Vector Algebra

Question 1.

A unit vector perpendicular to the plane of

$$\vec{a} = 2\hat{i} - 6\hat{j} - 3\hat{k}$$
 and $\vec{b} = 4\hat{i} + 3\hat{j} - \hat{k}$ is

(a)
$$\frac{4\hat{i} + 3\hat{j} - \hat{k}}{\sqrt{26}}$$
 (b) $\frac{2\hat{i} - 6\hat{j} - \hat{k}}{7}$

(b)
$$\frac{2\hat{i}-6\hat{j}-\hat{k}}{7}$$

(c)
$$\frac{3\hat{i}-2\hat{j}+6\hat{k}}{7}$$
 (d) $\frac{2\hat{i}-3\hat{j}-6\hat{k}}{7}$

(d)
$$\frac{2\hat{i} - 3\hat{j} - 6\hat{k}}{7}$$

Answer:

(c)
$$\frac{3\hat{i}-2\hat{j}+6\hat{k}}{7}$$

Question 2.

The area of parallelogram whose adjacent sides are $\hat{i}-2\hat{j}+3\hat{k}$ and $2\hat{i}+\hat{j}-4\hat{k}$ is

- (a) $10\sqrt{6}$
- (b) $5\sqrt{6}$
- (c) $10\sqrt{3}$
- (d) $5\sqrt{3}$

Answer:

(b) $5\sqrt{6}$

Question 3.

If AB × AC = $2\hat{i} - 4\hat{j} + 4\hat{k}$, then the are of \triangle ABC is

- (a) 3 sq. units
- (b) 4 sq. units
- (c) 16 sq. units
- (d) 9 sq. units

Answer:

(a) 3 sq. units

Ouestion 4.

A vector of magnitude 5 and perpendicular to

 $(\hat{i} - 2\hat{j} + \hat{k})$ and $(2\hat{i} + \hat{j} - 3\hat{k})$ is

(a)
$$\frac{5\sqrt{3}}{3}(\hat{i}+\hat{j}+\hat{k})$$
 (b) $\frac{5\sqrt{3}}{3}(\hat{i}+\hat{j}-\hat{k})$

(b)
$$\frac{5\sqrt{3}}{3}(\hat{i}+\hat{j}-\hat{k})$$

(c)
$$\frac{5\sqrt{3}}{3}(\hat{i}-\hat{j}+\hat{k})$$
 (d) $\frac{5\sqrt{3}}{3}(-\hat{i}+\hat{j}+\hat{k})$

(d)
$$\frac{5\sqrt{3}}{3}(-\hat{i}+\hat{j}+\hat{k})$$

Answer:

(a)
$$\frac{5\sqrt{3}}{3} \left(\hat{i} + \hat{j} + \hat{k}\right)$$

Ouestion 5.

 $|a \times b|^2 + |a.b|^2 = 144$ and |a| = 4, then |b| is equal to

- (a) 12
- (b) 3
- (c) 8
- (d) 4

Answer:

(b) 3

Question 6.

If $|a \times b| = 4$ and |a.b| = 2, then $|a|^2 |b|^2$ is equal to

- (a) 2
- (b) 6
- (c) 8
- (d) 20

Answer:

(d) 20

Question 7.

If $\vec{a} = (\hat{i} + \hat{j} + \hat{k})$, \vec{a} . $\vec{b} = 1$ and $\vec{a} \times \vec{b} = \hat{j} - \hat{k}$, then \vec{b} is

(a)
$$i - \hat{j} + \hat{k}$$
 (b) $2\hat{j} - \hat{k}$ (c) \hat{i} (d) $2\hat{i}$

Answer:

(c) \hat{i}

Question 8.

The two vectors $\mathbf{a} = 2\hat{i} + \hat{j} + 3\hat{k}$ and $\mathbf{b} = 4 \cdot \{i\} - \lambda \cdot \{i\} + 6 \cdot \{k\}$ are parallel, if λ is equal to

- (a) 2
- (b) -3
- (c) 3
- (d) 2

(d) 2

Question 9.

If |a| = 5, |b| = 13 and $|a \times b| = 25$, find a.b

- (a) ± 10
- (b) ± 40
- (c) ± 60
- (d) ± 25

Answer:

 $(c) \pm 60$

Question 10.

Find the value of λ so that the vectors $2i - 4\hat{j} + \hat{k}$ and $4i - 8\hat{j} + \lambda\hat{k}$ are parallel.

- (a) -1
- (b) 3
- (c) -4
- (d) 2

Answer:

(d) 2

Question 11.

If O is origin and C is the mid point of A(2, -1) and B(-4, 3), then the value of OC is

- (a) $\hat{i} + \hat{j}$
- (b) $\hat{i} \hat{j}$ (c) $-\hat{i} + \hat{j}$ (d) $-\hat{i} \hat{j}$

Answer:

$$(c) - \hat{i} + \hat{j}$$

Question 12.

The vectors AB = $3\hat{i} + 4\hat{k}$ and AC = $AC = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are the side of a \triangle ABC. The length of the median through A is

- (a) $\sqrt{18}$
- (b) $\sqrt{72}$
- (c) $\sqrt{33}$
- (d) $\sqrt{288}$

(c) $\sqrt{33}$

Ouestion 13.

The summation of two unit vectors is a third unit vector, then the modulus of the difference of the unit vector is

- (a) $\sqrt{3}$
- (b) $1 \sqrt{3}$
- (c) $1 + \sqrt{3}$
- $(d) \sqrt{3}$

Answer:

(a) $\sqrt{3}$

Question 14.

Let $\vec{a} = \hat{i} + \hat{j} - \hat{k}$, $\vec{b} = \hat{i} - \hat{j} + \hat{k}$ and \hat{c} be a unit vector perpendicular to \ddot{a} and coplanar with \ddot{a} and \ddot{b} , then \hat{c} is

(a)
$$\frac{1}{\sqrt{2}}(\hat{j}+\hat{k})$$
 (b) $\frac{1}{\sqrt{2}}(\hat{j}-\hat{k})$

(b)
$$\frac{1}{\sqrt{2}}(\hat{j} - \hat{k})$$

(c)
$$\frac{1}{\sqrt{6}}(\hat{i}-2\hat{j}+\hat{k})$$
 (d) $\frac{1}{\sqrt{6}}(2\hat{i}-\hat{j}+\hat{k})$

(d)
$$\frac{1}{\sqrt{6}}(2\hat{i} - \hat{j} + \hat{k})$$

Answer:

(d)
$$rac{1}{\sqrt{6}}(2\hat{i}-\hat{j}+\hat{k})$$

Ouestion 15.

If a and b are unit vectors enclosing an angle θ and

 $\left| \frac{\mathbf{d}}{a} + \mathbf{b} \right| < 1$, then

(a)
$$\theta = \frac{\pi}{2}$$

(b)
$$\theta < \frac{\pi}{3}$$
 (c)

$$\pi \ge \theta > \frac{2\pi}{3}$$

(d)
$$\frac{\pi}{3} < \theta < \frac{2\pi}{3}$$

Answer:

(c)
$$\pi \ge \theta > \frac{2\pi}{3}$$

Question 16.

The value of λ for which the vectors $3\hat{i}-6\hat{j}+\hat{k}$ and $2\hat{i}-4\hat{j}+\lambda\hat{k}$ are parallel is

- (a) $\frac{2}{3}$ (b) $\frac{3}{2}$ (c) $\frac{5}{2}$ (d) $\frac{2}{5}$

Answer:

(a) $\frac{2}{3}$

Question 17.

The vectors from origin to the points A and B are $a = 2\hat{i} - 3\hat{j} + 2\hat{k}$ and $b = 2\hat{i} + 3\hat{j} + \hat{k}$, respectively then the area of triangle OAB is

- (a) 340
- (b) $\sqrt{25}$
- (c) $\sqrt{229}$
- (d) $\frac{1}{2} \sqrt{229}$

Answer:

(d) $\frac{1}{2} \sqrt{229}$

Question 18.

The vectors $\lambda \hat{i} + \hat{j} + 2\hat{k}$, $\hat{i} + \lambda \hat{j} - \hat{k}$ and $2\hat{i} - \hat{j} + \lambda \hat{k}$ are coplanar if

- (a) $\lambda = -2$
- (b) $\lambda = 0$
- (c) $\lambda = 1$
- (d) $\lambda = -1$

Answer:

(a) $\lambda = -2$

Question 19.

If a, b, c are unit vectors such that a + b + c = 0, then the value of a.b + b.c + c.a is

- (a) 1
- (b) 3
- $(c) \frac{3}{2}$
- (d) None of these

Answer:

 $(c) - \frac{3}{2}$

Question 20.

If |a| = 4 and $-3 \le \lambda \le 2$, then the range of $|\lambda a|$ is

(a) [0, 8]

- (b) [-12, 8]
- (c) [0, 12]
- (d) [8, 12]

(c)[0, 12]

Question 21.

The number of vectors of unit length perpendicular to the vectors $\mathbf{a} = 2\hat{i} + \hat{j} + 2\hat{k}$ and $\mathbf{b} = \hat{j} + \hat{k}$

- (a) one
- (b) two
- (c) three
- (d) infinite

Answer:

(b) two

Question 22.

Let a, b and c be vectors with magnitudes 3, 4 and 5 respectively and a + b + c = 0, then the values of a.b + b.c + c.a is

- (a) 47
- (b) 25
- (c) 50
- (d) -25

Answer:

(d) -25

Question 23.

 $|\hat{If}|a| = |b| = 1$ and $|a + b| = \sqrt{3}$, then the value of (3a - 4b).(2a + 5b) is

- (a) -21
- $(b) \frac{21}{2}$
- (c) 21 (d) $\frac{21}{2}$

Answer:

$$(b) - \frac{21}{2}$$

Question 24.

The unit vector perpendicular to $\hat{i} - \hat{j}$ and coplanar

with $\hat{i} + 2\hat{j}$ and $2\hat{i} + 3\hat{j}$ is

(a)
$$\frac{2\hat{i} - 5\hat{j}}{\sqrt{29}}$$

(b)
$$2\hat{i} + 5\hat{j}$$

(c)
$$\frac{1}{\sqrt{2}}(\hat{i}+\hat{j})$$
 (d) $\hat{i}+\hat{j}$

(d)
$$\hat{i} + \hat{j}$$

Answer:

(c)
$$\frac{1}{\sqrt{2}}(\hat{i}+\hat{j})$$

Question 25.

If |a - b| = |a| = |b| = 1, then the angle between a and b is

(a)
$$\frac{\pi}{3}$$

(b)
$$\frac{3\pi}{4}$$

(c)
$$\frac{\pi}{2}$$

$$(d) \bar{0}$$

Answer:

(a)
$$\frac{\pi}{3}$$

Question 26.

 $\left(\frac{\vec{a}}{a}.\hat{i}\right)^2 + \left(\frac{\vec{a}}{a}.\hat{j}\right)^2 + \left(\frac{\vec{a}}{a}.\hat{k}\right)^2$ is equal to

(b)
$$a^{\alpha}$$
 (c) $-a^{\alpha}$ (d) $|a|^2$

Answer:

$$(d) |a|^2$$

Question 27.

a, b, c are three vectors, such that a + b + c = 0, |a| = 1, |b| = 2, |c| = 3, then a.b + b.c + c is equal to

- (a) 0
- (b) -7
- (c) 7
- (d) 1

Answer:

$$(b) -7$$

Question 28.

If |a + b| = |a - b|, then angle between a and b is $(a \ne 0, b \ne 0)$

- (a) $\frac{\pi}{3}$ (b) $\frac{\pi}{6}$ (c) $\frac{\pi}{4}$
- (d) $\frac{1}{2}$

(d) $\frac{\pi}{2}$

Question 29.

If a and b are two unit vectors inclined to x-axis at angles 30° and 120° respectively, then |a + b|

- (a) $\sqrt{\frac{2}{3}}$
- (b) $\sqrt{2}$
- (c) $\sqrt{3}$
- (d) 2

Answer:

(d) 2

Question 30.

If the angle between $\hat{i} + \hat{k}$ and $\hat{i} + \hat{j} + a\hat{k}$ is $\frac{\pi}{3}$, then the value of a is

- (a) 0 or 2
- (b) -4 or 0
- (c) 0 or -3
- (d) 2 or -2

Answer:

(b) -4 or 0

Question 31.

The length of longer diagronai of the parallelogram constructed on 5a + 2b and a - 3b. If it is given that

 $|a| = 2\sqrt{2}$, |b| = 3 and angle between a and b is $\frac{\pi}{4}$, is

- (a) 15
- (b) $\sqrt{113}$
- (c) $\sqrt{593}$
- (d) $\sqrt{369}$

Answer:

(c) $\sqrt{593}$

Question 32.

If $\left(\frac{1}{2}, \frac{1}{3}, n\right)$ are the direction cosines of a line, then the value of n is

(a)
$$\frac{\sqrt{23}}{6}$$

- (b) $\frac{23}{6}$ (c) $\frac{2}{3}$ (d) $\frac{3}{2}$

(a) $\frac{\sqrt{23}}{6}$

Question 33.

Find the magnitude of vector $3\hat{i} + 2\hat{j} + 12\hat{k}$.

- (a) $\sqrt{157}$
- (b) $4\sqrt{11}$
- (c) $\sqrt{213}$
- (d) $9\sqrt{3}$

Answer:

(a) $\sqrt{157}$

Direction (34-36): Study the given parallelogram and answer the following questions.

Question 34.

Which of the following represents equal vectors?

- (a) a, c
- (b) b, d
- (c) b, c
- (d) m, d

Answer:

(b) b, d

Question 35.

Which of the following represents collinear but not equal vectors?

- (a) a, c
- (b) b, d
- (c) b, m
- (d) Both (a) and (b)

Answer:

(a) a, c

Question 36.

Which of the following represents coinitial vector?

- (a) c, d
- (b) m, b
- (c) b, d
- (d) Both (a) and (b)

Answer:

(d) Both (a) and (b)

Ouestion 37.

The unit vector in the direction of the sum of vectors

$$\hat{i} + \hat{j} + \hat{k}$$
 and $2\hat{i} + 3\hat{j} + 4\hat{k}$ is

(a)
$$\frac{1}{5\sqrt{2}}(3\hat{i}+4\hat{j}+5\hat{k})$$
 (b) $\frac{1}{5\sqrt{2}}(3\hat{i}-4\hat{j}-5\hat{k})$

(c)
$$\frac{1}{2\sqrt{2}}(4\hat{i}+3\hat{j}+5\hat{k})$$
 (d) $\frac{1}{3\sqrt{2}}(-3\hat{k}+4\hat{i}+5\hat{j})$

Answer:

(a)
$$rac{1}{5\sqrt{2}}ig(3\hat{i}+4\hat{j}+5\hat{k}ig)$$

Question 38.

The vectors $3\hat{i} + 5\hat{j} + 2\hat{k}$, $2\hat{i} - 3\hat{j} - 5\hat{k}$ and $5\hat{i} + 2\hat{j} - 3\hat{k}$ form the sides of

- (a) Isosceles triangle
- (b) Right triangle
- (c) Scalene triangle
- (d) Equilaterala triangle

Answer:

(d) Equilaterala triangle

Ouestion 39.

If
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\vec{b} = 4\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{c} = \hat{i} + \alpha\hat{j} + \beta\hat{k}$ are

linearly dependent vectors and $\begin{vmatrix} \vec{a} \\ \vec{c} \end{vmatrix} = \sqrt{3}$, then

(a)
$$\alpha = 1, \beta = -1$$

(b)
$$\alpha = 1, \beta = \pm 1$$

(c)
$$\alpha = -1, \beta = \pm 1$$
 (d) $\alpha = \pm 1, \beta = 1$

(d)
$$\alpha = \pm 1, \beta = 1$$

Answer:

(d)
$$\alpha = \pm 1$$
, $\beta = 1$

Question 40.

The vectors $a=x\hat{i}-2\hat{j}+5\hat{k}$ and $b=\hat{i}+y\hat{j}-z\hat{k}$ are collinear, if (a) x =1, y = -2, z = -5

- (b) x=1.2, y=-4, z=-10
- (c) x = -1/2, y = 4, z = 10
- (d) All of these

Answer:

(d) All of these

Question 41.

The vector $\hat{i}+x\hat{j}+3\hat{k}$ is rotated through an angle θ and doubled in magnitude, then it becomes $4\hat{i}+(4x-2)\hat{i}+2\hat{k}$. The value of x is

- (a) $\left\{-\frac{2}{3}, 2\right\}$
- (b) $\left\{ \frac{1}{3}, 2 \right\}$
- (c) $\left\{\frac{2}{3},0\right\}$
- (d) $\{2, 7\}$

Answer:

(a)
$$\left\{-\frac{2}{3},2\right\}$$

Question 42.

If a + b + c = 0, then $a \times b =$

- (a) $c \times a$
- (b) $b \times c$
- (c) 0
- (d) Both (a) and (b)

Answer:

(d) Both (a) and (b)

Question 43.

If a is perpendicular to b and c, |a| = 2, |b| = 3, |c| = 4 and the angle between b and c is $\frac{2\pi}{3}$, |abc| is equal to

- (a) $4\sqrt{3}$
- (b) $6\sqrt{3}$
- (c) $12\sqrt{3}$
- (d) $18\sqrt{3}$

Answer:

(c) $12\sqrt{3}$

Ouestion 44.

If $\overset{\circ}{b}$ and $\overset{\circ}{c}$ are any two non-collinear unit vectors and

a is any vector, then

$$(a.b)b + (a.c)c + \frac{a.(b \times c)}{a.(b \times c)}.(b \times c)$$
 is equal to

- (a) 0
- (b) $\overset{\alpha}{a}$ (c) $\overset{\alpha}{b}$
 - (d) $\overset{\circ}{c}$

Answer:

(b) a

Question 45.

Let
$$\vec{a} = \hat{i} - \hat{k}, \vec{b} = x\hat{i} + \hat{j} + (1 - x)\hat{k}$$
 and

$$\overset{\vec{\sigma}}{c} = y\hat{i} + x\hat{j} + (1 + x - y)\hat{k}$$
. Then, $\begin{bmatrix} \overset{\vec{\sigma}}{a}b \overset{\vec{\sigma}}{c} \end{bmatrix}$ depends on

- neither x nor y
- (b) both x and y
- only x(c)

(d) only y

Answer:

(a) neither x nor y

Ouestion 46.

If a, b, c are three non-coplanar vectors, then $(a + b + c) \cdot [(a + b) \times (a + c)]$ is

- (a) 0
- (b) 2[abc]
- (c) -[abc]
- (d) [abc]

Answer:

(c) -[abc]

Ouestion 47.

If u, v and w are three non-coplanar vectors, then $(u + v - w) \cdot [(u - v) \times (v - w)]$ equals

- (a) 0
- (b) $u.v \times w$
- (c) $u.w \times v$
- (d) $3u.v \times w$

Answer:

(b) $u.v \times w$

Question 48.

If unit vector c makes an angle $\frac{\pi}{3}$ with $\hat{i} \times \hat{j}$, then minimum and maximum values of $(\hat{i} \times \hat{j}) \cdot c$

respectively are

(a) 0,
$$\frac{\sqrt{3}}{2}$$

(b)
$$-\frac{\sqrt[2]{3}}{2}, \frac{\sqrt{3}}{2}$$

(c) -1,
$$\frac{\sqrt{3}}{2}$$

(d) None of these

Answer:

$$(b)-\tfrac{\sqrt{3}}{2},\tfrac{\sqrt{3}}{2}$$

Question 49.

The volume of the tetrahedron whose conterminous edges are $\hat{j}+\hat{k},\hat{i}+\hat{k},i+\hat{j}$ is

- (a) $\frac{1}{6}$ cu. unit
- (b) $\frac{1}{3}$ cu. unit
- (c) $\frac{1}{2}$ cu. unit
- (d) $\frac{2}{3}$ cu. unit

Answer:

(b) $\frac{1}{3}$ cu. unit

Question 50.

If the vectors $2\hat{i} - 3\hat{j}$, $i + \hat{j} - \hat{k}$ and $3\hat{i} - \hat{k}$ form three concurrent edges of a parallelopiped, then the volume of the parallelopiped is

- (a) 8
- (b) 10
- (c) 4
- (d) 14

Answer:

(c) 4

Question 51.

The volume of the parallelopiped whose edges are represented by $-12\hat{i}+\alpha\hat{k},3j-\hat{k}$ and $2\hat{i}+j-15\hat{k}$ is 546 cu. units. Then $\alpha=$

- (a) 3
- (b) 2
- (c) -3
- (d) -2

Answer:

(c) -3

Ouestion 52.

If
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}, \vec{b} = 2\hat{i} - 4\hat{k}, \vec{c} = \hat{i} + \lambda\hat{j} + 6\hat{k}$$
 are coplanar, then the value of λ is

(a)
$$\frac{5}{2}$$

(b)
$$\frac{3}{5}$$

(c)
$$\frac{7}{3}$$

(d) None of these

Answer:

(d) None of these

Question 53.

The value of λ , for which the four points $2\hat{i} + 3\hat{j} - \hat{k}$,

$$\hat{i} + 2\hat{j} + 3\hat{k}, 3\hat{i} + 4\hat{j} - 2\hat{k}, \hat{i} - \lambda\hat{j} + 6\hat{k}$$
 are coplanar, is

Answer:

Question 54.

The vectors $x\hat{i} + (x+1)\hat{i} + (x+2)\hat{k}$,

$$(x+3)\hat{i} + (x+4)\hat{j} + (x+5)\hat{k}$$
 and

$$(x+6)\hat{i} + (x+7)\hat{j} + (x+8)\hat{k}$$
 are coplanar for

(a) all values of
$$x$$

(b)
$$x < 0$$

Answer:

(a) all values of x

Question 55.

If the vectors $\hat{i} - 2\hat{j} + 3\hat{k}$, $-2\hat{i} + 3\hat{j} - 4\hat{k}$, $\lambda \hat{i} - \hat{j} + 2\hat{k}$ are coplanar, then the value of λ is equal to

- (a) 0
- (b) 1
- (c) 2
- (d) 3

Answer:

(a) 0

Question 56.

Find the value of λ if the vectors, $\mathbf{a} = 2\hat{i} - \hat{j} + \hat{k}$, $\mathbf{b} = \hat{i} + 2\hat{j} - 3\hat{k}$ and $\mathbf{c} = 3\hat{i} - \lambda\hat{j} + 5\hat{k}$ are coplanar.

- (a) 4
- (b) -2
- (c) -6
- (d) 5

Answer:

(a) 4

Question 57.

If a, b, c are unit vectors, then |a - b| + |b - c| + |c - a| does not exceed

- (a) 4
- (b) 9
- (c) 8
- (d) 6

Answer:

(b) 9

Question 58.

Find the value of λ so that the vectors $2\hat{i} - 4\hat{j} + \hat{k}$ and $4\hat{i} - 8\hat{j} + \lambda\hat{k}$ are perpendicular.

- (a) -15
- (b) 10
- (c) -40
- (d) 20

Answer:

(c) -40

Question 59.

The dot product of a vector with the vectors $\hat{i} + \hat{j} - 3\hat{k}$, $\hat{i} + 3\hat{j} - 2\hat{k}$ and $2\hat{i} + \hat{j} + 4\hat{k}$ are 0, 5 and 8 respectively. Find the vector.

- (a) $\hat{i} + 2\hat{j} + \hat{k}$
- $\hat{(\mathrm{b})} \hat{i} + 3\hat{j} 2\hat{k}$
- (c) $\hat{i} + 2\hat{j} + 3\hat{k}$ (d) $\hat{i} 3\hat{j} 3\hat{k}$

Answer:

(a) $\hat{i} + 2\hat{j} + \hat{k}$

Question 60.

If a, b, c are three mutually perpendicular vectors of equal magnitude, find the angle between a and a + b + c.

(a) $\cos^{-1}(1/\sqrt{3})$

- (b) $\cos^{-1}(1/2\sqrt{2})$ (c) $\cos^{-1}(1/3\sqrt{3})$ (d) $\cos^{-1}(1/2\sqrt{3})$ Answer: (a) $\cos^{-1}(1/\sqrt{3})$