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Figure 1 The principal types of crystalline binding. In (a) neutral atoms with closed electron
shells are bound together weakly by the van der Waals forces associated with fluctuations in the
charge distributions. In (b) electrons are transferred from the alkali atomns to the halogen atoms,
and the resulting ions are held together by attractive electrostatic forces between the posijtive and
negative ions. In (c) the valence electrons are taken away from each alkali atom to form a commu-
nal electron sea in which the positive ions are dispersed. In (d) the neutral atoms are bound to-
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CHAPTER 3: CRYSTAL BINDING AND ELASTIC CONSTANTS
]

In this chapter we are concerned with the question: What holds a crystal
together? The attractive electrostatic interaction between the negative charges
of the electrons and the positive charges of the nuclei is entirely responsible
for the cohesion of solids. Magnetic forces have only a weak effect on cohe-
sion, and gravitational forces are negligible. Specialized terms categorize dis-
tinctive situations: exchange energy, van der Waals forces, and covalent bonds.
The observed differences between the forms of condensed matter are caused
in the final analysis by differences in the distribution of the outermost elec-
trons and the ion cores (Fig. 1).

The cohesive energy of a crystal is defined as the energy that must be
added to the crystal to separate its components into neutral free atoms at rest,
at infinite separation, with the same electronic configuration. The term lattice
energy is used in the discussion of ionic crystals and is defined as the energy
that must be added to the crystal to separate its component ions into free ions
at rest at infinite separation.

Values of the cohesive energy of the crystalline elements are given in
Table 1. Notice the wide variation in cohesive energy between different
columns of the periodic table. The inert gas crystals are weakly bound, with
cohesive energies less than a few percent of the cohesive energies of the ele-
ments in the C, Si, Ge . . . column. The alkali metal crystals have intermediate
values of the cohesive energy. The transition element metals (in the middle
columns) are quite strongly bound. The melting temperatures (Table 2) and
bulk modulii (Table 3) vary roughly as the cohesive energies.

CRYSTALS OF INERT GASES

The inert gases form the simplest crystals. The electron distribution is
very close to that of the free atoms. Their properties at absolute zero are sum-
marized in Table 4. The crystals are transparent insulators, weakly bound, with
low melting temperatures. The atoms have very high ionization energies (see
Table 5). The outermost electron shells of the atoms are completely filled, and
the distribution of electron charge in the free atom is spherically symmetric.
In the crystal the inert gas atoms pack together as closely as possible’: the

'Zero-point motion of the atoms (kinetic energy at absolute zero) is a quantum effect that plays
a dominant role in He® and He®. They do not solidify at zero pressure even at absolute zero temp-
erature. The average fluctuation at 0 K of a He atom from its equilibrium position is of the order of
30 to 40 percent of the nearest-neighbor distance. The heavier the atom, the less important the zero-
point effects. If we omit zero-point motion, we calculate a molar volume of 9 cm® mol™ for solid
helium, as compared with the observed values of 27.5 and 36.8 cm® mol ™ for liquid He* and liquid
He®, respectively.
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Table 1 Cohesive energies

Energy required to form separated neutral atoms in their ground
electronic state from the solid at 0 K at 1 atm. The data were supplied by § 561 _1711
| Prof. Leo Brewer.
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Table 3 Isothermal bulk modulii and compressibilities at room

Huw temperature
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3 Crystal Binding

Table 4 Properties of inert gas crystals
(Extrapolated to 0 K and zero pressure)

Parameters in

N, G T
n?‘:lghbor energy ' tential
distance, - s Melting of free €, o,
inA kJ/mol eV/atom  point, K atom, eV  in 10" %erg in &
L e R A S
He (liquid at zero pressure) 24.58 14 2.56
Ne 3.13 1.88 0.02 24.56 21.56 50 2.74
Ar 3.76 7.74 0.080 83.81 15.76 167 3.40
Kr 4.01 11.2 0.116 115.8 14.00 225 3.65
Xe 4.35 18.0 0.17 161.4 12,13 320 3.98

crystal structures (Fig. 2) are all cubic close-packed (fcc), except He®
and He*.

What holds an inert gas crystal together? The electron distribution in the
crystal is not significantly distorted from the electron distribution around the
free atoms because not much energy is available to distort the free atom
charge distributions. The cohesive energy of an atom in the crystal is only
1 percent or less of the ionization energy of an atomic electron. Part of this
distortion gives the van der Waals interaction.

Van der Waals-London Interaction

Consider two identical inert gas atoms at a separation R large in compari-
son with the radii of the atoms. What interactions exist between the two neu-
tral atoms? If the charge distributions on the atoms were rigid, the interaction
between atoms would be zero, because the electrostatic potential of a spheri-
cal distribution of electronic charge is canceled outside a neutral atom by the
electrostatic potential of the charge on the nucleus. Then the inert gas atoms
could show no cohesion and could not condense. But the atoms induce dipole
moments in each other, and the induced moments cause an attractive interac-
tion between the atoms.

As a model, we consider two identical linear harmonic oscillators 1 and 2
separated by R. Each oscillator bears charges *e with separations x, and x,, as in
Fig. 3. The particles oscillate along the x axis. Let p; and p, denote the momenta.
The force constant is C. Then the hamiltonian of the unperturbed system is

Ho =5 ph+ 30K + 50 pi 303 M

Each uncoupled oscillator is assumed to have the frequency w, of the

strongest optical absorption line of the atom. Thus C = mwj.
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Table 5 Ionization energies

The total energy required to remove the first two electrons is the sum of the
first and second ionization potentials. (Source: National Bureau of Standards
Circular 467.)
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Figure 2 Cubic close-packed (fce) crystal structure of the inert gases Ne, Ar, Kr, and Xe. The lat-
tice parameters of the cubic cells are 4.46, 5.31, 5.64, and 6.13 A, respectively, at 4 K.

—
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Figure 3 Coordinates of the two oscillators.

Let ¥, be the coulomb interaction energy of the two oscillators. The
geometry is shown in the figure. The internuclear coordinate is R. Then

2 2 2 2

_e e _ e __ € .
(CGS) %1_R+R+x,fx2 R+x, R—x’ 2)

in the approximation |[x,[, [xs| <R we expand (2) to obtain in lowest order:

2e%x 1%,

H, = e

3)

The total hamiltonian with the approximate form (3) for #; can be diago-
nalized by the normal mode transformation

X, =

1
= X — Xg) 4
. \/§< (x) = x) (4)

X ) Xg =
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or, on solving for x; and x,,
1 2

x1=-—1~(xa,+xd} ; = —=(x, —x,) . (5)

V2

The subscripts s and a denote symmetric and antisymmetric modes of motion.
Further, we have the momenta p,, p, associated with the two modes:

1 1 )
=Lp4p)  p=Lp-n 6
P ,\/‘2‘ (ps Pa) > Pe \/é (Ps Pa> (6)

The total hamiltonian ¥, + ¥, after the transformations (5) and (6) is

I 0 ST § _232 1 % 2
H I:zmpssz(C Rg)xs]-i-[ p,, (C-&-R)xa:l‘ (N

The two frequencies of the coupled oscillators are found by inspection of (7) to be

=[(Ci2§)/m]m=“’°[l-é(§§s) g(éﬁ%] .®

with w, given by (C/m)". In (8) we have expanded the square root.
The zero point energy of the system is 3#(e, + ®,); because of the interac-
tion the sum is lowered from the uncoupled value 2 « 3fiw, by

2 \2
AU = 3#(Aw, + Aw,) = —hwy * 5 (5‘23) = ﬁ‘—; . 9)
This attractive interaction varies as the minus sixth power of the separation of
the two oscillators.

This is called the van der Waals interaction, known also as the London in-
teraction or the induced dipole-dipole interaction. It is the principal attractive
interaction in crystals of inert gases and also in crystals of many organic mole-
cules. The interaction is a quantum effect, in the sense that AU — 0 as £ — 0.
Thus the zero point energy of the system is lowered by the dipole-dipole cou-
pling of Eq. (3). The van der Waals interaction does not depend for its exis-
tence on any overlap of the charge densities of the two atoms.

An approximate value of the constant A in (9) for identical atoms is given
by fiwa®, where fiw, is the energy of the strongest optical absorption line and
a is the electronic polarizability (Chapter 15).

Repulsive Interaction

As the two atoms are brought together, their charge distributions gradually
overlap (Fig. 4), thereby changing the electrostatic energy of the system. At
sufficiently close separations the overlap energy is repulsive, in large part be-
cause of the Pauli exclusion principle. The elementary statement of the
principle is that two electrons cannot have all their quantum numbers equal.
When the charge distributions of two atoms overlap, there is a tendency for
electrons from atom B to occupy in part states of atom A already occupied by
electrons of atom A, and vice versa.
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Figure 4 Electronic charge distribu-
tions overlap as atoms approach. The
solid circles denote the nuclei.

a
+ - Total electron
energy: —78.98 eV

1sT 1sd 1sT1sd

Total spin zero

(b)
Total electron
energy: —59.38 eV

1sT 1sT 1sT2sT
Total spin one

Figure 5 The effect of Pauli principle on the repulsive energy: in an extreme example, two hydro-
gen atoms are pushed together until the protons are almost in contact. The energy of the electron
system alone can be taken from observations on atomic He, which has two electrons. In (a) the elec-
trons have antiparallel spins and the Pauli principle has no effect: the electrons are bound by
—78.98 V. In (b) the spins are parallel: the Pauli principle forces the promotion of an electron from
als? orbital of H to a 25 T orbital of He. The electrons now are bound by -59.38 eV, less than (a)
by 19.60 eV. This is the amount by which the Pauli principle has increased the repulsion. We have
omitted the repulsive coulomb energy of the two protons, which is the same in both (a) and (b).

The Pauli principle prevents multiple occupancy, and electron distribu-
tions of atoms with closed shells can overlap only if accompanied by the partial
promotion of electrons to unoccupied high energy states of the atoms. Thus
the electron overlap increases the total energy of the system and gives a repul-
sive contribution to the interaction. An extreme example in which the overlap
is complete is shown in Fig. 5.

We make no attempt here to evaluate the repulsive interaction® from first
principles. Experimental data on the inert gases can be fitted well by an empirical
repulsive potential of the form B/R, where B is a positive constant, when used

*The overlap energy naturally depends on the radial distribution of charge about each atom.
The mathematical calculation is always complicated even if the charge distribution is known.
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Figure 6 Form of the Lennard-Jones potential (10) which describes the interaction of two inert gas
atoms. The minimum occurs at R/o = 2% = 1.12. Notice how steep the curve is inside the minimum,
and how flat it is outside the minimum. The value of U at the minimum is —€;and U = 0 atR = .

together with a long-range attractive potential of the form of (9). The constants A
and B are empirical parameters determined from independent measurements
made in the gas phase; the data used include the virial coefficients and the viscos-
ity. It is usual to write the total potential energy of two atoms at separation R as

o= 3" ()] o

where € and o are the new parameters, with 4e0® = A and 4e0'® = B. The
potential (10) is known as the Lennard-Jones potential, Fig. 6. The force
between the two atoms is given by —dU/dR. Values of € and o given in Table 4
can be obtained from gas-phase data, so that calculations on properties of the
solid do not involve disposable parameters.

Other empirical forms for the repulsive interaction are widely used, in par-
ticular the exponential form A exp(—R/p), where p is a measure of the range of
the interaction. This is generally as easy to handle analytically as the inverse
power law form.

Equilibrium Lattice Constants

If we neglect the kinetic energy of the inert gas atoms, the cohesive en-
ergy of an inert gas crystal is given by summing the Lennard-Jones potential
(10) over all pairs of atoms in the crystal. If there are N atoms in the crystal,
the total potential energy is

12 [}
U = 3N(4€)| > ") ~ (—"—)] 11
( E)[; (P-J'R ‘?‘ pyR )
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where p,R is the distance between reference atom i and any other atom j, ex-
pressed in terms of the nearest-neighbor distance R. The factor § occurs with
the N to compensate for counting twice each pair of atoms.

The summations in (11) have been evaluated, and for the fcc structure

pit=1213188 ;  X'p,°=14.45392 . (12)
i j

There are 12 nearest-neighbor sites in the fce structure; we see that the series
are rapidly converging and have values not far from 12. The nearest neighbors
contribute most of the interaction energy of inert gas crystals. The corre-
sponding sums for the hep structure are 12.13229 and 14.45489.

If we take Uy, in (11) as the total energy of the crystal, the equilibrium
value R, is given by requiring that Uy, be a2 minimum with respect to variations
in the nearest-neighbor distance R:

d U’mt
dR

=0= _gNe[az)(lzls)%% — (6)(14.45) i] (13)

R’

whence

Ry/oc=1.09 , (14)
the same for all elements with an fec structure. The observed values of Ryo,
using the independently determined values of o given in Table 4, are:

Ne Ar Kr Xe
Ry/o 1.14 1.11 1.10 1.09 .

The agreement with (14) is remarkable. The slight departure of Ry/o for the
lighter atoms from the universal value 1.09 predicted for inert gases can be ex-
plained by zero-point quantum effects. From measurements on the gas phase
we have predicted the lattice constant of the crystal.

Cohesive Energy

The cohesive energy of inert gas crystals at absolute zero and at zero pres-
sure is obtained by substituting (12) and (14) in (11):

U(R) = 2Ne [(12.13)(%)12 - (1445)(%)6] ) (15)

and, at R = R,,
Uin(Ry) = —(2.15)(4Ne) , - (16)

the same for all inert gases. This is the calculated cohesive energy when the
atoms are at rest. Quantum-mechanical corrections act to reduce the binding
by 28, 10, 6, and 4 percent of Eq. (16) for Ne, Ar, Kr, and Xe, respectively.
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The heavier the atom, the smaller the quantum correction. We can under-
stand the origin of the quantum correction by consideration of a simple model
in which an atom is confined by fixed boundaries. If the particle has the quan-
tum wavelength A, where A is determined by the boundaries, then the particle
has kinetic energy p%/2M = (h/A)*/2M with the de Broglie relation p = h/A for
the connection between the momentum and the wavelength of a particle. On
this model the quantum zero-point correction to the energy is inversely pro-
portional to the mass. The final calculated cohesive energies agree with the ex-
perimental values of Table 4 within 1 to 7 percent.

One consequence of the quantum kinetic energy is that a crystal of the iso-
tope Ne® is observed to have a larger lattice constant than a crystal of Ne*. The
higher quantum kinetic energy of the lighter isotope expands the lattice because
the kinetic energy is reduced by expansion. The observed lattice constants
(extrapolated to absolute zero from 2.5 K) are Ne?, 4.4644 A; Ne®, 4.4559 A.

IONIC CRYSTALS

Ionic crystals are made up of positive and negative ions. The ionic bond
results from the electrostatic interaction of oppositely charged ions. Two com-
mon crystal structures found for ionic crystals, the sodium chloride and the ce-
sium chloride structures, were shown in Chapter 1.

The electronic configurations of all ions of a simple ionic crystal corre-
spond to closed electronic shells, as in the inert gas atoms. In lithium fluoride
the configuration of the neutral atoms are, according to the periodic table in
the front endpapers of this book, Li: 1s°2s, F: 15?25?2p®. The singly charged
ions have the configurations Li*:1s% F™: 1s2s*2p®, as for helium and neon, re-
spectively. Inert gas atoms have closed shells, and the charge distributions are
spherically symmetric. We expect that the charge distributions on each jon in
an ionic crystal will have approximately spherical symmetry, with some distor-
tion near the region of contact with neighboring atoms. This picture is con-
firmed by x-ray studies of electron distributions (Fig. 7).

A quick estimate suggests that we are not misguided in looking to electro-
static interactions for a large part of the binding energy of an ionic crystal. The
distance between a positive ion and the nearest negative ion in crystalline
sodium chloride is 2.81 X 107® cm, and the attractive coulomb part of the
potential energy of the two ions by themselves is 5.1 €V. This value may be
compared (Fig. 8) with the experimental value of 7.9 eV per molecular unit for
the lattice energy of crystalline NaCl with respect to separated Na* and CI”
ions. We now calculate the energy more closely.

Electrostatic or Madelung Energy

The long-range interaction between ions with charge *q is the electrostatic
interaction *q%r, attractive between ions of opposite charge and repulsive
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Figure 7 Electron density distribution in the
base plane of NaCl, after x-ray studies by G.
Schoknecht. The numbers on the contours give
the relative electron concentration.

+ 514eV —>

lonization

energy

.= 3.61eV

El
Gas Gas a%f{g“ Figure 8 The energy per molecule unit of a crys-

tal of sodium chloride is (7.9 — 5.1 + 3.6) = 6.4 eV
lower than the energy of separated neutral atoms.
The lattice energy with respect to separated ions
+ 796V is 7.9 eV per molecule unit. All values on the fig-

ure are experimental, Values of the ionization en-
Cohesive  ergy are given in Table 5, and values of the elec-
Gas Gas Crystal energy tron affinity are given in Table 6.

between ions of the same charge. The ions arrange themselves in whatever crys-
tal structure gives the strongest attractive interaction compatible with the repul-
sive interaction at short distances between ion cores. The repulsive interactions
between ions with inert gas configurations are similar to those between inert gas
atoms. The van der Waals part of the attractive interaction in ionic crystals
makes a relatively small contribution to the cohesive energy in ionic crystals, of
the order of 1 or 2 percent. The main contribution to the binding energy of ionic
crystals is electrostatic and is called the Madelung energy.
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Table 6 Electron affinities of negative ions

The electron affinity is positive for a stable negative ion.

Atom Electron affinity energy eV Atom Electron affinity energy eV
T e S R s
H 0.7542 Si 1.39
Li 0.62 P 0.74
C 1.27 S 2.08
(o] 1.46 Cl 3.61
F 3.40 Br 3.36
Na 0.55 I 3.06
Al 0.46 K 0.50

Source: H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 4, 539 (1975).

If Uy is the interaction energy between ions i and j, we define a sum U,
which includes all interactions involving the ion i:

U,=>'Uy, a7)
j

where the summation includes all ions except j = i. We suppose that U; may be
written as the sum of a central field repulsive potential of the form A exp(—r/p),
where A and p are empirical parameters, and a coulomb potential *4*r. Thus
(CGS) Uy = A exp(—ry/p) = qz/r,j , (18)
where the + sign is taken for the like charges and the — sign for unlike charges.
In ST units the coulomb interaction is +q%4reyr; we write this section in CGS
units in which the coulomb interaction is Z¢%/r.

The repulsive term describes the fact that each ion resists overlap with the
electron distributions of neighboring ions. We treat the strength A and range p
as constants to be determined from observed values of the lattice constant and
compressibility; we have used the exponential form of the empirical repulsive
potential rather than the R™'2 form used for the inert gases. The change is
made because it may give a better representation of the repulsive interaction.
For the ions, we do not have gas-phase data available to permit the indepen-
dent determination of A and p. We note that p is a measure of the range of the
repulsive interaction; when r = p, the repulsive interaction is reduced to e
of the value at r = 0.

In the NaCl structure the value of U; does not depend on whether the
reference ion i is a positive or a negative ion. The sum in (17) can be arranged
to converge rapidly, so that its value will not depend on the site of the reference
ion in the crystal, as long as it is not near the surface. We neglect surface effects
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and write the total lattice energy U, of a crystal composed of N molecules or
2N ions as U, = NU,. Here N, rather than 2N, occurs because we must count
each pair of interactions only once or each bond only once. The total lattice en-
ergy is defined as the energy required to separate the crystal into individual
ions at an infinite distance apart.

It is convenient again to introduce quantities p;; such that ry; = p.R, where
R is the nearest-neighbor separation in the crystal. If we include the repulsive
interaction only among nearest neighbors, we have

2
(CGS) A exp(—R/p) — 7 (nearest neighbors)
R
U(-J- = 1 qz (19)
+- 1 i
i R (otherwise).
Thus
ag*
(CCS) U = NU, = N| she ™ = =] | (20)
where z is the number of nearest neighbors of any ion and
=3 ) _ Madel
a= : 7y Madehmg constant . (21)

The sum should include the nearest-neighbor contribution, which is just z.
The (*) sign is discussed just before (25). The value of the Madelung constant
is of central importance in the theory of an ionic crystal. Methods for its calcu-
lation are discussed next.

At the equilibrium separation dU,,/dR = 0, so that

dU; Nz Nog® _
(CGS) TR Texp( R/p) + o 0, (22)
or
(CGS) R2 exp(—Ry/p) = pag’/zr . (23)

This determines the equilibrium separation R, if the parameters p, A of the re-
pulsive interaction are known. For SI, replace ¢* by g*/4me,.

The total lattice energy of the crystal of 2N ions at their equilibrium sepa-
ration R, may be written, using (20) and (23), as

_ _Nag’l p
(CGS) U = —T(l - E) . (24)

The term —Naq’/R, is the Madelung energy. We shall find that p is of the
order of 0.1R, so that the repulsive interaction has a very short range.
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Figure 9 Line of ions of alternating signs, with distance R between ions.

Evaluation of the Madelung Constant

The first calculation of the coulomb energy constant a was made by
Madelung. A powerful general method for lattice sum calculations was devel-
oped by Ewald and is developed in Appendix B. Computers are now used for
the calculations.

The definition of the Madelung constant « is, by (21),

o ()
=3

For (20) to give a stable crystal it is necessary that & be positive. If we take the
reference ion as a negative charge, the plus sign will apply to positive ions and
the minus sign to negative ions.

An equivalent definition is

o l(t)
R=2 7 (25)

where r; is the distance of the jth ion from the reference ion and R is the near-
est-neighbor distance. The value given for @ will depend on whether it is
defined in terms of the nearest-neighbor distance R or in terms of the lattice
parameter a or in terms of some other relevant length.

As an example, we compute the Madelung constant for the infinite line of
ions of alternating sign in Fig. 9. Pick a negative ion as reference ion, and let R

denote the distance between adjacent ions. Then
or

the factor 2 occurs because there are two ions, one to the right and one to the
left, at equal distances r;. We sum this series by the expansion

2

[}
-

X
4

R

In(l+x)=x~F+5 -7+

19|

Thus the Madelung constant for the one-dimensional chain is @ = 2In 2.
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14~

12 r—
10+ Repulsive energy
(2.4 x 10%) exp(-R/0.30) eV
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]
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(25.9/R) eV

Figure 10 Energy per molecule of XCI crystal, showing Madelung (coulomb) and repulsive
contributions.

In three dimensions the series presents greater difficulty. It is not
possible to write down the successive terms by a casual inspection. More
important, the series will not converge unless the successive terms in the se-
ries are arranged so that the contributions from the positive and negative
terms nearly cancel.

Typical values of the Madelung constant are listed below, based on unit
charges and referred to the nearest-neighbor distance:

L

The Madelung and repulsive contributions to the binding of a KCl crystal
are shown in Fig. 10. Properties of alkali halide crystals baving the sodium
chloride structure are given in Table 7. The calculated values of the lattice en-
ergy are in exceedingly good agreement with the observed values.



Table 7 Properties of alkali halide crystals with the NaCl structure

All values (except those in square brackets) at room temperature and atmospheric pressure, with no correction for changes in R, and U from
absolute zero. Values in square brackets at absolute zero temperature and zero pressure, from private communication by L. Brewer.
S T T A e N RN

Nearest- Repulsive Repulsive Latti ) 4
neighbor Bulk modulus B, energy range tatfface energy "]? r:ll;arel
separation in 10'! dyn/cm® parameter parameter 0 Irée lons, in keaymo
Ryin A or 10'° N/m? z\,in 10" % erg p.in A Experimental Calculated
e e T e e L R e Y
LiF 2.014 6.71 0.296 0.201 242.3[246.8] 242.2
LiCl 2.570 2.98 0.490 0.330 198.9[201.8] 192.9
LiBr 2.751 2.38 0.591 0.340 189.8 181.0
Lif 3.000 (1.71) 0.599 0.366 177.7 166.1
NaF 2.317 4.65 0.641 0.290 214.4[217.9] 215.2
NaCl 2.820 2.40 1.05 0.321 182.6[185.3] 178.6
NaBr 2.989 1.99 1.33 0.328 173.6[174.3] 169.2
Nal 3.237 151 1.58 0.345 163.2{162.3] 156.6
KF 2.674 3.05 1.31 0.298 189.8[194.5] 189.1
KCl 3.147 1.74 2.05 0.326 165.8[169.5] 161.6
KBr 3.298 1.48 2.30 0.336 158.5[159.3] 154.5
KI 3.533 1.17 2.85 0.348 149.9[151.1] 1445
RbF 2.815 2.62 1.78 0.301 181.4 180.4
RbCl 3.291 1.56 3.18 0.323 159.3 155.4
RbBr 3.445 1.30 3.03 0.338 152.6 148.3
Rbl 3.671 1.06 3.99 0.348 144.9 139.6

T T S e K
Data from various tables by M. P. Tosi, Solid State Physics 16, 1 (1964).
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Figure 11 Calcnlated valence electron concentration in germanium. The numbers on the con-
tours give the electron concentration per primitive cell, with four valence electrons per atom
(eight electrons per primitive cell). Note the high concentration midway along the Ge-Ge bond,
as we expect for cavalent bonding. (After J. R. Chelikowsky and M. L. Cohen.)

COVALENT CRYSTALS

The covalent bond is the classical electron pair or homopolar bond of
chemistry, particularly of organic chemistry. It is a strong bond: the bond be-
tween two carbon atoms in diamond with respect to separated neutral atoms is
comparable with the bond strength in ionic crystals.

The covalent bond is usually formed from two electrons, one from each
atom participating in the bond. The electrons forming the bond tend to be
partly localized in the region between the two atoms joined by the bond. The
spins of the two electrons in the bond are antiparallel.

The covalent bond has strong directional properties (Fig. 11). Thus car-
bon, silicon, and germanium have the diamond structure, with atoms joined to
four nearest neighbors at tetrahedral angles, even though this arrangement
gives a low filling of space, 0.34 of the available space, compared with 0.74 for
a close-packed structure. The tetrahedral bond allows only four nearest neigh-
bors, whereas a close-packed structure has 12. We should not overemphasize
the similarity of the bonding of carbon and silicon. Carbon gives biology, but
silicon gives geology and semiconductor technology.

The binding of molecular hydrogen is a simple example of a covalent bond.
The strongest binding (Fig. 12) occurs when the spins of the two electrons are
antiparallel. The binding depends on the relative spin orientation not because
there are strong magnetic dipole forces between the spins, but because the Pauli
principle modifies the distribution of charge according to the spin orientation.
This spin-dependent coulomb energy is called the exchange interaction.
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3 Crystal Binding

Table 8 Fractional ionic character of bonds in binary crystals

Fractional Fractional

Crystal ionic character Crystal ionic character

o

Si 0.00

SiC 0.18 GaAs 0.31

Ge 0.00 GaSb 0.26

ZnO 0.62 AgCl 0.86

ZnS 0.62 AgBr 0.85

ZnSe 0.63 Agl 0.77

ZnTe 0.61 MgO 0.84

Cdo 0.79 MgS 0.79

CdS 0.69 MgSe 0.79

CdSe 0.70

CdTe 0.67 LiF 0.92
Na(Cl 0.94

InP 0.42 RbF 0.96

InAs 0.36

InSb 0.32

-
After |. C. Phillips, Bonds and bands in semiconductors.

There is a continuous range of crystals between the ionic and the covalent
limits. It is often important to estimatc the cxtent a given bond is ionic or cova-
lent. A semiempirical theory of the fractional ionic or covalent character of a
bond in a dielectric crystal has been developed with considerable success by
]. C. Phillips, Table 8.

METALS

Metals are characterized by high electrical conductivity, and a large num-
ber of electrons in a metal are free to move about, usually one or two per atom.
The electrons available to move about are called conduction electrons. The
valence electrons of the atom become the conduction electrons of the metal.

In some metals the interaction of the ion cores with the conduction elec-
trons always makes a large contribution to the binding energy, but the charac-
teristic feature of metallic binding is the lowering of the energy of the valence
electrons in the metal as compared with the free atom.

The binding energy of an alkali metal crystal is considerably less than that
of an alkali halide crystal: the bond formed by a conduction electron is not very
strong. The interatomic distances are relatively large in the alkali metals because
the kinetic energy of the conduction electrons is lower at large interatomic
distances. This leads to weak binding. Metals tend to crystallize in relatively
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Figure 13 The hydrogen difluoride ion HF;
is stabilized by a hydrogen bond. The sketch
is of an extreme model of the bond, extreme
in the sense that the proton is shown bare of
electrons.

close packed structures: hep, fee, bee, and some other closely related structures,
and not in loosely-packed structures such as diamond.

In the transition metals there is additional binding from inner electron shells.
Transition metals and the metals immediately following them in the periodic
table have large d-electron shells and are characterized by high binding energy.

HYDROGEN BONDS

Because neutral hydrogen has only one electron, it should form a covalent
bond with only one other atom. It is known, however, that under certain condi-
tions an atom of hydrogen is attracted by rather strong forces to two atoms,
thus forming a hydrogen bond between them, with a bond energy of the
order of 0.1 eV. It is believed that the hydrogen bond is largely ionic in charac-
ter, being formed only between the most electronegative atoms, particularly F,
O, and N. In the extreme ionic form of the hydrogen bond, the hydrogen atom
loses its electron to another atom in the molecule; the bare proton forms the
hydrogen bond. The atoms adjacent to the proton are so close that more than
two of them would get in each other’s way; thus the hydrogen bond connects
only two atoms (Fig. 13).

The hydrogen bond is an important part of the interaction between H,O
molecules and is responsible together with the electrostatic attraction of the
electric dipole moments for the striking physical properties of water and ice. It
is important in certain ferroelectric crystals and in DNA.

ATOMIC RADII

Distances between atoms in crystals can be measured very accurately by
x-ray diffraction, often to 1 part in 10°. Can we say that the observed distance
between atoms may be assigned partly to atom A and partly to atom B? Can a
definite meaning be assigned to the radius of an atom or an ion, irrespective of
the nature and composition of the crystal?

Strictly, the answer is no. The charge distribution around an atom is not
limited by a rigid spherical boundary. Nonetheless, the concept of an atomic
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Table 9 Atomic and ionic radii

107'° m. For original references

see W. B. Pearson, Crystal chemistry and physics of metals and alloys,

Values approximate only. Units are 1 A
Wiley, 1972.

BrENRI R RSR LR ey

R

FEE

rt gas (filled shell) configuration —— 0.50 10.41

ions in ine

coordinated metals

Radii of ions in 12

Pd

Co

Rh

Fe

Ru

Mn

Tc

Cr

Mo

Nb

Zr

Sc

HE
1.64

La

1.11

Ac

Mg

0.65 | < Standard radii for

Ca

0.99 | 0.81
{isiiil
1.98

Sr

Ba

Ra
1.37

2,08

NA

0.97
BTy

1.91

Li

1.33
e
e

[
2.38

Rb

Cs

Fr
1.75
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radius is fruitful in predicting interatomic spacing. The existence and probable .
lattice constants of phases that have not yet been synthesized can be predicted
from the additive properties of the atomic radii. Further, the electronic config-
uration of the constituent atoms often can be inferred by comparison of mea-
sured and predicted values of the lattice constants.

To make predictions of lattice constants it is convenient to assign (Table 9)
sets of self-consistent radii to various types of bonds: one set for ionic crystals
with the constituent ions 6-coordinated in inert gas closed-shell configura-
tions, another set for the ions in tetrahedrally-coordinated structures, and an-
other set for 12-coordinated (close-packed) metals.

The predicted self-consistent radii of the cation Na' and the anion F~ as
given in Table 9 would lead to 0.97 A + 1.36 A = 2.33 A for the interatomic
separation in the crystal NaF, as compared with the observed 2.32 A. This
agreement is much better than if we assume atomic (neutral) configurations
for Na and F, for this would lead to 2.58 A for the interatomic separation in the
crystal. The latter value is 3(n.n. distance in metallic Na+ interatomic distance
in gaseous Fy).

The interatomic distance between C atoms in diamond is 1.54 A; one-half
of this is 0.77 A. In silicon, which has the same crystal structure, one-half the
interatomic distance is 1.17 A. In SiC each atom is surrounded by four atoms
of the opposite kind. If we add the C and Si radii just given, we predict 1.94 A
for the length of the C-Si bond, in fair agreement with the 1.89 A observed for
the bond length. This is the kind of agreement (a few percent) that we shall
find in using tables of atomic radii.

Ionic Crystal Radii

Table 9 gives the ionic crystal radii in inert gas configurations for 6-fold
coordination. The ionic radii can be used in conjunction with Table 10. Let us

Table 10 Use of the standard radii of ions given in Table 9

The interionic distance D is represented by Dy = R¢ + R4 + Ay, for ionic crystals,
where N is the coordination number of the cation (positive ion), R and R, are the stan-
dard radii of the cation and anion, and Ay is a correction for coordination number.
Room temperature. (After Zachariasen.)

R S T S S A

N Ay(A) N Ay(A) N Ay(A)
Lo e e ]
1 —0.50 5 -0.05 g9 +0.11
2 —0.31 6 0 10 +0.14
3 —0.19 7 +0.04 11 +0.17
4 —0.11 8 +0.08 12 +0.19
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consider BaTiO, with a lattice constant of 4.004 A at room temperature. Each
Ba'* ion has 12 nearest O~ ions, so that the coordination number is 12 and
the correction A, of Table 10 applies. If we suppose that the structure is
determined by the Ba-O contacts, we have Dy, = 1.35 + 1.40 + 0.19 = 2.94 A
ora = 4.16 A; if the Ti-O contact determines the structure, we have Dg=0.68 +
1.40 = 2.08 or a = 4.16 A. The actual lattice constant is somewhat smaller
than the estimates and may perhaps suggest that the bonding is not purely
ionic, but is partly covalent.

ANALYSIS OF ELASTIC STRAINS

We consider the elastic properties of a crystal viewed as a homogeneous
continuous medium rather than as a periodic array of atoms. The continuum
approximation is usually valid for elastic waves of wavelengths A longer than
107%cm, which means for frequencies below 10" or 10" Hz. Some of the ma-
terial below looks complicated because of the unavoidable multiplicity of sub-
scripts on the symbols. The basic physical ideas are simple: we use Hooke’s law
and Newton’s second law. Hooke’s law states that in an elastic solid the strain
is directly proportional to the stress. The law applies to small strains only. We
say that we are in the nonlinear region when the strains are so large that
Hooke’s law is no longer satisfied.

We specify the strain in terms of the components e.,, e,,, €, €y, €., €,
which are defined below. We treat infinitesimal strains only. We shall not
distinguish in our notation between isothermal (constant temperature) and
adiabatic (constant entropy) deformations. The small differences between the
isothermal and adiabatic elastic constants are not often of importance at room
temperature and below.

We imagine that three orthogonal vectors %, ¥, Z of unit length are embed-
ded securely in the unstrained solid, as shown in Fig. 14. After a small uniform
deformation of the solid has taken place, the axes are distorted in orientation
and in length. In a uniform deformation each primitive cell of the crystal is
deformed in the same way. The new axes x’, y’, z’ may be written in terms of
the old axes:

X' =(1+e)x+e,§+e€.2
y =X+ (1+e€,)yt+ez; (26)
z=extey+(lte,)z

The coefficients €,4 define the deformation; they are dimensionless and have
values < 1 if the strain is small. The original axes were of unit length, but the
new axes will not necessarily be of unit length. For example,

x"x'=l+2en+ei+efy+ei ,
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x!

(a) (b)

Figure 14 Coordinate axes for the description of the state of strain; the
orthogonal unit axes in the unstrained state (a) are deformed in the
strained state (b).

whence x’ = 1+ ¢, +- - The fractional changes of length of the X, y, and 2
axes are €,,, €,, €, respectively, to the first order.

What is the effect of the deformation (26) on an atom originally at r =
xx + yy + zz? The origin is taken at some other atom. If the deformation
is uniform, then after deformation the point will be at the position
r' =xx' +yy' + zz'. This is obviously correct if we choose the % axis such that
r = 1%; then v’ = xx’ by definition of x'. The displacement R of the deforma-
tion is defined by

REr’—r=x(x’—i)"'y(y"“?)"'Z(Z'_i), (27)
or, from (26),

R(r) = (x€,, t ye, + 26, )X + (xeyt ye, + z€,)§
+(re + ye, +2€,)Z . (28)

This may be written in 4 more general form by introducing u, v, w such that
the displacement is given by

R(r) = u(r)x + o(r)y + w(r)z . (29)

If the deformation is nonuniform we must relate u, o, w to the local strains. We
take the origin of r close to the region of interest; then comparison of (28) and
(29) gives, by Taylor series expansion of R using R(0) = 0,

~, 0 . =, 0 .
Y€ =X oo Y€ =Y 3y etc. (30)
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It is usual to work with coefficients e,z rather than €,,. We define the
strain components e,,, €, .. by the relations

— — . e = == . gzzEezz':_ ) (31)

using (30). The other strain components Coys Cyz» €2x ATC defined in terms of the
changes in angle between the axes: using (26) we may define

—_ o/ o _au v
ey=x'y =¢,te€, _6y+6x ;
= oyl = —@ a_w
eyz—y’ z “‘ezy+€yz_ az+ ay > (32)
'~ _du , dw
eu=z' X:Eu‘i'fxz——z‘}'a,

We may replace the = signs by = signs if we neglect terms of order €. The six
dimensionless coefficients e,5(=eg,) completely define the strain.
Dilation

The fractional increase of volume associated with a deformation is called
the dilation. The dilation is negative for hydrostatic pressure. The unit cube of
edges %, ¥, Z has a volume after deformation of

Vi=x'+y Xz, (33)

by virtue of a well-known result for the volume of a parallelepiped having
edges x’,y’, z'. From (26) we have

1+e, €y €
X'y Xz'=| €, 1+¢€, €. |=l+e,te,te,. (34)
€, €y 1+e,

Products of two strain components have been neglected. The dilation 8 is then
given by

Ze,te,te, . (35)

Stress Components

The force acting on a unit area in the solid is defined as the stress. There
are nine stress components: X, X,, X, Y,.Y,, Y,, 2, Z,, Z,. The capital letter
indicates the direction of the force, and the subscript indicates the normal to
the plane to which the force is applied. In Fig. 15 the stress component X,
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3 Crysial Binding

ELASTIC COMPLIANCE AND STIFFNESS CONSTANTS

Hooke’s law states that for sufficiently small deformations the strain is di-
rectly proportional to the stress, so that the strain components are linear func-
tions of the stress components:

ex=SnX; + Sl2Yy + SiaZ, + SuaY. + SisZ, + S16X, 3
ey = SnXa t SaoY, + Sp3Z, + SoaY. + SosZ, + 896X,
€ = S31Xx + 832Yy + SSGZZ + SMYZ + S35Zx + S36Xy 5 <37)
€y = SuXe T S4Y, + SpsZ;, + Sy, + SusZ. + SyeX,, s
en = 351X1 + Sszyy + SSBZZ + S54Yz + Ssszx + SSGXy N
€y = SeaXs + SexY, + SeaZ. + SeaY. + SesZ + SeeX,, .

X, =Cnex t Cl2eyy+ Craet Crgyt Crset Crgtyy
Y, = Cyier + Coge,yt Cogerat Cosey+ Cosert Coglny
Zz = C3leu + C323yy+ C3381.z+ C34eyz+ C356u+ C3Gexy >
38
Yz = C4leu + C4Zeyy+ C4Sezz+ C44eyz+ C45221+ C4ﬁexy B ( )
Z, = Cysie + Cypeyy+ Cse.t Cogeyt Coset Coely
Xj = Cﬁlen + Cﬁzeyy-'_ CGSezz+ Cﬂeyz+ C&Seu-'- Cﬁﬁexy .
The quantities S);, S), ... are called elastic compliance constants or
elastic constants; the quantities Cy), C)s, ... are called the elastic stiffness
constants or moduli of elasticity. The Ss have the dimensions of [area]/

[force] or [volume]/[energy]. The C’s have the dimensions of [forcel/[area] or
[energy)/[volume].

Elastic Energy Density

The 36 constants in (37) or in (38) may be reduced in number by several
considerations. The elastic energy density U is a quadratic function of the
strains, in the approximation of Hooke’s law (recall the expression for the energy
of a stretched spring). Thus we may write

6 6
U=12 Y Creren s (39)
2 A=1 p=1 woAe
where the indices 1 through 6 are defined as:

l=xx; 2=yy; 3=2z2z; 4=yz; 5bL=zx; 6b6=ay. (40)
The C’s are related to the C’s of (38), as in (42) below.
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The stress components are found from the derivative of U with respect to
the associated strain component. This result follows from the definition of
potential energy. Consider the stress X, applied to one face of a unit cube, the
opposite face being held at rest:

1

X, == 86 66 =Cpe, t

[ol»—-

6
2 (Cy+Cpyeg - (41)

Note that only the combination é(éaﬁ + (-Jﬁa) enters the stress-strain relations.
It follows that the elastic stiffness constants are symmetrical:

Caﬂ = %(éaﬁ +éﬁa) = CBa . (42)

Thus the thirty-six elastic stiffness constants are reduced to twenty-one.

Elastic Stiffness Constants of Cubic Crystals

The number of independent elastic stiffness constants is reduced further
if the crystal possesses symmetry elements. We now show that in cubic crystals
there are only three independent stiffness constants.

We assert that the elastic energy density of a cubic crystal is

U=1C e + 339 +e2) + —Cg(e +e2 + €ry 2) + Crpleye. +ee.+ €y » (43)
and that no other quadratic terms occur; that is,

by t0) 5 leglut ) (exfpt ) (44)

do not occur.

The minimum symmetry requirement for a cubic structure is the exis-
tence of four three-fold rotation axes. The axes are in the [111] and equivalent
directions (Fig. 17). The effect of a rotation of 27/3 about these four axes is to
interchange the x, y, z axes according to the schemes

Xy 2% ;

>

XY > X (45)

>

X2 =Yy X ;

>

-_x—> Yy—>z — —X
according to the axis chosen. Under the first of these schemes, for example,

e +e +e —>e +em+en R
and similarly for the other terms in parentheses in (43). Thus (43) is invariant
under the operations considered. But each of the terms exhibited in (44) is
odd in one or more indices. A rotation in the set (45) can be found which will
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change the sign of the term, because e,, = —e, -, for example. Thus the

terms (44) are not invariant under the required operations.
It remains to verify that the numerical factors in (43) are correct. By (41),

aU/de,, = X, = Cpe, + Ciple, tez) . (46)
The appearance of Cy,e,, agrees with (38). On further comparison, we see that

Ciy=0Cis ; Cu=C;5=C;=0. (47)
Further, from (43),

aU/de,, = X, = Cueyy, ; (48)
on comparison with (38) we have
Cs=Cr=Cep=Cs=Ces=0; Coe=Cy - (49)

Thus from (43) we find that the array of values of the elastic stiffness
constants is reduced for a cubic crystal to the matrix

O ey e.. €y e, Cuy
X Cn  Cy Cp 0 0 0
Y, Cu Cu Cu, 0 0 o0
Z, Cp Gy Cy 0 0 0
(50)
Y o 0 0 Csh 0 0
Z 0 0 0 0 Cu O
X, 0 0 0 0 0 Cg
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For cubic crystals the stiffness and compliance constants are related by

Cuy=1/84; —Cu=n—Sw™";
Cy+2C=(Sn+25,)". (51)

These relations follow on evaluating the inverse matrix to (50).

Bulk Modulus and Compressibility

Consider the uniform dilation e = ¢
energy density (43) of a cubic crystal is

= € 38. For this deformation the

U=3(C,, +2C)8 . (52)
We may define the bulk modulus B by the relation
= 1B | (53)
which is equivalent to the definition —V dp/dV. For a cubic crystal,
B=3(Cy +2Cy) . (54)
The compressibility K is defined as K = 1/B. Values of B and K are given in

Table 3.

ELASTIC WAVES IN CUBIC CRYSTALS

By considering as in Figs. 18 and 19 the forces acting on an element of
volume in the crystal we obtain the equation of motion in the x direction
2 )
o%u _ 9%, 9%,

p atz 6x ay 8z

; (55)

here p is the density and u is the displacement in the x direction. There are
similar equations for the 4 and z directions. From (38) and (50) it follows that
for a cubic crystal

o%u de,, de,, deyy, a_e_
p8t2 Cllax+012(x 6x)+c4’4(ay+6z)’ (56)

here the x, y, z directions are parallel to the cube edges. Using the definitions
(31) and (32) of the strain components we have

Z)z_u _ u ’u u 8% "w

where u, v, w are the components of the displacement R as defined by (29).
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Figure 18 Cube of volume Ax Ay Az acted
on by a stress —X,(x) on the face at x, and

Xx + Ax) = X, (x) + —X’ Ax on the parallel
face at x + Ax. The net force s

d.
(HXI Ax)Ay Az. Other forces in the x direction

Volume Ax Ay Az

—Xe(x)
il arise from the variation across the cube of

the stresses X, and X, which are not shown. The
net x component of the force on the cube is

Xulx + Ax) ™ . BXy A A
X M ? 3!/— + - y AZ
The force equals the mass of the cube times
the component of the acceleration in the x
direction. The mass is p Ax Ay Az, and the
acceleration is 9%u/d¢2.
e i : g

A e

Figure 18 If springs A and B are stretched equally, the block between them experiences no net
force. This illustrates the fact that a uniform stress X, in a solid does not give a net force on a vol-
ume element. If the spring at B is stretched more than the spring at A, the block between them

will be accelerated by the force X(B) — X(A).

The corresponding equations of motion for 8°v/d¢*> and 8*w/dt* are found

directly from (57a) by symmetry:

320_ 8% v u
_—Cn?-)'c (;3}‘24‘;) +<C12+C44) (Bx 3y

9z o dx 0z
We now look for simple special solutions of these equations.

Waves in the [100] Direction
One solution of (57a) is given by a longitudinal wave

u =ugexp [i(Kx — wt)] ,

’'w
Ty az> ;
(5

4w P*w dw |, 3w u 9%
p——:C11—+C44( +ay)+(cm+c‘*4)(4+ayaz‘

(57¢)

(58)

where u is the x component of the particle displacement. Both the wavevector
and the particle motion are along the x cube edge. Here K=2m/A is the
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wavevector and @ = 27v is the angular frequency. If we substitute (58) into
(57a) we find

o’p=C K? ; (59)
thus the velocity /K of a longitudinal wave in the [100] direction is
v, =vA =aw/K=(C,/p)? . (60)
Consider a transverse or shear wave with the wavevector along the x cube
edge and with the particle displacement v in the y direction:
v =1, exp [i{(Kx — ot)] . (61)
On substitution in (57b) this gives the dispersion relation
w’p=CyuK® ; (62)
thus the velocity w/K of a transverse wave in the [100] direction is
v, = (Cuwp)” . (63)
The identical velocity is obtained if the particle displacement is in the z direc-
tion. Thus for K parallel to [100] the two independent shear waves have equal
velocities. This is not true for K in a general direction in the crystal.
Waves in the [110] Direction

There is a special interest in waves that propagate in a face diagonal direc-
tion of a cubic crystal, because the three elastic constants can be found simply
from the three propagation velocities in this direction.

Consider a shear wave that propagates in the xy plane with particle dis-
placement w in the z direction

w = wy exp [(Kx + Ky — ot)] , (64)
whence (32c) gives

independent of propagation direction in the plane.
Consider other waves that propagate in the xy plane with particle motion
in the xy plane: let

u =ug exp [i(Kx + Ky — wt)] ; v = vp exp [i(Kx + Ky - wt)] . (66)
From (57a) and (57b),

o’pu = (C;; K2 + CyKu + (Cyy + C)K K

w’pv = (C K] +CouKv + (Cip + CK.Ku .
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This pair of equations has a particularly simple solution for a wave in the [110]
direction, for which K, = K,= K/V2 . The condition for a solution is that the
determinant of the coefficients of u and v in (67) should equal zero:

HC s+ C K2 —w?p+ YCy + C K>
This equation has the roots
(02[) = é(Cu + 012 + 2C44)K2 5 (Uzp = %(Cu - Clg)K2 . (69)

The first root describes a longitudinal wave; the second root describes a
shear wave. How do we determine the direction of particle displacement? The
first root when substituted into the upper equation of (67) gives

é(cn +Cp+ QC“)Kz = Zl»(cu + C44)K2U + %(Clz + 644)1(20 s (70)

whence the displacement components satisfy 4 = v. Thus the particle dis-
placement is along [110] and parallel to the K vector (Fig. 20). The second
root of (44) when substituted into the upper equation of (67) gives

%(Cu - Clz)KQ'U = %(Cn + C44)K2u + é(cu + C44)K2U > (71)

whence u = —v. The particle displacement is along [110] and perpendicular to
the K vector.

Selected values of the adiabatic elastic stiffness constants of cubic crystals
at low temperatures and at room temperature are given in Table 11. Notice the
general tendency for the elastic constants to decrease as the temperature is in-
creased. Further values at room temperature alone are given in Table 12.

K
y n /
L
Ty
T T L r

/

T
K \k
Wave in [100] direction Wave in [110] direction Wave in [111] direction
L:Cu L:L(Cyy + Crp v 2C,y) L:1(Cyy +2Cpy + 1Cy)
T:Cu T,:Cy T:1(Cyy~Ciy+ Cgg)

Ty: %(Cll—cu)

Figure 20 Effective elastic constants for the three modes of elastic waves in the principal propa-
gation directions in cubic crystals. The two transverse modes are degenerate for propagation in
the [100] and [111] directions.



Table 11 Adiabatic elastic stiffness constants of cubic crystals
at low temperature and at room temperature

The values given at 0 K were obtained by extrapolation of measurements carried out
down to 4 K. The table was compiled with the assistance of Professor Charles S. Smith.

Stiffness constants, in 102 dyne/cm2 (10" N/m?)

Crystal Cn Cie Cuy Temperature, K Density, g/cm3
[
w 5.326 2.049 1.631 0 19.317
5.233 2.045 1.607 300 —-—
Ta 2.663 1.582 0.874 0 16.696
2.609 1.574 0.818 300 —
Cu 1.762 1.249 0.818 0 9.018
1.684 1.214 0.754 300 —
Ag 1.315 0.973 0.511 0 10.635
1.240 0.937 0.461 300 —
Au 2.016 1.697 0.454 0 19.488
1.923 1.631 0.420 300 —
Al 1.143 0.619 0.316 0 2.733
1.068 0.607 0.282 300 -—
K 0.0416 0.0341 0.0286 4
0.0370 0.0314 0.0188 295
Pb 0.555 0.454 0.194 0 11.599
0.495 0.423 0.149 300 —
Ni 2.612 1.508 1.317 0 8.968
2.508 1.500 1.235 300 —
Pd 2.341 1.761 0.712 0 12.132
2.271 1.761 0.717 300 —

Table 12 Adiabatic elastic stiffness constants of several
cubic crystals at room temperature or 300 K

L e e )
Stiffness constants, in 1012 dyne/em? or 10 N/m?

Cll Cl2 CM
T
Diamond 10.76 1.25 5.76
Na 0.073 0.062 0.042
Li 0.135 0.114 0.088
Ge 1.285 0.483 0.680
Si 1.66 0.639 0.796
GaSb 0.885 0.404 0.433
InSh 0.672 0.367 0.302
MgO 2.86 0.87 1.48
NaCl 0.487 0.124 0.126
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There are three normal modes of wave motion in a crystal for a given
magnitude and direction of the wavevector K. In general, the polarizations
(directions of particle displacement) of these modes are not exactly parallel or
perpendicular to K. In the special propagation directions [100}, [111], and
[110] of a cubic crystal two of the three modes for a given K are such that the
particle motion is exactly transverse to K and in the third mode the motion
is exactly longitudinal (parallel to K). The analysis is much simpler in these
special directions than in general directions.

SUMMARY

s Crystals of inert gas atoms are bound by the van der Waals interaction (in-
duced dipole-dipole interaction), and this varies with distance as 1/R®.

o The repulsive interaction between atoms arises generally from the electro-
static repulsion of overlapping charge distributions and the Pauli principle,
which compels overlapping electrons of parallel spin to enter orbitals of
higher energy.

o Ionic crystals are bound by the electrostatic attraction of charged ions of
opposite sign. The electrostatic energy of a structure of 2N ions of charge
s
*+q is

2 +\,2
(CGS) U= —Naqﬁz —NE(;r’,iq— ,

where a is the Madelung constant and R is the distance between nearest

neighbors.

o Metals are bound by the reduction in the kinetic energy of the valence elec-
trons in the metal as compared with the free atom.

o A covalent bond is characterized by the overlap of charge distributions of
antiparallel electron spin. The Pauli contribution to the repulsion is reduced
for antiparallel spins, and this makes possible a greater degree of overlap.
The overlapping electrons bind their associated ion cores by electrostatic
attraction.

Problems

1. Quantum solid. In a quantum solid the dominant repulsive energy is the zero-
point energy of the atoms. Consider a crude one-dimensional model of crystalline
He* with each He atom confined to a line segment of length L. In the ground state
the wave function within each segment is taken as a half wavelength of a free parti-
cle. Find the zero-point kinetic energy per particle.

85
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. Cohesive energy of bcc and fec neon. Using the Lennard-Jones potential, cal-

culate the ratio of the cohesive energies of neon in the bee and fec structures (Ans.
0.958). The lattice sums for the bee structures are

X'pi=911418 ; X' p;®=122533 .
j J

. Solid molecular hydrogen. For H, one finds from measurements on the gas that

the Lennard-Jones parameters are € = 50 X 107 erg and o = 2.96 A. Find the
cohesive energy in k] per mole of Hy; do the calculation for an fee structure.
Treat each H, molecule as a sphere. The observed value of the cohesive energy is
0.751 kJ/mol, much less than we calculated; thus, quantum corrections must be
very important.

. Possibility of ionic crystals R*R™. Imagine a crystal that exploits for binding the

coulomb attraction of the positive and negative ions of the same atom or molecule
R. This is believed to occur with certain organic molecules, but it is not found
when R is a single atom. Use the data in Tables 5 and 6 to evaluate the stability of
such a form of Na in the NaCl structure relative to normal metallic sodium. Evalu-
ate the energy at the observed interatomic distance in metallic sodium, and use
0.78 eV as the electron affinity of Na.

. Linear ionic crystal. Consider a line of 2N ions of alternating charge *q with a

repulsive potential energy A/R" between nearest neighbors. (a) Show that at the
equilibrium separation

2Ng*In 2 1
(b) Let the crystal be compressed so that Ry— Ry(1 — 8). Show that the work done
in compressing a unit length of the crystal has the leading term 3C8% where

(n—1)¢*In2

(CGS) C= R,

To obtain the results in SI, replace q2 by q2/4ar€0. Note: We should not expect to ob-
tain this result from the expression for U(R,), but we must use the complete expres-
sion for U(R).

. Cubic ZnS structure. Using A and p from Table 7 and the Madelung constants

given in the text, calculate the cohesive energy of KCl in the cubic ZnS structure
described in Chapter 1. Compare with the value calculated for KCl in the NaCl
structure.

. Divalent ionic crystals. Barium oxide has the NaCl structure. Estimate the

cohesive energies per molecule of the hypothetical crystals Ba*O~ and Ba**O™~
referred to separated neutral atoms. The observed nearest-neighbor internuclear
distance is Ry = 2.76 A; the first and second ionization potentials of Ba are 5.19
and 9.96 eV; and the electron affinities of the first and second electrons added
to the neutral oxygen atom are 1.5 and —9.0 eV. The first electron affinity of the
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Figure 21 Young’s modulus is defined as stress/strain for a ten-
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|

_____________ | x

sile stress acting in one direction, with the specimen sides left Figure 22 This deformation is compounded
free. Poisson’s ratio is defined as (8w/A0)/(81/]) for this situation.  from the two shears e, = —e,,.

10.

11.

12,

neutral oxygen atom is the energy released in the reaction O + e — O™. The sec-
ond electron affinity is the energy released in the reaction O~ + e — O~ ~. Which
valence state do you predict will occur? Assume R, is the same for both forms, and
neglect the repulsive energy.

Young’s modulus and Poisson’s ratio. A cubic crystal is subject to tension in the
[100] direction. Find expressions in terms of the elastic stiffnesses for Young’s
modulus and Poisson’s ratio as defined in Fig. 21.

. Longitudinal wave velocity. Show that the velocity of a longitudinal wave in the

[111] direction of a cubic crystal is given by v, = [5(Cyy+ 2Cy5 + 4C,)/p]*~. Hint:
For such a wave u = v = w. Let 4 = ug ™y +V3=iat and use Eq. (57a).

Transverse wave velocity. Show that the velocity of transverse waves in the [111]
direction of a cubic crystal is given by v, = [5(Cy;— Cjs + Cu/p]”® Hint: See
Problem 9.

Effective shear constant. Show that the shear constant 3(Cy; — Cy,) in a cubic
crystal is defined by setting e, = —¢,, = 3¢ and all other strains equal to zero, as in
Fig. 22. Hint: Consider the energy density (43); look for a C' such that U = iC'e.

Determinantal approach. It is known that an R-dimensional square matrix with
all elements equal to unity has roots R and 0, with the R occurring once and the
zero occurring R — 1 times. If all elements have the value p, then the roots are
Rp and 0. (a) Show that if the diagonal elements are ¢ and all other elements are
p, then there is one root equal to (R — 1)p + g and R — 1 roots equal to ¢ — p.
(b) Show from the elastic equation (57) for a wave in the [111] direction of a cubic
crystal that the determinantal equation which gives o as a function of K is

g—op P p
p q- o' p_ =0,
p p q—o'p

where q = 3K¥C,, +2C,,) and p = 3K¥Cyy + C,,). This expresses the condition
that three linear homogeneous algebraic equations for the three displacement
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13.

14.

components 4, v, w have a solution. Use the result of part (a) to find the three
roots of ? check with the results given for Problems 9 and 10,

General propagation direction. (a) By substitution in (57) find the determinan-
tal equation which expresses the condition that the displacement

R(r) = [ugk + o + wg2] exp [i(K - r — wh)]

be a solution of the elastic wave equations in a cubic crystal. (b) The sum of the
roots of a determinantal equation is equal to the sum of the diagonal elements a;;.
Show from part (a) that the sum of the squares of the three elastic wave velocities
in any direction in a cubic crystal is equal to (C), + 2C,,)/p. Recall that v? = w¥K>.

Stability criteria. The criterion that a cubic crystal with one atom in the primi-
tive cell be stable against small homogeneous deformations is that the energy den-
sity (43) be positive for all combinations of strain components. What restrictions
are thereby imposed on the elastic stiffness constants? (In mathematical language
the problem is to find the conditions that a real symmetric quadratic form should
be positive definite. The solution is given in books on algebra; see also Korn and
Korn, Mathematical Handbook, McGraw-Hill, 1961, Sec. 13.5-6.) Ans. C,, > 0,
Cy >0, C4 —C,>0, and C,, + 2C;, > 0. For an example of the instability
which results when C;; = Cyy, see L. R. Testardi et al., Phys. Rev. Letters 15,
250 (1965).
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