N =E (log; M)?, then for all n > N the inequa-
lity |x,| > M will be fulfilled, which means that the sequence is
infinitely large.

1.6.19. Prove that
lim l'7a—= 1 (a>0).

n-» o
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§ 1.7. Evaluation of Limits of Sequences

If the sequences {x,} and {y,} are convergent, then
(1) lim (x, + y,) =lim x, + lim y,,;

(2) lim (x,y,) = lim x, lim y,,;

@) lim ;‘"— Jim 2 (tim g, #0).

If x, <y, then "lim x, <limy,.

1.7.1. Find lim x, if

n-» o

3n2+45n-+4 __5n34-2n2—3n4-7
@ % ="17— O =g
4 —4n+3 Bt 42,
© *m=gmrara @ %=—gaar7
142
(e) xn=.+_—l;l?__+_n.
e
Solution. (a) Xy =—g—,
]
nllm (34-5/n+4/n?)
lim x,=">2 =3.
Ty

(d) Recall that

124904324, ., +n2=%ﬂ.

Hence
3 1
_n(th@ntl)  2n343n2+n 24t
6(Gni+nt1) 6Gn3tn+ly 30+ 6,_’_/13'
lim x,=1/15.
n-»
1.7.2. Find lim x,, if
n-» o
([ 3nt4n— . . 2n34-2n2 41 4
(@) x, <4n2+2n+7) p () x"_<4n3—}-7n3+3n—|—4) ’
(C) xn_ 1/5,1’ (d) xn= VF’
(€) x,=y/n% (f) x,= ¢/6n+3.
: 3n2+4+n—21\3
Solution. (a) llm <m_—7) =

i nz—l-n—) 3n2—|—n—2> 3n+n—21\ _
T (4n2+2n+7 <4n2+2n+7 <4n‘*+2n+7)_

34-1/n—2/n2\3 [ 3\3 27
(,}L“; mﬁ) —(T) =5
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(c) In solving this example, and also the rest of the examples
of Problem 1.7.2, take advantage of the following equalities (see
Problems 1.6.17 and 1.6.19):

lin /n=1 and lim ;'Va_=l. (1)

We have
lim x,= lim /5n= lim /5 lim /n,

n- o n- o n - o n - w

but from (1) it follows that lim §/5=1 and lim j/n=1; hence
limx,=1-1=1.

1.7.3. Find

. n3 1 —5n2
lim )
"o o K2n2—|—3+ 5n+1

Solution. Summing the fractions, we obtain

Y = 2n3—13n2+4-3
5= [0n3+2n®+ 15043
Whence
lim x, llm m—18n2+3 1
"o o » 10n34-2n2416n4-3 5 °
Note. 1f we put
2n3 1—5n2

YUn=opm3) T a1

then the limit of their sum lim(y,-+2,) = 1/5, though each of the
summands is an infinitely large quantity. Thus, from the conver-
gence of a sum of sequences it does not, generally speaking, follow
that the summands converge too.

1.7.4. Find lim x, if

(@) x,=Von+3—Vn—T1,

b) x,=VnEtnrl—VnrP—nil;
() x,=n*(n—V n* 1),

(d) x,=y/ n*—ndn;
VnH-l—H/n )
V- Vn

(f) ,,-/<n+1)2—/<n—1)2;
@ x _1—243—445—6+4...—
" Virfi4Ving—1

(h) =15 +ggtagt -+

(e) x,

’

t
nn+1)°
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Solution. (a) x,=V n(V'2+3/n—V 1—1/n)— + o as n — oo,
since the second multiplier has a positive limit.

©) x _n (n——an ) —n?
" n—]—l/n2
— — 00 a8 h — ©00.
l-|- ‘/1+—
(d) x,= ia

(n2—n3)?/® —n |/n2-—n3—|-n2
1

= _]_.._l 2/3— -‘__1 1/3+1-
It means, x,— 1/3. (" ) <n >

(e) Factoring out the terms of the highest power in the numera-
tor and denominator, we have:

vt Ve (Y )V 3)
f/n3—|—n—l/-7z n3/4<‘/l+ 4‘/1>-
l/l+n‘+ l/—_

X, =

=nt/ —> 400 as n— oo.
Viee=V a2
1.7.5. Find limx, if
n- o
(a) xnz__.[n—_; (b) xn=._3____|'nz—f-4n;
Varl+Vna Y/ n®—3n2
©) x,=v 1—n*+n; (d) x,,:%—lcos ns—&l—S_'_n—l;
2n n+1 n n(—l7,
(€) X 2nz—1°052n—1_1—2n n 1’
1 1
1+—+—+---+—
2 ' 4 2n
(f) x”:

T, 1 1
I+5+g+. +3
§ 1.8. Testing Sequences for Convergence

Bolzano-Weierstrass’ theorem. A monotonic bounded sequence has
a finite limit.

Theorem on passing to the limit in inequalities. I x,<y,<<2,
and lim x,=lim z,=c, then limy,=c too (¢ is a number,

n - o n-—- x n - o

+ 0o or — eo but not oo).
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1.8.1. Prove that the sequence with the general term x,=
= (2n—1)/(3n+1) is an increasing one.
Solution. We have to prove that x,., >x, for any n, ie. to

prove that
2n+1 2n—1

g Ty i
The latter inequality is equivalent to the obvious inequality
6n*+-5n-+41 > 6n%45n—4.
Hence, x,., > x,.
1.8.2. Given a sequence with the general term

107

Xn = “nlc

Prove that this sequence decreases at n > 10.

Solution.
10n+1 107 10 10

et = @ O A TRl Fm A

Since —— <l at n>10, then x,,, <x, beginning with this
number, Wthh means that the sequence decreases at n > 10.

1.8.3. Test the following sequences for boundedness:

(a) xn=,l.%’:3-;

(b) y,=(=1)" n+1 sinn;

(c) z,=ncosmnn.

Solutton (a) The sequence {x,} is bounded, since it is obvious that
0< 5 + <5 for all n.

(b) The sequence {y,} is bounded:

gl == | 2 I sinn| < 25 < 2.
(c) The sequence {z,} is not bounded, since
|2,|=|ncosnn|=n.
1.8.4. Prove that the sequence

Xq X1 Xo Xp—1
Xy = ;X p Xg=—=— L. Xp= Pl
Vatx’ L a+tx’ 3T a4+’ ’ "oat X,y

(@>1, x, > 0) converges.
Solution. Let us prove that this sequence is monotonic and

bounded. Firstly, x, < x,_, as

Xn= < Xp_yge

a+x,,._
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Hence, the given sequence is a decreasing one. Secondly, all its
terms are positive (by condition a >0 and x, > 0), which means
that the sequence is bounded below. Thus, the given sequence is
monotonic and bounded, hence it has a limit.

1.8.5. Prove that the sequence with the general term

1 1 1 1
=sriteErrteErr T e

X,

. L 11 I o
(e m=gps =5yt 5o =gy s by o)
converges.

Solution. The sequence {x,} increases, since x,,,, =x,+ 1/(5""1--1)
and, hence, x,,, > x,. Besides, it is bounded above, since 1/(5"+ 1) <
< 1/b" at any n and

I 1 i I
Yw=sritErTtegr T - tTerr <
P11 1 I
<grtmEtmT.- 7——T3F—=7@—ﬁ)<7-
Hence, the sequence converges.

1.8.6. Taking advantage of the theorem on the existence of a
limit of a monotonic bounded sequence, prove that the following
sequences are convergent:

n?—1

(a) x,= nz

(b) Xp=2-4or+ 3.+

n!

1.8.7. Prove that the following sequences converge and find their
limits:

@) 4, =V x,=V21V 3
x3=1/2+V2+l/'2"; x,,=1/2+V2—I----+V§;

n radicals
n
(b) xn=(n+2)! ’
__E(w).
(C) Xp= n ’

(d) the sequence of successive decimal approximations 1; 1.4;
1.41; 1.414; ... of the irrational number } 2;

(e) x,=nl/n"

Solution. (a) It is obvious that x <x, <x,<...<x,<
< Xppy < ..., i.e. the sequence is increasing. It now remains to
prove that it is bounded.
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We have x,=V2+4x, , n=2, 3, ... Since x,=V2<2
X, =V24x <V2+2=2 x,=V24x,<V2+2=2, .... Let it
be proved that x,_ , < 2. Then x,=V2+x,_, <<V 2+2=2. Thus,
with the aid of mathematical induction we have proved that x, < 2,

i.e. the sequence is bounded. Hence, it has a finite limit. Let us
find it. Denote

lim x,=y.

n—-» o
Then, x,=V 2+ x,_,; raising to the second power, we obtain

=24X,_q
Passing to the limit, we can rewrite this equality as follows

lim x2 = lim (24 x,_,), or y*=2-}+y.

n - x n- o

The roots of the obtained quadratic equation are:
=2 y,=—L.

The negative root does not suit here, since x,>0. Hence, lim x,=y,=2.

1 - ®

(c) We have ny—1 < E (ny) << ny or y— < E(ny)<y But the

sequernces {y—%} and {y} converge, their limit being y, that is
why limx, =y.
n-—-» o
(d) This sequence is non-decreasing, since each following term
X,4; is obtained from the preceding one x, by adding one more
significant digit to the decimal fraction. The sequence is bounded
above, say, by the number 1.5. Hence, the sequence converges, its
limit being V2.
(e) The sequence decreases monotonically. Indeed,
(n+ 1! n! n! nn nn

R L R | NV

Since ——— (n—|—1)" <1, x,,, <X,

Then, since x, > 0, the sequence is bounded below, hence lim x,

n-«

exists. Let us denote it /. Obviously, /= lim x,>0. Now let us
n- o
show that [=0. Indeed,

() (1 ) e 2
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Hence, (T_';_n—l),-, < % and x,,, < —;-x,,. Passing over to the limit,

we obtain
1<l
which, together with />0, brings us to the conclusion:
1=0.

1.8.8. Find the limits of the sequences with the following gene-

ral terms:
n n

n = Vn2+n; Zn= VnEfl
1
+... +m_§—¢_-;-.

)

1 1
Y=V T Ve

Solution. Let us prove that lim x,= 1. Indeed,

|x,— 1] = ;—ll= n—Vnita |_
" n*tn Vnitn

n 1
S VeranrVern o

We can prove similarly that

lim z,=1.
n-—- o
Then,
e e sy SN
Yn Veerl | Ve+rl T Vel Vierrl "

On the other hand,

1 | 1 . n
Yn > Vnitn + Vnitn et Viifn Vniitn

n

Xpe

Thus,
X, < Yo < 2, limx,= lim z,=1

n = o n - o
and according to the theorem on passing to the limit in inequalities
lim y,=1.

1.8.9. Using the theorem on passing to the limit in inequalities
prove -
lim /a=1 (a>0).

n->
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1.8.10. Prove the existence of the limit of the sequence y,=a/?"
(a>1) and calculate it.

1.8.11. Taking advantage of the theorem on the limit of a
monotonic sequence, prove the existence of a finite limit of the

sequence
1 1 1
xn—‘_l+'2—2+§+"' ?.

1.8.12. Taking advantage of the theorem on passing to the limit
in inequalities, prove that

lim x,=1if x,=2n () n2+1—n).

n - o

1.8.13. Prove that the sequence
x,=Va xzr-'l/a—{—VE;
xazl/a-}—Va—H/E; e x,,———]/a+Va—}—...+l/a_

n radicals

(@a>0)
has the limit 6=V 4a+ 1+ 1)/2.

1.8.14. Prove that the sequence with the general term

1 1 |
x"—m-i——eﬂ_—?—f-.. ’+m
has a finite limit.

1.8.15. Prove that a sequence of lengths of perimeters of regular
2n.gons inscribed in a circle tends to a limit (called the length of
circumference).

§ 1.9. The Limit of a Function

A point a on the real axis is called the limit point of a set X
if any neighbourhood of the point a contains points belonging to X
which are different from a (a may be either a proper or an impro-
per point).

Let the point a be the limit point of the domain of definition
X of the function f(x). The number A is called the limit of the
function f(x) as x—a, A= lim f(x), if for any neighbourhood V

X —>a
of the number A there exists a neighbourhood u# of the number a
such that for all x€ X lying in u, f(x)€V (the definition of the
limit of a function after Cauchy). The number A may be either
finite or infinite. In particular, if the numbers A and a are finite
we obtain the following definition.
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A number A is called the limit of a function f(x) as x —a,
A= lim f(x), if for any & > 0 there exists a number 6 (e) > 0 such

X —>a
that for all x satisfying the inequality 0 <|x—a| <6 and belon-
ging to the domain of definition of the function f(x) the inequality
|f(x)—Aj<e holds true (the “e-8 definition”).
If a= 4+ oo, the definition is as follows. A number A is called
the limit of a function f(x) as x — 400, A= lim f(x), if for any

X > +®
e > 0 there exists a number M (e) > 0 such that for all x satisfying
the inequality x > M (¢) and belonging to the domain of definition
of the function f(x) the inequality |f(x)— A|<e holds true (the
“g-M definition”).
The notation lim f(x)=oco means that lim |f(x)|= + co. The

rest of the casesx ;rz, considered similarly. e
The definition of the limit of a function after Heine. The nota-
tion lim f(x)=A means that for any sequence of values of x con-

X —>a

verging to the number a
Xy Xgy vovy Xpy ooe

(belonging to the domain of definition of the function and differing
from a) the corresponding sequence of values of y

U=F(x); Yo=F(xa)s -3 Yu=1(%n), ..
has a limit, which is the number A.

1.9.1. Taking advantage of the definition of the limit after
Heine (i.e. in terms of sequences) and of the theorems on the limits
of sequences, prove that
3x+1 |

lim =7

Solution. Let us consider any sequence x,, x,, ... satisfying
the following two conditions: (1) the numbers x,, x,, ... belong
to the domain of definition of the function f(x)=(3x+1)/(5x-+4)
(i.e. x,=—4/5); (2) the sequence {x,} converges to the number 2,
ie. lim x,=2.

To the sequence {x,} there corresponds the sequence of values
of the function

3xi+1 ., 3x+41 .
5xi+4 " bx,+4" "7

proceeding from the theorem on the limits (§ 1.7),

i — qi Fat 1l lim@x,4+1)  6+1 1
r}]-{nmf(x")_ ,}l-l.nm 5x,+4 lim(5x,+4)  10+4 2°
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Thus, independently of the choice of a sequence {x,} which
converges to the number 2 (x, 5= —4/5), the corresponding sequences
of values of the function f(x,) converge to the number 1/2, which,
according to the definition of the limit of a function, means that

3x+41 1
xlin; 5x+4 2 °

Note. The definition of the limit after Heine is conveniently

applied when we have to prove that a function f(x) has no limit.

For this it is sufficient to show that there exist two sequences {x,}

and {x,} such that lnn Xp= hm xp,=a, but the corresponding

sequences {f (x,)} and {f(x,,} do not have identical limits.
1.9.2. Prove that the following limits do not exist:
(a) lim sin ;— (b) 11m 2%, (c) lim sin x.
x -1 X > o

Solution. (a) Choose two sequences

x—l—}——; and x,= n=1,2, ...),

= H'(4n-|-1)n
for which
lim x,= lim x,=1.

n - o n - o

The corresponding sequences of values of the function are:

. 1 .
f(x,,)=smm)_—]=smnn=0

and
’ . 1 .4 1 .
) =Sin gy =i g w=sin (245 ) =

Hence,

liml f(x,)=0 and 'lim fx)=1,

X, =+
n xn-»l

i.e. the sequences {f(x,)} and {f(x,)} have different limits, whence

it follows that lim sm-—1 does not exist.
x> 1
(c) Choose two sequences Xp=nn and x,=2nn+n/2 (n=1,
2, ...), for which lim x, = lim " X, = o0o. Since
n - o n - o

lim sinx,= lim sinnn=0,
n - o n - ®
and
lim sinx, = 11m sin (2nn +n/2) =1,

n - o

lim sin x does not exist.

X - &
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Note. The above examples show that one cannot draw the con-
clusion about the existence of the limit of a function proceeding
from the sequence of values of x of a particular form (for example,
proceeding from x,=1+42/((4n+1)xn) in the item (a) of this prob-
lem), but it is necessary to consider an arbitrary sequence x,,
Xyy ++ey Xn, ... having a given limit.

1.9.3. Proceeding from the definition of the limit of a function
after Cauchy (i.e. in the terms of “e-8”; “e-M”, etc.), prove that

(a) lim (3x—8)= —5;
x> 1

. 5. 1 5
(b) lim 3§J+rg=§‘
. 1
(©) Jim fr—gr = + oo
(d) lim log,x=00 (a>1);
(e) lim arctanx=mn/2;
(f) lim sinx=1/2.
X -+ /6

Solution. (a) According to the “e-8” definition we are to prove
that for any & > 0 there exists § > 0 such that from the inequality
|x—1|< 6 it follows that |f(x)—(—5)|=|f(x)+5|<e.

In other words, it is necessary to solve the inequality

[3x—8+5|=3|x—1]|<e.
The latter inequality shows that the required inequality |f(x)+5]<Ce
is fulfilled as soon as |x—1| < ¢/3=4§. Hence, lim (3x—8)= —5.

x -1
(b) According to the “e-M” definition of the limit one has to
show that for any e >0 it is possible to find a number M >0
such that for all x > M the inequality

5x+1 b
3x—+—9_—§|<B *)

will be fulfilled.
Transforming this inequality, we obtain

5¢+1 5 14

W9 3| T Taxyo] <

Since x >0, it remains to solve the inequality

14
g <&
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whence

14—9¢
x> 3e ’

14 —9¢

3e
Thus, for ¢ >0 we have found M=ﬁ;—;—98 such that for all

hence M=

values of x > M the inequality (*) is fulfilled, and this means that

S5¢x41 5

lim 5=

X »+®

14—0.09 2
—0.03 463 K}

(c) We have to prove that for any K >0 there exists § >0
such that from the inequality

|x—1]< 8

there always follows the inequality

Let, for example, e=0.01; then M=

’(l-x)2 1—x)2 > K.

Let us choose an arbitrary number K > 0 and solve the inequality

1
T > K (**)

whence
[1—x|<—= V" (K > 0).

Thus, if we put §=-—=, then the inequality (**) holds true as

V‘—‘ ’
soon as |x—1| < 8, which means that 11ml = )2 = -+ oo.

(d) We have to prove that for any K >0 there exists M >0
such that from the inequality x > M there always follows the ine-
quality log,x > K. Let us choose an arbitrary number K >0 and
consider the inequality log,x > K. If we put aK=M, then at
x> M the inequality log, x > K holds true. Hence,

lim log, x= + oo.
X —>+®

1.9.4. Prove that lim cosx does not exist.

1.9.5. Using the seqxu-:e;ces of the roots of the equations sin (1/x)=1
and sin (1/x)= —1, show that the function f(x)=sin(l/x) has no
limit as x— 0.
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1.9.

6. Proceeding from Cauchy’s definition of the limit of a

function prove that:

(a)
(©)

(€)
()

x—1

lim (3x—2)=1; (b) lim F=—=2;
x> 1 x =1 x—1

lim sinx =0; (d) lim cosx=1;

x -0 x>0

lim X =2;

ot dX+2 37

lim a*= 400 (a > 1)

xX—-»> +o®

. sinx
lim —=0.
X

@ lim

§ 1.10. Calculation of Limits of Functions

[. If the limits limu(x) and limov(x) exist, then the following

x->a x—+>a

theorems hold true:

(M
(2)
©)
I1.

main
I11.

lim [u (x) 4 v (x)] =limu (x) + lim v (x);
lim [u (x)-v(x)] =limu (x)-limv (x);

‘() lim u (x)
lim (= T (ime(9#0.
xX—->a
For all main elementary functions at any point of their do-
of definition the equality llmf(x) f(limx) f (@) holds true.

If for all values of x in a certam nelghbourhood of a point a

(except for, perhaps, x=a) the functions f(x) and ¢ (x) are equal
and one of them has a limit as x approaches a, then the other one
has the same limit.

IV.

(1)
@)

3)
(4)
©)

The following limits are frequently used:

lim S0%_ 1.
x-0
lim (14 1/x)*=lim(1 +a)l/*=e=2.71828.. .;
X > o a-0
lim %—’—Q=logae (@>0; as=1);
x-0
lim 4% _ .
x-0 X ’
“—l_lna (@a>0).

x-+0
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1.10.1. Find the limits:

(@) lim g e (b) lim i‘%{—z
(c) xh-.nll 76%; (d (p and ¢ integers);
(© lim LOESEIR =3, ) ,“I’% ‘/ T
© m = m[loga —V——‘——J
O S 0l e

Solution. (a) Since there exist limits of the numerator and deno-
minator and the limit of the denominator is different from zero,
we can use the theorem on the limit of a quotient:

im (4549
lim 4 9r 47 oA THHD 41900 4

x>13x8 L 23417 liml Bx6+x341) 3+I+I
x>

(b) The above theorem cannot be directly used here, since the
limit of the denominator equals zero as x— 2. Here the limit of
the numerator also equals zero as x— 2. Hence, we have the

indeterminate form %. For xs2 we have

$B¥43x2—9x—2 (x—2) (x®+5x+ 1)  x*45x41
B—x—6  (x—2)(x2+2x+3) x2+2x+3°

Thus, in any domain which does not contain the point x=2 the
functions

x34-3x2—9x—2 x24-5x-1
Foo =252 and ¢ (9=rorts

are equal; herce, their limits are also equal. The limit of the
function ¢ (x) is found directly:

_ x24+5x+ 1 15,
£1£112cp(x) hm o3

hence,
x343x2—9x—2 15

im0 =t ZL2EE
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(¢) Just as in (b), we remove the indeterminate form % by
transforming

lim XL g @D (VEET3—30)
xom1 VX2 L3432  xo-1 3—3x2
—lim V6x2+3——3x=l.
x-»=1 3(l—x)

1.10.2. Find the limits:
X3 x2 .
(a) l‘m (3 T4 3x—|—2>’
(b) 11m (V' 9x2 +1—3x);
x>+
(©) lim 2V x+3 1/;:+5|/x;
x-to  V3x—2+4 l/?x—3
(d) lim (V 2x*—3—5x);

) lim x(V x*+1— x);

X =+ o

Vo213 . l/.2x2—|—3.

O lin S end Im S
(g) lim 52%/(x+3),

X—»>

3 2

Solution. (a) llm <3x_2x_71 3;—_'_2)

Here we have the mdetermmate form oo —oo; let us subtract the
fractions

lim (g — gy ) = lim gt =

oo \3X2—4  3x4-2 fo o X3 4-6x2—12x—8
ST 2+4/x _2
_xlf,nl 9+6/x—12/x2—8/x3 " 9 °

Note. We see that in such examples the limit is equal to the
ratio of the coefficients at the superior power of x (provided the
polynomials are of the same degree).

(b) lim WOEI=3)_ gy L
x>+ x>+ V9x2+l+3x
(c) In handlmg such examples bear in mind that the function
f(x)="p.(x), where p,(x) is a polynomial of degree n, tending
to infinity in the same way as the function 7/ x". This allows us

to single out the superior power of x and divide both the nume-
rator and denominator by this power of x. In the given example
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the divisor is J/ x; then we obtain:
. 2V k43 x5 % ) 2+3/5/ T8/
lim 3 = lim 5 =
xot+o )/ 3x—2+4/2%—3 x>t |/ 3—2/x+ 3/ E/x—12/x7 9/
2

= —cV_S_’ .
(d) Since the sum of two positive infinitely large quantities is
also an infinitely large quantity, then

lim () 2x*—3—5x)= lim |V 2x* =3+ (—5x)| = + .

X—>—-® X > -

(f) At x>0 we have V x*=vx, therefore

lim V2O i xVIFSE_ V2
ot X(E+2/x) totreo ¥@E+2/%) 4

At x < 0 we have }/x*=—x and, hence,

lim Y2@E3®) o —xV2i3x V3
o TX@F2M) e xGFo® o Td -

Note. From this it follows, incidentally, that lim KfL—i-—;:; does
X—=> o

not exist.
lim 2x/(x+3)
(g) lim52%/(x+3) = pxr>w =52 =25,
X—> ®
1.10.3. Find the limits:
(a) llmL (b) lim N

X1 /26+x 3 »_11/ 17—

l/x l/l—{-x——

1i L .

(c) xifl_1]1 s ho (k positive in
teger)

e) lim sin (x—m/6) | cos X .

() x> 1/6 V 3—2cosx’ (f) xl.l.n/g /(l sin x)? ’

. 2sin? x+sinx—1
() xl_frr?/s 2sin2x—3sinx+1°

Solution (method of substitution). (a) Let us put 26+ x=2z2
Then x=2*—26 and z— 3 as x— 1; hence

2x—2 223 — 54 . 2(2—3)(22+4-32+9)
1 = llm =
tl-lonl /26—}—)6 3 2-»3 2—3 23 z2—3
=1im 2 (z*+ 324 9) = 54.
23
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(d) Let us put 1 +x=2% then x=2#—1 and z—1 as x— 0.
Hence,

VT+x—1
lim —%— lim 7—11 k (see Problem 1.10.1 (d)).
x-0 z2-1

() Let us put x—m/6=2 then x=z+4n/6 and z2—0 as
x—1/6. On substituting we obtain

lim sin (x— m/6) = lim sin z
x»6 V3—2c08Xx 2.0 V3—2cos (z+ n/6)
— lim in z = lim 2 sin (2/2) cos (2/2) —
so0V 3— V 3cos z+sinz  2-02V 3sin?(2/2)+2sin (2/2) cos (2/2)

= lim €os (2/2)
z-0 V 3 sin(2/2) + cos (2/2)

1.10.4. Find the limits:

(a) hml—cosx’ (b) lim tanx—s—smx;
x>0 x—-0 X
(©) lim cos (nx/2)
x-1 —X
Solution. (a) 11m cosx__ lim 282 @/2) _ 1 i, (s“‘ WQ))”______
x>0 x—-0 2 x=0 x/2 2
(b) lim tan x—smx=1im sinx(l—cosx)=
x>0 x3 ta0  COSX-x3
lim 1 smx l—cosx__l_.
T LL0c0sxx 2 2!

(c) Let us put 1—x==z. Then x=1—2z and z—0 as x— 1.

Hence,
cosix cos (£—12> sinnz
lim —2 —lim —\2 2 /iy — 2

x> 1 1— 2= 0 2 20

=
=3

Note. For a simpler method of solving similar problems see § 1.12.
1.10.5. Find the limits:

(a) lim (14 1/x)%; (b) lim (1 4 x)!/@n;
X > ® x-0
© lim ()5 () lim (14 k/xy™;
. In(l ax __ |
@ lim S 0 lim e

In(a+x)—Ina (h) llm —e—X%

(g) lim ——_—_; sin x )

(i) lim In x— l

X—+e
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Solution. (a) lim(l 4= ) =lim [(l +'7>xl7=

X > o X > ®

In (14 x) In (1 +x) X _
())}L0 o _)1(1_’0[ - 3"—1]—13
(i) Put xfe—1=2; then x-==e(z4+1); z— 0 as x— e. On substi-
tuting we obtain
li Inx—l= lim In (x/e) =L lim In(l—{-z):L'
ko X—€ o el(xie—1) 250 b4 e

1.10.6. Find
i (1+a)"
Solution. lim <l 4+ £§>X= lim [(l —f-—lf,)xz] l/)‘=e“ =1.

X - o X ®© X
1.10.7. Find the limits:
li 14+ x\(1=V3)/(1 - x)
(a) lim (2 >

x=1 + X
. x242x—1 \(2x+D)/(x=1)
) lin (55— ) :

Solution. (a) Denote:
f ()= +x)/2+ x);

¢ (x) =1 Vx ;
l+x__2_'
lim [ (x —lff?2+ =73
li —lim =Y _ L
x-trllq)(x) x-{? I—x 2
But at finite limits limf(x)=A >0, lim¢ (x)=B the following
x—>a X->a

relation holds true:

. lim @ (x) 1 f (x)
lim [f (x)]® 0 = ex~a =eBlnd = A5,
x—a

. I+ \-V¥)/a-n _ (2\V2__ ‘/2—
im  555) -(s)"=vs

Note. If in handling examples of the form lim [f (x)]*®™ it turns

x—>a

out that limf(x)=1 and limg(x)=oco0, then the following

X->a

Hence,

33148
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transformation may be recommended:

lim [f (x)]* ) = 11 n 4 [f (o) —1]jr = =

X—>a

—llm{[l—f—(f(x __1)}1,(f(x> Dle @ 1f ) =1] — gx»
-a

1.10.8. Find the limits:

2x2 - 3\ 8x2 +3 | 4 tan x l/>|nx.
(@) llm (2 —|—5> » () llm( l—|—%1nx> ’

(c) llm (1 4 sin mx)cot =,
x> 1
sinx

(d) lim (—.—)mx—a) (a = kn, with k an integer).

sina

Solution. (a) Let us denote:

F=2120 ¢ (n=8x+3;

lim [ (x) __llm 203 =1

Yoo 2% 25
lim ¢ (x) = llm (8x2—i—3) =

X—> o X—> ®

Use the formula (*):
i 8x2+3 im @ (x) [f (x)=1]
lim (2x +3\ T e

tom \2X24- 05/ ;
_ 2x*4-3 _ 2 .
Fo)—l=gos—1=—go7s
2 (8x2 43
1111;([) ) [f(x)—1] = —11m —%}—C’:—% =—8.
Therefore
o (2x2- 3\8x43
lim (5ig) e
1.10.9. The function f(x) is given with the aid of the limit
x|
f(x)= llm et

Investigate this function and graph it.
Solution. Consider three cases:
(I) |x| > 1. Since in this case lim x** = oo, then

n->w
EERTP Rl VS
[ (x) = }Lﬂl T = L

(2) |x| < 1. In this case limx**=0; therefore f(x)=—1I.

n-®

lim fP(x)lf (x)~1]

(*)
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(3) x ==+1. In this case x> =1 at any n, and therefore f(x)=0.
Thus, the function under consideration can be written in the
following way:
1if x| >1
fy={—1if |[x| <1

0 if x==+1

or, briefly, f(x)=sign(|x|—1) (see Problem 1.5.11 (n)).
The graph of this function is shown in Fig. 27.

1.10.10. The population of a cou- y
ntry increases by 2% per year. — -1 e
By how many times does it increase { :
in a century? | |

Solution. 1f we denote the ini- ! {
tial number of inhabitants of a 7t 1 1 z
given country as A, then after a } t
year the total population will amo- | {
unt to { - >

A / |
A+W)'2:(1+5_0>A' Fig. 27

After two years the population will amount to A l—|-5i0 *. After

100 years it will reach the total of A(l+5—]0>100, i.e. it will

have increased [(1 -I—E%))s‘,]z times. Taking into account that
lim (l —|——,l7>n =e, we can approximately consider that (l + 51_0>60 xe.

n—-.

Hence, after 100 years the population of the country will have
increased e* &~ 7.39 times.

Of course, this estimation is very approximate, but it gives an
idea as to the order of the increase in the population; (the quan-

tity \/1 +515>m=7.245 to within three decimal places).

1.10.11. Find the limits:
o fin

(o) lim SEESS

© lim ==

. 2x2 —5x -+ 4
d ]1m o
(d) Yo OX*—2x—3"

3*
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(e) lim VeEFri—Ve=1);
| —2x e
(e T2

1.10.12. Find the limits:

(a) 1imﬁ‘;j—r;‘;7“3; (b) lim f-'i“—_f)
x-1 X—
(c) lim 1—52‘% (d) lim tan 2x tan (/4 — x);
a-a x->n/4
) li tan3 x—3 tan x

xom/3 €0S (x+7/6) °
1.10.13. Find the limits:
(a) lim (14 4/x)**3 (b) lim &

X—>® x->0
(c) lim azxx_l ; (d) lim (1 -+ 3 tan? x)cot* ;
x-0 x>0
(€) lim (sin2x)er2x;  (f) lim @X +i>
) limn (tan x)tan 2x; (h) 11m sin x)tan x;
(g
X—»T[/? X—»JI/?
T 3x242x4 1\ (6x+1)/(3x+2)
() lim ST ’
. . 14 3%\ (1-V®)/(1- x)
() lim (755)
(k) lim e e
x -0
1.10.14. Find the limits:
(a) lim arc cos(_l—x) . (b) lim In tan x :

’
£a0 Vx x4 | —coOtx

. .
(c) lxllrgmln (1+asinx).

§ 1.11. [nfinitesimal and Infinite Functions.
Their Definition and Comparison

The function «(x) is called infinitesimal as x — a or as ¥ — oo
if lima(x)=0 or lima (x)=

Txh; function ff;)m is called infinite as x —a or as x — oo If
limf (x) =00 or lim f (x) = oo

X—a X—>
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Alquantity inverse to an infinite quantity is called an infinite-
simal.

Infinitesimal functions possess the following properties:

(1) The sum and the product of any definite number of infinite-
simal functions as x — a are also infinitesimals as x — a.

(2) The product of an infinitesimal function by a bounded function
is an infinitesimal.

Comparison of Infinitesimals. Let the functions o (x) and B (x) be
infinitesimal as x — a. If

lima(x) =

where ¢ is a certain finite number different from zero, then the
functions a (x) and P (x) are called infinitesimals of the same order.
If c=1, then the functions a(x) and B (x) are called equivalent;
notation: « (x) ~ B (x).

If c=0, then the function «(x) is called an infinitesimal of a
higher order relative to B (x), which is written thus: a (x) =0 (f (x)),
and P (x) is called an infinitesimal of a lower order with respect
to a (x).

If limf%=c, where 0 < |c| <+ oo, then the function o (x)

X->a
is called an infinitesimal of the nth order as compared with the
function B (x). The concept of infinite functions of various orders
is introduced similarly.

¢,

1.11.1. Prove that the functions
L 2x—4 _
(a) f(,k)———x2+5 as x — 2,
b)) f(x)=(x—1)? sin3x—_]—l as x — | are infinitesimals.
Solution. (a) It is sufficient to find the limit
. . 2x—4
=i =0
(b) Firstly, the function ¢ (x)=(x—1)* is infinitesimal as x — 1;
indeed, lim(x—1)2=0. Secondly, the function

x-1

w(x)=sin3—'; x= 1,

x—1
is bounded:
lsin3 x—-l~_1 ‘ < L.
Hence, the given function f(x) represents the product of the
bounded function ¥ (x) by the infinitesimal ¢ (x), which means that
f(x) is an infinitesimal function as x — 1.
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1.11.2. Prove that the functions
—12

(a) f(x )- 22+7 as x—4;

(b) f(x)= s'zx as X — 00
are infinitesimal.

1.11.3. Find

lim xsin(1/x).
x>0

Solution. Since x is an infinitesimal as x — 0 and the function
sin (1/x) is bounded, the product xsin(l/x) is an infinitesimal, which
means that lim xsin (1/x)=0.

x>0

1.11.4. Compare the following infinitesimal functions (as x — 0)
with the infinitesimal ¢ (x)=x:

(a) f,(x)=tanx® (b) f,(x)=} sin*x;
(© f,(x)=V9+x—3.
Solution. (a) We have

tan
= lim —; " lim x2 = 0.

x>0 x>0

lim
x>0 x->0

Hence, tan x® is an infinitesimal of a higher order relative to x.

tan x3 . " tan x3
= li = x2]

(b) We have
3, 53 o 3
lim ¥V 5% — lim sin?x 1|
x>0 x X0 2 3/ | T
X

Hence, }/sin%x is an infinitesimal of a lower order as compared
with x.
(c) We have
litn L?j__i—_:;_ lim _—l.__ L.
x>0 X x->0 V9-|-—x—|—3 6

Hence, the infinitesimals )/ 9+x—3 and x are of the same order.

1.11.5. Determine the order of smallness of the quantity § with
respect to the infinitesimal a.
(a) p=cosa—cos2a; (b) p=tana—sina.

Solution. (a) P==cosa—cos2a=2sin 3 asin &

2 2 °
Whence
lim _[3?= lim 2 sin (305/22 sin (at/2) _?_
a-0 a -0 @ 2
Hence, P is an infinitesimal of the same order as a2, i.e. of the

second one with respect to a.
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1.11.6. Assuming x — oo, compare the following infinitely large
quantities:

(a) f(x)=3x*4+2x+5 and ¢ (x) =2x*+42x—1;

(b) [(x)=2x*43x and ¢ (x) =(x+2)%

© fy=}%+a and @ (x)=}/x.

Solution. (a) The infinite function 3x*42x45 is of a lower order
as compared with the infinite function 2x®-42x—1, since

, 3x2 —|—2x+5 3/x+2/x*+5/x3
lim et = lim o —m =0

X = o X - ®©

1.11.7. Prove that the infinitesimals « =x and f =xcos(1/x)(as x—0)
are not comparable, i. e. their ratio has no limit.
Solution. Indeed, 11m w hm cos(l/x) does not exist (prove

it!), which means that these mﬁmte51mal functions are not com-
parable.

1.11.8. If x— 0, then which of the following infinitesimals is
(are) of a higher order than x; of a lower order than x; of the
same order as x?

(@) 100x; (b) x% (c) 6sinx; (d) sin®x; (e) 3/ tan®x.

1.11.9. Let x— 0. Determine the orders of the following infini-
tesimal functions with respect to x:

(a) 2sin® x—x3; (b) V' sin*x+ x%;
© V1i+x—1; (d) sin2x—2sinx;
(e) 1—2cos(x—}— %), (f) 2/ sin x;

(©) xi—l; (h) tanx 4 x?

(i) cosx—f/—c—(ﬁ; (j) e¥—-cos x.

1.11.10. Assuming the side of a cube to be an infinitesimal, de-
termine the order of smallness of the diagonal of the cube (d), of
the area of its surface (S); of its volume (V).

§ 1.12. Equivalent Infinitesimals.
Application to Finding Limits

If the functions o (x) and P (x) are infinitesimal as x — a and if
a(x) ~ v (x), B(x) ~d(x), then

a (x) Y ()
Im 7= lim 53

(replacing an infinitesimal by an equivalent one).
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then

then

If
lim f(x)=£k, 0<]|k|< oo,
[ (x)a(x) ~ ka(x).
If
o (x) ~ (),
B(x) ~v(x),
o (x) ~ B (x).

For two infinitesimal functions to be equivalent it is necessary
and sufficient that their difference be an infinitesimal of a higher
order as compared with each of the two.
Listed below are infinitesimal functions:

(a(x) is an infinitesimal as x — 0)
(1) sina(x) ~a(x); (2) tana (x) ~ a(x);
(3) 1—cosa (x) ~ [ (X)]*/2;
(4) arcsina (x) ~a(x); (9) arctana (x) ~ a(x);
6) In[l14ax)] ~a(x) (7) a**—1~a(x)ina
(a > 0), in particular, e** —1 ~ a (x);
(8) [14+a(x)]?—1 ~ Pa(x), in particular, y/ 14o (x)—1 ~a—n(—xl.

1.12.1. Prove that as x— 0

| 1 1

(c) sin ]/ xV'x ~ ]/xz—{—lfﬁ.
Solution. (a) By formula (8) at P=1/2 we have
1

—_ Vlljc= Vllﬁ V1i+x—1)~ l-%x.

(c) By formula (1) we have
sin ]/ X Vx—~]/x Vx = x3/9,
‘l/xz_.l_l/:v-:’ —x3/4)/ T x1/2 ~ x3/4,
whence sin]/ xV x ~ ]/ PRI

1.12.2. Replace each of the following infinitesimals with an equi-

valent one:

(a) 3sina—>5a? (b) (I —cosa)?+ 16a* 4 Sat 4 6ab.
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Solution. (a) Note that the sum of two infinitesimals o and B
of different orders is equivalent to the summand of the lower order,
since the replacement of an infinitesimal with one equivalent to it
is tantamount to the rejection of an infinitesimal of a higher order.

In our example the quantity 3sina has the order of smallness 1,
(—5a*)—the order of smallness 3, hence

3 sino 4 (—5a?) ~ 3sina ~ 3a.
(b) (1—cos a)®+ 16a® + bat + ba® = 4sin? % -+ 16a® 4- 5at + ba®.
The summand 16a® is of the lower order, therefore
(1 —cos a)? -+ 16a?® + 5ot 4 6> ~ 16a°.

1.12.3. With the aid of the principle of substitution of equiva-
lent quantities find the limits:

sin 5x

. . 1—cos x
a) lim ————; (b) lim ————.
()x-»oln(l‘l"4x) (b) x>0 l—cos-;—’

. 5 . 21
© lim 2% . (d) lim V1_+x_+4_x___
x-»Ol/l_l_x‘Z__] x>0 sin 4x

. sin2x-+arc sin2 x— arctan?x
(©) xll»mo 3x ’

. 3sinx—x24x3 |
() ilmo tan x+2sin2x5x4 *

. (sinx—tan x)2 4 (1 — cos 2x)4 +x®
(©) xh_',no 7 tan? x4 sinb x4 2 sin® x '

el

() lim sin ?/; In(1+3x) .
x>0 . ( 5 f/x— )’
(arctan Vx)* \e —1

. . l—cosx-42sin x—sin3 x— x2 4 3x4
(M xhino tan3 x—6 sin* x 4 x —5x?

Solution. (a) We have sindx ~ 5x; In(l+ 4x) ~ 4x (see the list
of equivalent infinitesimals on page 72). Therefore

lim S5y 228
o IM(I+4%) g4 47

. . InJl —1
(c) lim Incosx lim n| +(go:x N
x0 1 fxt—1  x-0 x4/
p— 2
— 4 lim E= g i 22— g,
x>0 X x>0 X

(d) From the list of equivalent infinitesimals we find:
V1id+x402—1~ (x4 x%)/2 ~ x/2, sindx ~ 4x.
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Therefore
lim YAtx -1 o #2 L
£ o0 sin 4x —x—>0 4x 8"

(e) Using the list of equivalent infinitesimal functions given on
page 72 we obtain

sin 2x 4+ arc sin? x —arc tan? x ~ sin 2x ~ 2x.
Hence,

lim sin 2x4-arc sin? x —arc tan®x =1
x->0 3x x
(hysiny/ X~/ x; In(1+3x) ~ 3y;
arctan ) T~V % &V 1 ~5Y%
lim sin f/jc In (14 3x) _
x-0 (5:;/; > x—»Ox.5d X
(arc tan V x)% \e —1 X0l

1.12.4. Find the approximate values of the roots /' 1.02 and

1/0.994. Estimate the absolute error.
Solution. Use the approximate formula

V1idx~14x/2 (%)
(for x sufficiently close to zero). In our case

1/1+002~1+°°2_1.01;
Y T=0. 006~1—°°—ﬁ—0997

To estimate the error we note that
—— l ——
sV THa—=)=5 =2V T+x+2)=
1 — 1 — 2 1/ x\2 «2
=g G+ 1=2VaF T+ 1) =5 (Vx+1—1) ~7(5) =2,
Hence, the absolute error of the approximate formula (x) is esti-
2
mated by the quantity %.

Using this estimate we find that the absolute error of the root
S 2
VT2~ 101 is ~ 292000005, and the absolute error of

1 0.994 ~ 0.997 amounts to ~ & ";’6’ ~ 0.000005.

1.12.5. Prove that, as x — 0,
(a) f/l—i—x—-l~§lx;
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(b) arctanmx ~ mx;
() 1—cos?x~ % sin? x.

1.12.6. For x— 0 determine the order of smallness, relative
to the infinitesimal P (x)=x, of the following infinitesimals:

»(+x)
(a) Vsin?x + x° (b) f/—
1.12.7. For x— 2 determine the order of smallness, relative to
the infinitesimal B (x) =x—2, of the following infinitesimals:

(a) 3(x—2)*+2(x2—4); (b) }/sinnx.

1.12.8. Making use of the method of replacing an infinitesimal
with an equivalent one, find the following limits:

sin3x | . In (14 sin4x)
@ man’ 0 i Ty
esin 3x_ | . arctan 3x
© llm o In (1 +-tan 2x) ; (d) xh_f](]) arc sin2x °’
In (2—cos 2x) | . Vl,—{— sin3x—1
(e) li moln (sin3x+1)°’ () X]er(l) In (1 +tan2x) °*

Vire—1

l-—cosx

In (1 4 2x—3x2+44x3) |

(g) hm ]n(] — x4 2t —7x%) (h) lin

x->0

1.12.9. Find an approximate value of the root ,/1042.

§ 1.13. One-Sided Limits

A number A is called the limit to the right of the function f(x)
as x—»x,,(A_ llm f =[(x,+0)) if for any € > 0 there exists

8 (¢) > 0 such that for all x satisfying the inequality 0 < x—x, < 8 (¢)
and belongmg to the domain of definition of the function f(x) the
inequality |f(x)—A| <e holds true. The limit to the left of the
function f(x, ——0) as x — x,—0 is defined in a similar way. If x,=0,
then we write simply x — +0 or x— —0 and, respectively, f(—|—0)
and f(—0).

1.13.1. Find the one-sided limits of the functions:
| —2x+3 ifx<1,
\ 3x——5 ifx>1

(b) [ () == as x—1;

asx —1;

(@) f(x)=
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© F=Y1=s2 45 g,

1
(d) f(x)=3+m as x— I

(e) f(x)=cos(m/x) asx— 0;
() F(x)=5/(x—2)* asx— 2.

Solution. (a) Letx<C1. Thenf (x)=— 2x+4 3. Hence, f(1—0)=
p = lm] f(x):l is the limit to the left.
x->1-0
If x>1, then f(x)=3x—5; hence,
f(l1+0)= llm f(x)=—2 is the limit
x-1+0
to the right (see Fig. 28).
_ Vi—cos2cx V2sin*x
(c) fr=ti=me2e _Foomwx
_ I/TZISinxl
1k - x
1 |
10 sinx, if 0 2
\smxl—-[ sin x, <x <72,
l \ —sinx, if —/2< x<0.
Fig. 28 Hence,
f(—=0)= lim f(x lim <~— Vo Si];x):—- V2,
x> =0 X ->—
f(+0)= lim f (x)= lim (l/§ S“”):l/@.
x—>+0 x->+0 x

(d) The expression 1/(1 —x) tends to 4 oo, when x tends to 1,
remaining less than 1, therefore

lim 7/0-% = & oo, lim 0, f(1—0)=3

X-+1=0 x—>1 Ol+7‘/“—x)

Further, as x—14-0 we have 1/(1—x)—-—oo. Therefore
lim 7v/0-% =0,

x-1+0
1
f(14-0) xlmlo(3‘l"—+m>=3+1= 4.

(e) Let us choose two sequences, {x,} and {x;}, with the general
terms

coo b 2 —
Xy =g and x, =TT (n=1,2, ...)

respectively.
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Thenlim x,, = lim x;, =0 and

n-x n-»w
limf (x,)= lim cos2nn =1,

n-x n - x

lim f (x;,) = lim cos (2n + l) X0

n-> e n-> "%

Hence, the function f(x) has no limit to the right at the point 0;
taking into account that f(x) is an even function, we conclude that
it has no limit to the left elther (see Fig. 29).

¥
_______________ 1

N
N

-1
Fig. 29

1.13.2. Prove that, as x — 1, the function

e )__’,c—l—l at 0<Cx <1,
l3x+2 at 1< x <3

has a limit to the left equal to 2 and a limit to the right equal to 5.

1.13.3. Find the one-sided limits of the following functions as
x—0:

(a) f(x) 21/)(’
(b) ! x)—e”"
o) flx)= lsmxl

§ 1.14. Continuity of a Function.
Points of Discontinuity and Their Classification

Let the function y=/f(x) be defined on the set X and let the
point x,€ X be the limit pomt of this set. The function f (x) is said
to be continuous at the point x, if llm f (x)={f(x,).- The latter con-

dition is equivalent to the condition lxm Ay (x,) = lim [f(x,+ Ax) —
Ax >0 Ax >0
_f(xo)] =0.
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The function f(x) is continuous at the point x, if and only if
f(xn—O)_—_f(xo—kO):/‘(x{,).

The function f(x) is continuous on the set X if it is continuous
at every point of this set.

Points of Discontinuity of the First Kind. Let the point x, be the
limit point of the domain of definition X of the function f(x).
The point x, is called a discontinuity of the first kind of the fun-
ction f(x) if there exist the limits to the right and to the left and
they are finite. If f(x,—0)=f(x,4-0)=~=f (x,), then x, is called
a removable discontinuity. Further, if f(x,—0)==f (x,+0), then x,
is a non-removable discontinuity of the first kind, and the difference
f(x,+0)—Ff(x,—0) is called a jump discontinuity of the function
f(x) at the point x,.

Points of Discontinuity of the Second Kind. If at least one of
the limits of f(x,—0) and f(x,+0) is non-existent and infinite,
then point x, is called a discontinuity of the second kind of the fun-
ction f(x).

1.14.1. Using only the definition prove discontinuity of the fun-
ction f(x)=3x*+5x*+ 2x2+3x+4 at any «x.

Solution. let x, be an arbitrary point on the number scale. First
find lim f (x):

x> Xy

lim f (x) = lm (3x* 4 5x3 4 2x* + 3x + 4) = 3x) -+ bx, + 242+ 3x,5- 4.

X X X > X,
Then compute the value of the function at the point x,:
f(X(,) = 3)\3—}—5)((;4—2)(33 + 3X0+4'
Comparing the results thus obtained, we see that

lin f(xo) - f ()‘.1)'

X - Xo

Hence, the function f(x) is continuous at the point x, by definition.
Since x, is an arbitrary point on the number scale, we have proved
continuity of the function for all values of x.

1.14.2. Given the functions:

6— 5\5 for 1 <x<3,

for 3<Cx < oo
] for x<3,
l 3\¢ for x> 3;

(2’5 +3) for —oo < x<1,
2) i
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Find the points of discontinuity (if any). Determine the jump
discontinuities of the functions at the points of discontinuity of the
first kind.

Solution. (a) The domain of definition of the function is the entire
number scale (—oo, o). In the open intervals (—oo, 1), (1, 3),
(3, oo) the function is continuous. Therefore discontinuities are pos-
sible only at the points x=1, x=3, at which analytic representa-
tion of the function is changed.

Let us find the one-sided limits of the function at the point x = 1:

F—0)= lim & (2 43)=1;
x->1-0
f(14+0)= lim (6—5x)=1.
x->1+0

The value of the function at the point x=1 is determined by the

first analytic representation, i. e. f(1)=(243)/5=1. Since

fF(1—=0)=F(1+0)=f (1),

the function is continuous at the point x=1.
Consider the point x=3:
f(3—0)= lim (6—5x)=—9;
x->3-0
f3+0)= lim (x—3)=0.
x-+3+0
We see that the right-hand and the left-hand limits, though finite,
are not equal to each other, therefore the function has a disconti-
nuity of the first kind at the point x=3.
The jump of the function at the point of discontinuity is
F(340)—(3—0) =0—(—9) =9.
(c) The function is defined and continuous throughout the entire
number scale, except at the point x=3/2. Since 2x—3 >0 for
x> 3/2 and 2x—3 < 0 for x < 3/2,

f(x)={ 1 at x > 3/2,

—1 at x < 3/2.
Hence,
[3/240)=1, [(3/2—0)=—1.

Therefore, at the point x=3/2 the function has a finite discon-
tinuity of the first kind. The jump of the function at this point
f(3/240)—f(3/2—0) is equal to 1 —(—1)=2.

1.14.3. Test the following functions for continuity:

sin x
@) (1) = {f — - for x =0,
| 1 forx=0;
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(b) [ (x)=sin(1/x);
sin (1
@ 0= {0 10
_ [ 4-3% for x <0,
(d) f(x)—‘ 2a+ x for x>0

(e) f(x)=arctan(l/x); (f) [ (x)=(x*+1D)/(x+1).
Solution. (a) The function is continuous at all points =4 0. At
the point x =0 we have

FO)=1; lim Mo gy My,
X—>—0 X->+0
Hence, at this point the function is continuous as well, which
means that it is continuous for all values of x.

4
1

(b) The function is defined and continuous for all x=~0. There
are no one-sided limits at the point x=0 (cf. Problem 1.13.1
(e)). Therefore, at the point x=0 the function suffers a disconti-
nuity of the second kind (see Fig. 30).

(d) f(—0)=4, and f (+0) = 2a; the equality [ (—0)=](4-0) =] (0)
will be fulfilled, i. e. the function f(x) will be continuous at the
point x=0 if we put 2a=4, a=2.

) f(—=1—=0)=f(—14+0)= lim (x*—x+1)=3, i.e. both one-

X—->=1
sided limits are finite and coincide. But at the point x=—1 the



§ 1.14. Continuity of a Function. Points of Disconlinuily 81

function is not defined and, therefore, is not continuous. The graph
of the function is the parabola y = x*—x + 1 with the point M (—1, 3)
removed. If we redefine the function putting f(—1)=23, then it
will become continuous. Thus, at x =—1 the function has a remo-
vable discontinuity.

1.14.4. Test the following functions for continuity:

(a) f(x)=E(x). It should be borne in mind that the function
E (x) is defined as the maximum integer n contained in the num-
ber x, i. e. as a number satisfying the inequality n<Cx.

(b)

N | 1if x is rational,
()= |\ 0 if x is irrational.

A (x) iscalled the Dirichlet function. For instance, A (0) = 1; A(—1/2)=1;
AV 2)=0; A(n)=0, ete.

Solution. (a) The function E (x) is defined throughout the entire
number scale and takes on only integral values. This function is
discontinuous at every integral value n of the independent va-
riable, since E(n—0)=n—1;

E (n+0)=n (see Fig. 31). y
(b) Let us choose an arbitrary | O =
oint x, on the x-axis; two cases Lo
gre possible: (1) the number x, ] |
is rational; (2) the number x, is 1= | |
irrational. -3 -2 -1 P b z
In the first case A(x,)=1. In ! a1 2 3 4
any vicinity of a rational point } 1
there are irrational points, where bl L
A(x)=0. Hence, in any vicinity . Z
of x, there are points x for which — -3k

[Ay]=|M(x)) —A(x)]|=1. Fig. 31
In the second case A (x,)=0.
In any vicinity of an irrational point there are rational points

at which A (x)=1. Hence, it is possible to find the values of x for
which

| Ay | =% (x)) —A(x)| = L.

Thus, in both cases the difference Ay does not tend to zero as
Ax — 0. Therefore, x, is a discontinuity. Since x, is an arbitrary
point, the Dirichlet function A(x) is discontinuous at each point.
The graph of this function consists of a set of points with irratio-
nal abscissas on the x-axis and of a set of points with rational
abscissas on the straight line y=1, that is why it is impos-
sible to sketch it.
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1.14.5. Using the definition of continuity of a function in terms
of “e—08",test the following functions for continuily:

(@) f(x)=ax+0b (a=~0)

b [« il x is rational,

(0) ()= | —x? if x is irrational.

Solution. (a) Choose an arbitrary point x,. According to the “¢-—§”
definition it is necessary to show that for any preassigned, arbitra-
rily small number € > 0 it is possible to find a number & > 0 such

that at |x—x,| < & the inequality |f(x)—/f(x,)| <& holds true.
Consider the absolute value of the difference

1F () —F (x0) | = | (ax 4 b)— (ax, 4 b) | = |ax +b—ax,—b| = |a || x—x,|.

Let us require that |f(x)—f(x,)|<e. This requirement will be
fulfilled for all x satisfying the inequality

lallr—x,| <& or [x—x,| <e/|a] (a5=0).

Hence, if we take 8<{e/|al|, then at |x—ux,| <8 the inequality
{f (x)—F(x)| <e is fulfilled. Continuity is thus proved for any
point x =x,.

(b) Choose an arbitrary point x,. If {x,} is a sequence of rational
numbers tending to x,, then lim f(x,)=x3. If {x,} is a sequence

Xp=+Xo
of irrational numbers tending to x,, then lim f(x;)=—x%. Atx,+#0
the indicated limits are different and he;ceu the function is discon-
tinuous at all points x=40.
On the other hand, let now x=0. Find the absolute value of
the difference |f(x)—f(0)]:

) —FO)[=]£x—0]=x

It is obvious that x* <e at |x| <} e If e>0 is given, then,
putting 8<<) e and |x—0|=|x] < 8, we obtain |Af(0)|=x2 <e.
Hence, 2t the point x=0 the function is continuous. And so, the
point x =0 is the only point at which the function iscontinuous. Note
that the function under consideration can be expressed through the
Dirichlet function (see Problem 1.14.4 (b)): f(x)=x*[2A (x)—1].

1.14.6. Determine which kind of discontinuity the following
functions have at the point x = x,:

() f(x)—_—J x+2 for x <2,

| 22—1 for x>=2; x,=2;
| 1
(b) f(x)=arc tan —=; xo=15; () f(x):m; Xe=0;

(d) [ix)=tanx; xo=m/2;
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() f(x)=V x—E (V x); xo==n?, where n is a natural number.
Solution. (a) Find the one-sided limits at the point x,=2;
f2—0)= lim (x+2)=4;

X>2=10

fQ+0)= lim (x*—1)=3.
X-»2+0

Here the limits to the right and to the left exist, are finite but
do not coincide, therefore the function has a discontinuity of the
first kind at the point x,=2.

(e) The function E (J/ 'x) has discontinuities of the first kind at
every point x=n?, where n is a natural number (see Problem

1.14.4 (a)), whereas the function }/ x is continuous at all x>0.

Therefore the function f(x)=} x—E (}/ x) has discontinuities of
the first kind at the points 1, 4, 9, ..., n? ...

1.14.7. Test the following functions for continuity

(a) fo="A
x|
(b) f(x)z{(e = for x£0,
| 3 for x=0;
_ [ et/* for x==0,
© 1) \ 0 for x==0;
(@ (0= lim sm; () f()=-L322L;

(M) F () —E () +E (— ).

1.14.8. For each of the following functions find the points of
discontinuity and determine the jumps of the function at these
points:

4

(a) f(x)=m;
+2
(b) F () =x+ gy

© (o) 2l=th

(—x for x< 1,
(d)f(x)-:-{l _2 for x > 1.

x—1

1.14.9. Redefine the following functions at the point x=0 so as
to make them continuous:
tan x |

(a) f(x)=—:

X
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f(\’ —73)6’

(© f(x)= V‘*"“
sin® .

(d) H'\’)zl—ico;x'

§ 1.15. Arithmetical Operations on Continuous
Functions. Continuity of a Composite Function

If the functions f(x) and g(x) are continuous at the point x =x,,
then the functions
(1) =g @ F@-g(; ) L& (g(r)»0)
are also continuous at this point.
If the function u =@ (x) is continuous at the point x=x, and
the function y=f(u) is continuous at the point u,=¢(x,), then
the composite function y=Ff[¢(x)] is continuous at the point x = x,.

1.15.1. Test the following functions for continuity:
o8t ll
(@) f(x)—x4—|—4x3+8x2+8x+4’
3 sin? cos?x+1,
b) [ () ==

x3 cos x4+ x?sinx
c) f(x)= cos (I/sinx) °

Solution. (a) A function representing a ratio of two continuous
functions (polynomials in this case) is discontinuous only at points
for which the denominator becomes zero. But in our case

x4 4x3 - 8x% 4 8x -+ 4 = (x®+ 2x -}-2),

and since x*4-2x+2=(x+41)24+1>0 at any x, the denominator
never becomes zero. Hence, the function f(x) is continuous through-
out the entire number seale.

(b) The function f(x) suffers discontinuities only at points for
which the denominator equals zero, i.e. at points which are the
roots of the equation

4cosx—2=0 or cosx=1/2,
whence
Xx=x,=+n/3+2an (n=0, +1, =2, ...).

Thus, the function f(x) is continuous everywhere, except at the
point x,.
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(c) Just as in the preceding example, the numerator is continu-
ous throughout the entire number scale. As far as the denominator
is concerned, according to the theorem on continuity of a composite
function, it is continuous at points where the function u=l/sinx
is continuous, since the function cos u is continuous everywhere.
Hence, the denominator is continuous everywhere, except at the
points x=*kn (k an integer). Besides, we must exclude the points
at  which cos(l/sinx)=0, i.e. the points at which 1/sinx =
= (2p+1)n/2 (p an integer), or sinx=2/[(2p+ 1)xn]. Thus, the
function f(x) is continuous everywhere except at the points x=kn
. 2
and x=(—1)" arcsmm—l—nn (k, p,n=0, =1, =2, ...).

1.15.2. Test the following composite functions for continuity:

(a) y=cosx", where n is a natural number;
(b) y=rcoslog x;
(© y=VT1/2—cosx.

Solution. (a) We have a composite function y=cosu, where
u=x". The function y=cosu is continuous at any point «, and
the function u=x" is continuous at any value of x. Therefore, the
function y=cosx" is continuous throughout the entire number scale.

(¢) Here y=1'1/2—u?, where u=cosx. The function J'1/2 — 2
is defined and continuous on the interval |—V 2/2, V22|, the
function u=cosx is continuous throughout the entire number scale.
Therefore, the function y—:-l/l/2—cos2 x is continuous at all values
of x for which

f— /4 4+ 2nn < x < 3n/4 -+ 2nn,
leosx|<V 272, e { 5n/4 + 2nn < x << Tn/4 4 2mn.

1.15.3. For each of the following functions find the points of
discontinuity and determine their character:

B —_ I .
@) y= -I—u , where u=_—;

. [ x—1 for x>0,
by y=u?, where u_] x+1 for x< 0

(c) y=:%g;, where u=tanx.
Solution. (a) The function

1
u:(p(x)=x__l
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suffers a discontinuity at the point x=1. The function

y=F W)= s

suffers a discontinuity at points where u*+u—2=0, ie u,=—2
and u,=1. Using these values of u, find the corresponding values
of x by solving the equations:

1
x—1’ 1=x—l

—9 =

.
’

whence x=1/2 and x=2.

Hence, the composite function is discontinuous at three points:
x,=1/2, x,=1, x,=2. Let us find out the character of disconti-
nuities at these points.

Iim y= lim y=0,

x - 1 U - ®
therefore x,=1 is a removable discontinuity.

lim y= lim y=oo; lim y= lim y = oo;
x> 1/2 U - — 2 x> 2 u -1

hence, the points x,=1/2, x,=2 are discontinuities of the second
kind.

1.15.4. Given the function f(x)=1/(1—x). Find the points of
discontinuity of the composite function

y=HIF @1}

Solution. The point x=1 is a discontinuity of the function

v:f(x):ré;.

If xs=1, then
| —1
u:f[f(x)]=l—l/(l—x)=x ¥

Hence, the point x=0 is a discontinuity of the function
u=Ff[f(x)]
If x50, x=1, then
1
y=HT N = —=pa="*

is continuous everywhere.
Thus, the points of discontinuity of this composite function are
x=0, x=1, both of them being removable.



§ 1.16. Funct. Cont. on Closed Interval: Properties 87

§ 1.16. The Properties of a Function Continuous on a
Closed Interval. Continuity of an Inverse Function

I. The function f(x), continuous on the interval [a, b], possess-
es the following preperties:

(1) f(x) is bounded on [a, b];

(2) f(x) has the minimum and maximum values on [a, b];

3) If m= min f(x), M= max f(x), then for any A satisfy-

ag<x<b a< x < b
ing the inequalities m<C A<CM there exists a point x, € [a, b] for
which [ (x,) = A.

In particular, if f(a)-f(b) <0, then we can find a point
¢ (a < c< b) such that f(c)=0.

[I. Continuity of an Inverse Function. If the function y={(x) is
defined, continuous and strictly monotonic on the interval X, then
there exists a single-valued inverse function x =@ (y) defined, con-
tinuous and also strictly monotonic in the range of the function

y=F(x).

1.16.1. Does the equation sinx—x-+ 1=0 have a root?
Solution. The function

f(x)=sinx—x-+1
is continuous over the entire number scale. Besides, this function
changes sign, since f(0)=1, and f(37/2) =— 3n/2. Hence, by pro-
perty (3) within the interval [0, 3m/2] there is at least one root
of the given equation.

1.16.2. Has the equation x*—18x+42=0 roots belonging to the
interval [—1, 1]?

1.16.3. Prove that any algebraic equation of an odd power with
real coefficients

QX L a x4 4 a,, x4 a,,,, =0 (*)
has at least one real root.
Solution. Consider the function
[(X)=a 14 a,x°" 4 . - QX+ gy 4,
which is continuous throughout the number scale.
Let, for determinacy sake, a, > 0. Then

lim f(x)= - oo, and lim f(x)=— oo.
X->+® X > -

Hence, we can find numbers a, b, a <b such that f(a) <0;
f () > 0. By property (3), between a and b there exists a number
¢ such that f(c)=0, which proves that the equation (*) has at
least one real root.
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1.16.4. Let the function f(x) be continuous on [a, b] and let
the equation f(x)=0 have a finite number of roots on the inter-
val [a, b]. Arrange them in the ascending order:

a<x, < x, < xy<ou ol x, < b,

Prove that in each of the intervals

(av xl)’ (xl’ xz)v (x2’ x:s)’ AL | (xm b)

the function f(x) retains the same sign.

Solution. If the function changed its sign on a certain interval,
then we could find one more root of the function, which contradicts
the condition. To determine the sign of the function on any of the
indicated intervals it is sufficient to compute the value of the func-
tion at an arbitrary point of the appropriate interval.

1.16.5. Given a function on the interval [—2, 4 2]
x+2 if —2<<x <0,
F0=1 —(et9)ii o0<x<2
Is there a point on this closed interval at which f(x)=0?

Solution. At the end-points of the interval [—2, 4-2] the given
function has different signs:

[(—2)=+6; [(+2)=—6.

But it is easy to notice that it does not become zero at any point
of the interval [—2, +2]. Indeed, x*+2 >0 and —(x*+2) 20
at any x; this is due to the fact that f(x) has a discontinuity at
the point x=0.

1.16.6. Does the function

f(x)=x%4—sinnx+3
take on the value 2% within the interval [—2, 2]?
Solution. The function f(x)=x%4—sinnx43 is continuous

within the interval [—2, 2]. Furthermore, at the end-points of this
interval it attains the values

f(—=2)=1 [(2)=5.
Since l<2—;—<5, then, by property (3), within the interval
[—2, 2] there exists at least one point x such that f(x):?-;—.
1.16.7. Show that the function

2% 1 for—1 << x <0,
fx)={ 2% for x=0,
2 —1 for 0 <<x <1,
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defined and bounded on the interval [—1, 1], has neither maximum,
nor minimum values.

Solution. In the interval [—1, 0) the function increases from 3/2
to 2 and in (0, 1] it increases from O to 1, it does not attain either
the value 2 or 0. Therefore the function is bounded but never reaches
its upper and lower bounds. This is because there is a discontinuity
at the point x=0.

1.16.8. Show that on any interval |a, b] of length greater than
unity the function f(x)=x—E (x) attains its minimum value but
never reaches its maximum.

Solution. In any interval [n, n+ 1), where n is an integer, the
given funclion f(x) increases from O to 1, never attaining the maxi-
mum. Hence, 0 <{f(x) < 1 for any

x. Since on the interval |a, b] we

can find at least one internal in-

tegral point n, then f(n)=0 and

li x)=1, but 1 f

Il ol ) T //

x. [t means that the function reaches -2 - U 1
its minimum value but never
reaches its maximum. This is be-
cause there is a discontinuity at the point x=n (see Fig. 32).

Fig. 32

1.16.9. Prove that the function y=2""}/"x (n a natural number)

is continuous throughout the number scale, considering it as a function
inverse to y=x"*1,

Solution. The function y=x?"*1 is continuous and increases from
— oo to co over the entire number scale. Hence, the inverse function
x="2""1/"y is defined for all y, continuous and increasing. Denoting
the independent variable again as x, we find that the function
y=2”+11/x possesses the required properties.

1.16.10. Prove that for any function of the form
Y=ay X" 4 q x®" "1 4 g X3 L ta,xta, ., (%)

where a,, a,, a,, ..., a,, a,,, are positive numbers, there exists
an inverse function increasing and continuous throughout the num-
ber scale.

Solution. As is known, the functions x, x®, x*, ..., x¥+! increase
throughout the entire number scale. Then, since the coefficients
a; (i=0,1, ..., n+1) are positive, the function f(x)=ax*"** -

+ax* '+ ... +a,x+a, also increases. Furthermore, it is con-
tinuous. Therefore, for a function of the form (%) there exists an
inverse function increasing and continuous over the entire number
scale.
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Note. This example establishes only the existence of an inverse
function x =g (y), but gives no analytic expression for it. It is not
always possible to express it in radicals. The problems of the exis-
tence of an inverse function and of expressing it analytically should
not be confused.

1.16.11. Prove that there exists only one continuous function

x=x(y) (— oo < y < oo) which satisfies the Kepler equation:
x—esinx=y (0<e<]).

Solution. Let us show that y(x) is an increasing function. Let
x, < x, be arbitrary points on the number scale. Then
Y (x)-—y (x,) = (X, —esinx,) — (¥, —esinx) =

= (X, —x,) —e (sin x,—sin x,).
Estimate the absolute value of the difference |sinx,—sinx,|:

2 %1 X+ %
2

2

Xo—X
< 21_2'2—ll=|x2—x1|= (Xs—x,).

. X
|sinx,—sin x1|=2|sm cos <

<2 sinxigﬁ
Since 0 <e <1,

e|sinx,—sinx, | < (x,—x,),

whence .
(x,—x,)—e(sinx,—sinx,) =y (x,)—y (x) > 0.

Since y (x) is a continuous function in the interval (— oo, o), the
inverse function x is a single-valued and

AY continuous function of y.
¥ 1.16.12. Show that the equation
x*—3x+4+1=0

has one root on the interval [1, 2]. Cal-
z  culate this root approximately to within

-1 0 1 two decimal places.
1.16.13. The function f(x) is defined
-1t on the interval [a, b] and has values of
Fig. 33 the same sign on its end-points. Can one

assert that there is no point on [a, 0]
at which the function becomes zero?

1.16.14. Prove that the function
[ x+1 at —1<x<0,
f(x):]—x at 0<x<l1

is discontinuous at the point x=0 and still has the maximum and
the minimum value on [— 1, 1] (see Fig. 33).
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§ 1.17. Additional Problems

1.17.1. Prove the inequalities:
(a) n! < (n+l> for a natural n > 1;

3 5 2n—1 1
(b) 2776 T Von -1

1.17.2. Prove the inequalities:
(a) 202%0% > 303202,

(b) 200! < 1002°°,

1.17.3. Solve the inequalities:
(@) |x]—2]< L

®) =35 —1]> 2

© x—2V X+1>x42.

1.17.4. Can a sum, difference, product or quotient of irrational
numbers be a rational number?

1.17.5. Do the equations
(@) |sinx|=sinx+43, (b) |tanx|=tanx-+3
have any roots?

1.17.6. Prove the identity (@—|>Z+<%>Z=X?‘.

1.17.7. Prove the Bernoulli inequality

T4+x)A+x,) ... A+x) =1 +x,4+x,4+ ... +x,,

where x;, x,, ..., x, are numbers of like sign, and 1-4x;, >0
(i=12,...,n).

1.17.8. Find the domains oi definition of the following functions:
a) f(x) =V x*—x%
(b) f(x ]/sml/x
(c) f(x) 1/— sin? qux;
1 .
(d) f( X)*—Vﬁ and g(x)z'l/x?—l;l—'
(e) f(x)=arcsin(|x|]—3)

() f(x )—arccosgl—:;—x

1.17.9. Are the following functions identical?
(a) f(x)=—’;— and @ (x) =1,
b) f(x)=1logx* and ¢ (x) =2 log x;
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(©) f(x)=x and ¢ (x) =(V %)%

(d) f(x)=1 and ¢ (x) ==sin® x4 cos®x;

) f(x)=log(x—1)+log(x—2) and ¢(x)=log(x—1)(x—2).

1.17.10. In what interval are the following functions identical?

(a) () =x and g () =10Vex;

) fx)=VxVx—1 and @ (x)=Vxx—1).

1.17.11. An isosceles triangle of a given perimeter 2p =12 revol-
ves about its base. Write the function V (x), where V is the volume

of the solid of revolution thus obtained and x is the length of the
lateral side of the triangle.

1.17.12. Investigating the domain of definition of functions,
(a) solve the inequality

Vx+2+Vx—5=V5—x;
(b) prove that the inequality
log2—x(x—3)>_

has no solutions.

1.17.13. The function y =signx was defined in Problem 1.5.11 (n).
Show that

(a) |x|=xsignx;

(b) x=|x]|signx;

(c) sign (sign x) ==sign x.

1.17.14. Prove that if for a linear function

f(x) =ax+0b

the values of the argument x=x, (n=1, 2, ...) form an arithmetic
progression, then the corresponding values of the function

yn:f(xn) (n: l' 2! .. )
also form an arithmetic progression.

1.17.15. Prove that the product of two even or two odd functicns
is an even function, whereas the product of an even and an odd
function is an odd function.

1.17.16. Prove that if the domain of definition of the function
f(x) is symmetrical with respect to x =0, then f(x)+f(—x) is an
even function and f(x)—f(—x) is an odd one.

1.17.17. Prove that any function f(x) defined in a symmetrical
interval (—{, /) can be presented as a sum of an even and an odd
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function. Rewrite the following functions in the form of a sum of
an even and an odd function:
+2
(a) [ () =1 (b) y=ar.
1.17.18. Extend the function f(x)=x2+x defined on the inter-
val [0, 3] onto the interval [—3, 3] in an even and an odd way.

1.17.19. The function {x}=x—E (x) is a fractional part ol a
number x. Prove that it is a periodic function with period 1.

1.17.20. Sketch the graph of a periodic function with period
T =1 defined on the half-open interval (0, 1] by the formula y = x2.

1.17.21. Let us have two periodic functions f (x) and ¢ (x) defined
on a common set. Prove that if the periods of these functions are
commensurate, then their sum and product are also periodic functions.

1.17.22. Prove that the Dirichlet function A(r) (see Problem
1.14.4 (b)) is a periodic one but has no period.

1.17.23. Prove that if the function
f (x) =sin x4 cosax
is periodic, then a is a rational number.

1.17.24. Test the following functions for monotony:
@ fx) =]x[; (b) [(x)=|x|—x.

1.17.25. Prove that the sum of two functions increasing on a
certain open interval is a function monotonically increasing on this
interval. Will the difference of increasing functions be a monotoiic
function?

1.17.26. Give an example of a non-monotonic function that has
an inverse.

1.17.27. Determine the inverse function and its domain of de-
finition if
x if —oo<x<1,
(@) y —tanh x; (b) y=4{ +* if 1<<x<{4,
2% if 4 < x < oo.

1.17.28. Show that the equation x*+2x+1=— 14} x has no
real roots.

1.17.29. Construct the graph of the function
y=[(x—=O+](x+1),
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where
[ R(1—|x]|/) at |x]|<!
F =10 at x| > L.

1.17.30. Knowing the graph of the function y=f(x), sketch the
graphs of the following functions:

() y=2(x); (b) y=VFi@; (© y=[[fx)].

1.17.31. Prove that the graphs of the functions y=1log,x and
y=logen x can be derived from each other by changing all ordinates
in the ratio 1:1/n.

1.17.32. Prove that if the graph of the function y=f(x), defined
throughout the number scale, is symmetrical about two vertical
axes x=a and x="> (a < b), then this function is a periodic one.

1.17.33. Let the sequence x, converge and the sequence y, diverge.
What can be said about convergence of the sequences

(a) xn+yn; (b) xnyn?

1.17.34. Let the sequences x, and y, diverge. Can one assert that
the sequences x,-+y,, x,y, diverge too?

1.17.35. Let a, be an interior angle of a regular n-gon (n =3,
4, ...). Write the first several terms of the sequence o, Prove
that lima,=m.

1.17.36. Prove that from limx,=a it follows that lim|x,| =]a|.

n—» o

Is the converse true?

1.17.37. If a sequence has an infinite Iimit, does it mean that this
sequence is unbounded? And if a sequence is unbounded, does it
mean that it has an infinite limit? Prove that x,=n(-D" is an
unbounded but not an infinite function.

1.17.38. Prove that the sequence {a,}, where o, is the nth digit
of an arbitrarily chosen irrational number, cannot be monotonic.

1.17.39. Prove that if the sequence {a,/b,} (b, > 0) is monotonic,
then the sequence

{ aj+a,+ ... +a, }
by+by+ ...+ by,

will also be monotonic.

1.17.40. Prove the existence of limits of the following sequences
and find them.

@ Ve, Verz Veverve ...
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(b) x,=c"}/nl (¢ >0, k>0
(c) x,=a,/n, where a, is the nth digit of the number .

1.17.41. Prove that at an arbitrarily chosen x the sequence
{M> is bounded.

n

1.17.42. Prove that the sequence

ExX)+E@2x)+...+E (nx)}
n?

has the limit x/2.

1.17.43. Prove that
lima®=1 (a>0).
ho0

1.17.44. Given the function

_J I4-x for x=£0,
f(X)#{ 0 for x=0.
Prove that
liin f(x)= 1.

x -0

1.17.45. Let

_apxtlapn' B da, .
P ()C) - b"xm _+ blxm-l _{_ . “|" bm (all :'& 0‘ bO 7& 0)’

Prove that
oo, if n>m,
lim P(x)=/{ a,/b,, if n=m,
¥ 0, if n<m.

1.17.46. Find the constants a and b from the condition:

2 _
(a) lim <x7_l_ill——ax-—b> =0;

X > ®

(b lim () ¥ —x+ 1 —ax—b)=0.

1.17.47. Sketch the graphs of the following functions:
(@) f(x)=lim /' 14+ x"(x >0);

n—-» w

(b) f(x)= lim sin*x.

n-» o

1.17.48. Prove that
lim [(140) (1423 (1429 ... (142 == ([ x] < D).
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1.17.49. Can one replace infinitesimal summands by equivalent
infinitesimals in computing a limit?

1.17.50. Determine the order of smallness of the chord of an
infinitely small circular arc relative to the sagitta of the same arc.

1.17.51. Determine the order of smallness of the difference of the
perimeters of an inscribed and circumscribed regular n-gons rela-
tive to an infinitely small side of the inscribed n-gon.

1.17.52. The volumetric expansion coefficient of a body is con-
sidered to be approximately equal to the triple coefficient of linear
expansion. On equivalence of what infinitesimals is it based?

1.17.53. Does the relation log(l +x) ~ x hold true as x— 0?

1.17.54. Will the sum of two functions f(x)-g(x) be necessarily
discontinuous at a given point x, if:

(a) the function f(x) is continuous and the function g(x) is dis-
continuous at x=x,,

(b) both functions are discontinuous at x = x,? Give some examples.

1.17.55. Is the product of two functions f(x)g(x) nccessarily
discontinuous at a given point x, if:

(a) the function f(x) is continuous and the function g(x) is dis-
continuous at this point;

(b) both functions f(x) and g(x) are discontinuous at x= x,?

Give some examples.

1.17.56. Can one assert that the square of a discontinuous func-
tion is also a discontinuous function? Give an example of a func-
tion discontinuous everywhere whose square is a continuous function.

1.17.57. Determine the points of discontinuity of the following
functions and investigate the character of these points if:
1

(a) [(x) =T waown’

(b) f(x):2_2l/(l—x);

(c) @ (x)=x[1—2h(x)], where A(x) is the Dirichlet function (see
Problem 1.14.4 (b)).

1.17.58. Test the following lunctions for continuity and sketch
their graphs:

(a) y=x—E (x);

(b) y=x*+E (x*);

(© y=(=1F;

(d) y= lim

n - o

S
14+ (2sin x)2n°
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1.17.59. Investigate the functions f[g(x)] and g[f (x)] for conti-
nuity if f(x)=signx and g(x) =x(1—x?).
1.17.60. Prove that the function
2x at —1<<x<0,
f(x):{ x+1, at 0<x<l1

is discontinuous at the point x=0 and nonetheless has both maxi-
mum and minimum values on [—I1, I].

1.17.61. Given the function

(x+1)2 Wixi+1/x jf x5£0,
0= if x=0.

Ascertain that on the interval [—2, 2] the function takes on
all intermediate values from f(—2) to f(2) although it is discon-
tinuous (at what point?).

1.17.62. Prove that if the function f(x): (1) is defined and mo-
notonic on the interval [a, b]; (2) traverses all intermediate values
between f(a) and f(b), then it is continuous on the interval [a, b].

1.17.63. Let the function y=7f(x) be continuous on the interval
[a, b], its range being the same interval a<Cy<Cb. Prove that on
this closed interval there exists at least one point x such that
f (x) =x. Explain this geometrically.

1.17.64. Prove that if the function f(x) is continuous on the
interval (a, b) and x,, x,, ..., x, are any values from this open
interval, then we can find among them a number § such that

FE = [F () +F )+ o +F (5)].

1.17.65. Prove that the equation x 2¥=1 has at least one posi-
tive root which is less than unity.

1.17.66. Prove that if a polynomial of an even degree attains at
least one value the sign of which is opposite to that of the coeffi-
cient at the superior power of x of the polynomial, then the latter
has at least two real roots.

1.17.67. Prove that the inverse of the discontinuous function
y=(14x?) sign x is a continuous function.
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