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Figure I The principal types of crystalline binding. In (a) neutral atoms with closed electron 
shells are bound together weakly hy the van der Waals forces ass0ciated with fluctuations in the 
charge distributions. In (b) electrons are transferred from the alkali atoms to the luilogen atoms, 
and the resulting ions arc held together by attractive electrostatic forces between the positive and 
negative ions . In (c) the valence electrons are taken away from each alkali atom to form a commu­
nal electron sea in which the positive ioris are dispersed. In (d) the neutral atoms are bound to­
gether by the overlapping parts of their electron distributions. 



CHAPTER 3: CRYSTAL BINDING AND ELASTIC CONSTANTS 

In this chapter we are concerned with the question: What holds a crystal 
together? The attractive electrostatic interaction between the negative charges 
of the electrons and the positive charges of the nuclei is entirely responsible 
for the cohesion of solids. Magnetic forces have only a weak effect on cohe­
sion, and gravitational forces are negligible. Specialized terms categorize dis­
tinctive situations: exchange energy, van der Waals forces, and covalent bonds. 
The observed differences between the forms of condensed matter are caused 
in the final analysis by differences in the distribution of the outermost elec­
trons and the ion cores (Fig. 1). 

The cohesive energy of a crystal is defined as the energy that must be 
added to the crystal to separate its components into neutral free atoms at rest, 
at infinite separation, with the same electronic configuration. The term lattice 
energy is used in the discussion of ionic crystals and is defined as the energy 
that must be added to the crystal to separate its component ions into free ions 
at rest at infinite separation. 

Values of the cohesive energy of the crystalline elements are given in 
Table 1. Notice the wide variation in cohesive energy between different 
columns of the periodic table. The inert gas crystals are weakly bound, with 
cohesive energies less than a few percent of the cohesive energies of the ele­
ments in the C, Si, Ge ... column. The alkali metal crystals have intermediate 
values of the cohesive energy. The transition element metals (in the middle 
columns) are quite strongly bound. The melting temperatures (Table 2) and 
bulk modulii (Table 3) vary roughly as the cohesive energies. 

CRYSTALS OF INERT GASES 

The inert gases form the simplest crystals. The electron distribution is 
very close to that of the free atoms. Their properties at absolute zero are sum­
marized in Table 4. The crystals are transparent insulators, weakly bound, with 
low melting temperatures. The atoms have very high ionization energies (see 
Table 5). The outermost electron shells of the atoms are completely filled, and 
the distribution of electron charge in the free atom is spherically symmetric. 
In the crystal the inert gas atoms pack together as closely as possible1

: the 

1Zero-point motion of the atoms (kinetic energy at absolute zero) is a quantum effect that plays 
a dominant role in He3 and He4

• They do not solidify at zero pressure even at absolute zero temp­
erature. The average fluctuation at 0 K of a He atom from its equilibrium position is of the order of 
30 to 40 percent of the nearest-neighbor distance. The heavier the atom, the less important the zero­
point effects. If we omit zero-point motion, we calculate a molar volume of 9 cm3 mol-1 for solid 
helium, as compared with the observed values of 27.5 and 36.8 cm3 mol-1 for liquid He4 and Hquid 
He3

, respectively. 
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Table 1 Cohesive energies 

Energy required to form separated neutral atoms in their ground 

electronic state from the solid at 0 Kat 1 atm. The data were supplied by ~l(aJIIHJMIJilUil!~iiJ~~~~~~llilJJmJI 
Prof. Leo Brewer. · p 



Li Be Table 2 Me]ting points, inK. B c N 0 F Ne 
453.7 1562 (After R. H. Lamoreaux) 2365 63.15 54.36 53.48 24.56 

Ei',f~:!li~!,£ >JIDJ:Iai"B!fwi'ifii_,jl_'ffiJ'!f'J~I-uid.n':l::iLS!'i~ ~~,will tiff 

Na Mg AI Si p s Cl Ar 
371.0 922 933.5 1687 w 317 388.4 172.2 83.81 

r 863 

K Ca Sc Ti v Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 

336.3 1113 1814 1946 2202 2133 1520 1811 1no 1728 1358 692.7 302.9 1211 1089 494 265.9 115.8 

Rb Sr y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 
312.6 1042 1801 2128 2750 2895 2477 2527 2236 1827 1235 594.3 429.8 505.1 903.9 722.7 386.7 161.4 

Cs Ba La Hf Ta w Re Os lr Pt Au Hg Tl Pb Bi Po At Rn 
301.6 1002 1194 2504 3293 3695 3459 3306 2720 2045 1338 234.3 577 600.7 544.6 527 

Fr Ra Ac ' 973 1324 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 
1072 1205 1290 1346 1091 1587 1632 1684 1745 1797 1820 1098 1938 

' Th Pa u Np Pu Am em Bk Cf Es Fm Md No Ltv 
2031 1848 1406 910 913 1449 1613 1562 



Table 3 Isothe~al bulk modulii and compressibilities at room 
temperature 

Mter K. Gschneidner, Jr., Solid State Physics 16, 275-426 (1964); several 
data are from F. Birch, in Handbook of physical constants, Geological Soci-
ety of America Memoir 97, 107-173 (1966). Original references should be 

1----t----w consulted when values are needed for research purposes. Values in paren- B 
, theses are estimates. Letters in parentheses refer to the crystal form. Let­

t·~;~~~~]Hijlfll ters in brackets refer to the temperature: 

[a] = 77 K; [b] = 273 K; [c] = 1 K; [d) = 4 K;· [e) = 81 K. 

Bk Cf 

He tdJ 
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Table 4 Properties of inert gas crystals 

(Extrapolated to 0 K and zero pressure) 

Parameters in 

Nearest-
Experimental Ionization 

Lennard-Jones 

neighbor 
cohesive potential 

potential, Eq. 10 

distance, Melting of free E, u, 
inA kJimol eV/atom point, K atom, eV in 10-16 erg inA 

He (liquid at zero pressure) 24.58 14 2.56 
Ne 3.13 1.88 0.02 24.56 21.56 50 2.74 
Ar 3.76 7.74 0.080 83.81 15.76 167 3.40 
Kr 4.01 11.2 0.116 115.8 14.00 225 3.65 
Xe 4.35 16.0 0.17 161.4 12.13 320 3.98 

crystal structures (Fig. 2) are all cubic close-packed (fcc), except He3 

and He4
• 

What holds an inert gas crystal together? The electron distribution in the 
crystal is not significantly distorted from the electron distribution around the 
free atoms because not much energy is available to distort the free atom 
charge distributions. The cohesive energy of an atom in the crystal is only 
1 percent or less of the ionization energy of an atomic electron. Part of this 
distortion gives the van der Waals interaction. 

Van der Waals-London Interaction 

Consider two identical inert gas atoms at a separation R large in compari­
son with the radii of the atoms. What interactions exist between the two neu­
tral atoms? If the charge distributions on the atoms were rigid, the interaction 
between atoms would be zero, because the electrostatic potential of a spheri­
cal distribution of electronic charge is canceled outside a neutral atom by the 
electrostatic potential of the charge on the nucleus. Then the inert gas atoms 
could show no cohesion and could not condense. But the atoms induce dipole 
moments in each other, and the induced moments cause an attractive interac­
tion between the atoms. 

As a model, we consider two identical linear harmonic oscillators 1 and 2 
separated by R. Each oscillator bears charges ±e with separations x 1 and x2, as in 
Fig. 3. The particles oscillate along the x axis. Let p 1 and p2 denote the momenta. 
The force constant is C. Then the hamiltonian of the unperturbed system is 

(1) 

Each uncoupled oscillator is assumed to have the frequency w0 of the 
strongest optical absorption line of the atom. Thus C = mw~. 

53 



K 

Table 5 Ionization energies 

The total energy required to remove the first two electrons is the sum of the 
first and second ionization potentials. (Source: National Bureau of Standards 
Circular 467.) 
~liB~· '· -:it.H«\~1:_1iT&RH:ti .. UI'~'I:I~~~Pd~&~t'I.~~&%1'4Ji'li'l:t"'':~~ ,...--.--...---..r--..... --+--..... 

,, .· . . ' • '. : .. 

to remove two electrons, in eV 24.80 24.49 30.20 34.0 

Ga Ge As Se Br 

26.51 23.81 30.0 31.2 33.4 

Zr Nb Ru Rh Pd 

20.98 24.12 25.53 

lr Bi Po At 

23.97 
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Figure 2 Cubic close-packed (fcc) crystal structure of the inert gases Ne, Ar, Kr, and Xe. The lat­
tice parameters of the cubic cells arc 4.46, 5.31, 5.64, and 6.13 A, respectively, at 4 K. 

~ 

1+-------- R -------1----Xl---1 
Figure 3 Coordinates of the two oscillators. 

Let de1 be the coulomb interaction ene-rgy of the two oscillators. The 
geometry is shown in the figure. The internuclear coordinate is R. Then 

e2 e2 __ e2 __ e2 . 
71£1 = - + -,-----

R R + x 1 - x2 R + x1 R - x2 ' 
(CGS) (2) 

in the approximation lx 1 j, lx21 ~ R we expand (2) to obtain in lowest order: 

(3) 

The total hamiltonian with the approximate form (3) for de1 can be diago­
nalized by the normal mode transformation 

(4) 
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or, on solving for x1 and x2, 

(5) 

The subscripts s and a denote symmetric and antisymmetric modes of motion. 
Further, we have the momenta p"' Pa associated with the two modes: 

(6) 

The total hamiltonian 7K0 + 7K1 after the transformations (5) and (6) is 

ow _ [ 1 2 1 (c 2e2) 2] [ 1 2 1 (c 2e
2

) 2] 
i1L- 2mPs + 2 R3 Xs + 2mPa + 2 + R3 Xa • (7) 

The two frequencies of the coupled oscillators are found by inspection of (7) to be 

with w0 given by {C/m/12
. In (8) we have expanded the square root. 

The zero point energy of the system is ~li(w8 + wa); because of the interac­
tion the sum is lowered from the uncoupled value 2 · knw0 by 

-liwo .l ( 2e2 )2 = 
8 CR3 

(9) 

This attractive interaction varies as the minus sixth power of the separation of 
the two oscillators. 

This is called the van der Waals interaction, known also as the London in­
teraction or the induced dipole-dipole interaction. It is the principal attractive 
interaction in crystals of inert gases and also in crystals of many organic mole­
cules. The interaction is a quantum effect, in the sense that ll.U ~ 0 as n ~ 0. 
Thus the zero point energy of the system is lowered by the dipole-dipole cou­
pling of Eq. (3). The van der Waals interaction does not depend for its exis­
tence on any overlap of the charge densities of the two atoms. 

An approximate value of the constant A in (9) for identical atoms is given 
by liw0a

2
, where nw0 is the energy of the strongest optical absorption line and 

a is the electronic polarizahility (Chapter 15). 

RepulBive Interaction 

As the two atoms are brought together, their charge distributions gradually 
overlap (Fig. 4), thereby changing the electrostatic energy of the system. At 
sufficiently close separations the overlap energy is repulsive, in large part be­
cause of the Pauli exclusion principle. The elementary statement of the 
principle is that two electrons cannot have all their quantum numbers equal. 
When the charge distributions of two atoms overlap) there is a tendency for 
electrons from atom B to occupy in part states of atom A already occupied by 
electrons of atom A, and vice versa. 



• • 

• • 

o+o~o 
~t ~t ~t~! 

Total spin zero 

0 0 0. H He 

lsi lsi Isi2s i 
Total spin one 
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Figure 4 Electronic charge distribu­
tions overlap as atoms approach. The 
solid circles denote the nuclei. 

(a) 
Total electron 
energy: -78.98 e V 

(b) 
Total electron 
energy: -59.38 eV 

Figure 5 The effect of Pauli principle on the repulsive energy: in an extreme example, two hydro­
gen atoms are pushed together until the protons are almost in contact . The energy of the electron 
system alone can be taken from observations on atomic He, which has two electrons. In (a) the elec­
trons have antiparallel spins and the Pauli principle has no effect: the electrons are bound by 
-78.98 eV. In (b) the spins are parallel: the Pauli principle forces the promotion of an electron from 
a ls t orbital of H to a 2s t orbital of He. The electrons now are bound by -59.38 eV, less than (a) 
by 19.60 eV. This is the amount by which the Pauli principle has increased the repulsion. We have 
omitted the repulsive coulomb energy of the two protons, which is the same in both (a) and (b). 

The Pauli principle prevents multiple occupancy, and electron distribu­
tions of atoms with closed shells can overlap only if accompanied by the partial 
promotion of electrons to unoccupied high energy states of the atoms. Thus 
the electron overlap increases the total energy of the system and gives a repul­
sive conhibution to the interaction. An extreme example in which the overlap 
is complete is shown in Fig. 5. 

We make no attempt here to evaluate the repulsive interaction2 from first 
principles. Experimental data on the inert gases can be fitted well by an empirical 
repulsive potential of the form B/R12

, where B is a positive constant, when used 

2The overlap energy naturally depends on the radial distribution of charge about each atom. 
The mathematical calculation is always complicated even if the charge distribution is known. 
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Figure 6 Form of the Lennard-Jones potential (10) which describes the interaction of two inert gas 
atoms. The minimum occurs at Rfq = 2w == 1.12. Notice how steep the curve is inside the minimum, 
and how Hat it is outside the minimum. The value of U at the minimum is -E; and U 0 at R a. 

together with a long-range attractive potential of the form of (9). The constants A 
and B are empirical parameters determined from independent measurements 
made in the gas phase; the data used include the virial coefficients and the viscos­
ity. It is usual to write the total potential energy of two atoms at separation R as 

(10) 

where e and u are the new parameters, with 4eu6 = A and 4eu12 B. The 
potential (10) is known as the Lennard-Janes potential, Fig. 6. The force 
between the two atoms is given by -dU!dR. Values of e and u given in Table 4 
can be obtained from gas-phase data, so that calculations on properties of the 
solid do not involve disposable parameters. 

Other empirical forms for the repulsive interaction are widely used, in par~ 
ticular the exponential form A exp( -Rip), where pis a measure of the range of 
the interaction. This is generally as easy to handle analytically as the inverse 
power law form. 

Equilibrium Lattice Constants 

If we neglect the kinetic energy of the inert gas atoms, the cohesive en­
ergy of an inert gas crystal is given by summing the Lennard-Janes potential 
(10) over all pairs of atoms in the crystal. If there are N atoms in the crystat 
the total potential energy is 

u .. = W<4£{ 1· (p:ar -t· (p:aYJ , (ll) 
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where pijR is the distance between reference atom i and any other atom j, ex­
pressed in terms of the nearest-neighbor distance R. The factor~ occurs with 
the N to compensate for counting twice each pair of atoms. 

The summations in (11) have been evaluated, and for the fcc structure 

""'' -12 £.1 pij 
j 

12.13188 ; ~I pij6 = 14.45392 . 
j 

(12) 

There are 12 nearest-neighbor sites in the fcc structure; we see that the series 
are rapidly converging and have values not far from 12. The nearest neighbors 
contribute most of the interaction energy of inert gas crystals. The corre­
sponding sums for the hcp structure are 12.13229 and 14.45489. 

If we take Utot in (ll) as the total energy of the crystal, the equilibrium 
value R0 is given by requiring that Utot be a minimum with respect to variations 
in the nearest-neighbor distance R: 

whence 

dUtot 
dR 

0 
[ 

U12 
-2Ne (12)(12.13} R

13 (6)(14.45) ~] , (13) 

~Ju= 1.09, (14) 

the same for all elements with an fcc structure. The observed values of Rofu, 
using the independently determined values of u given in Table 4, are: 

Ne 
1.14 

Ar 
1.11 

Kr 
1.10 

Xe 
1.09 . 

The agreement with (14) is remarkable. The slight departure of R0/u for the 
lighter atoms from the universal value 1.09 predicted for inert gases can be ex­
plained by zero-point quantum effects. From measurements on the gas phase 
we have predicted the lattice constant of the crystal. 

Cohesive Energy 

The cohesive energy of inert gas crystals at absolute zero and at zero pres­
sure is obtained by substituting (12) and (14) in (11): 

U.,.(R) = 2Ne [(12.13)(~t- (1445)(~)"] , (15) 

and, at R = R0, 

utot(~) -(2.15)(4Ne) ' (16) 

the same for all inert gases. This is the calculated cohesive energy when the 
atoms are at rest. Quantum-mechanical corrections act to reduce the binding 
by 28, 10, 6, and 4 percent of Eq. (16) for Ne, Ar, Kr, and Xe, respectively. 
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The heavier the atom, the smaller the quantum correction. We can under­
stand the origin of the quantum correction by consideration of a simple model 
in which an atom is confined by fixed boundaries. If the particle has the quan­
tum wavelength A, where A is determined by the boundaries, then the particle 
has kinetic energy p2!2M = (h/A)2/2M with the de Broglie relation p = h!A for 
the connection between the momentum and the wavelength of a particle. On 
this model the quantum zero-point correction to the energy is inversely pro­
portional to the mass. The final calculated cohesive energies agree with the ex­
perimental values of Table 4 within 1 to 7 percent. 

One consequence of the quantum kinetic energy is that a cr.ystal of the iso­
tope Ne20 is observed to have a larger lattice constant than a crystal of Ne22

• The 
higher quantum kinetic energy of the lighter isotope expands the lattice because 
the kinetic energy is reduced by expansion. The observed lattice constants 
(extrapolated to absolute zero from 2.5 K) are Ne20

, 4.4644 A; Ne22
, 4.4559 A. 

IONIC CRYSTALS 

Ionic crystals are made up of positive and negative ions. The ionic bond 
results from the electrostatic interaction of oppositely charged ions. Two com­
mon crystal structures found for ionic crystals, the sodium chloride and the ce­
sium chloride structures, were shown in Chapter 1. 

The electronic configurations of all ions of a simple ionic crystal corre­
spond to closed electronic shells, as in the inert gas atoms. In lithium fluoride 
the configuration of the neutral atoms are, according to the periodic table in 
the front endpapers of this book, Li: ls22s, F: ls22s22p5

• The singly charged 
ions have the configurations Li+:ls2

, F-: ls22s22p6
, as for helium and neon, re­

spective]y. Inert gas atoms have closed shells, and the charge distributions are 
spherically symmetric. We expect that the charge distributions on each ion in 
an ionic crystal will have approximately spherical symmetry, with some distor­
tion near the region of contact with neighboring atoms. This picture is con­
firmed by x-ray studies of electron distributions (Fig. 7). 

A quick estimate suggests that we are not misguided in looking to electro­
static interactions for a large part of the binding energy of an ionic crystal. The 
distance between a positive ion and the nearest negative ion in crystalline 
sodium chloride is 2.81 X 10-8 em, and the attractive coulomb part of the 
potential energy of the two ions by themselves is 5.1 eV: This value may be 
compared (Fig. 8) with the experimental value o£7.9 eV per molecular unit for 
the lattice energy of crystalline NaCl with respect to separated Na + and Cl­
ions. We now calculate the energy more closely. 

Electrostatic or Madelung Energy 

The long-range interaction between ions with charge ±q is the electrostatic 
interaction ±q2/r, attractive between ions of opposite charge and repulsive 
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Figure 7 Electron density distribQtion in the 
base plane of NaCl, after x-ray studies by G. 
Schoknecht. The numbers on the contours give 
the relative electron concentration. 

Figure 8 The energy per molecule unit of a crys-
tal of sodium chloride is (7.9- 5.1 + 3.6) = 6.4 eV 
lower than the energy of separated neutral atoms. 
The lattice energy with respect to separated ions 
is 7.9 eV per molecule unit. All values on the fig-
ure are experimental. Values of the ionization en-
ergy are given in Table 5, and values of the elec-
tron affinity are given in Table 6. 

between ions of the same charge. The ions arrange themselves in whatever crys­
tal structure gives the strongest attractive interaction compatible with the repul­
sive interaction at short distances between ion cores. The repulsive interactions 
between ions with inert gas configurations are similar to those between inert gas 
atoms. The van der \Vaals part of the attractive interaction in ionic crystals 
makes a relatively small contribution to the cohesive energy in ionic crystals, of 
the order of 1 or 2 percent. The main contribution to the binding energy of ionic 
crystals is electrostatic and is called the Madelung energy. 



Table 6 Electron Bnities of negative ions 
The electron affinitv is oositive far a stable neeative ion. 

Atom Electron affinity enerw eV Atom Electron affinity energy eV 

Source: H. Hotop and W C. Lineberger, J. Phys. Chem. Ref. Data 4,539 (1975). 

If U, is the interaction energy between ions i and j ,  we define a sum U, 
which includes all interactions involving the ion i: 

u , = Z ' u ,  , 
/ 

(17) 

where the summation includes all ions exceptj = i. We suppose that U,, may be 
written as the sum of a central field repulsive potential of the form A expi-rlp), 
where A and p are empirical parameters, and a coulomb potential kq2/r. Thus 

where the + sign is taken for the like charges and the - sign for unlike charges. 
In SI units the coulomb interaction is ?q2/4mor; we write this section in CGS 
units in which the coulomb interaction is ?q2/r. 

The repulsive term describes the fact that each ion resists overlap with the 
electron distributions of neighboring ions. We treat the strength A and range p 
as constants to be determined from observed values of the lattice constant and 
compressibility; we have used the exponential form of the empirical repulsive 
potential rather than the R-l2 form used for the inert gases. The change is 
made because it may give a better representation of the repulsive interaction. 
For the ions, we do not have gas-phase data available to permit the indepen- 
dent determination of A and p. We note that p is a measure of the range of the 
repulsive interaction; when r = p, the repulsive interaction is reduced to e-' 
of the value at r = 0. 

In the NaCl strnctnre the value of U, does not depend on whether the 
reference ion i is a positive or a negative ion. The sum in (17) can he arranged 
to converge rapidly, so that its value will not depend on the site of the reference 
ion in the crystal, as long as it is not near the surface. We neglect surface effects 
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and write the total lattice energy U,,, of a crystal composed of N molecules or 
2N ions as U,, = NU,. Here N, rather than 2N, occurs because we must count 
each pair of interactions only once or each bond only once. The total lattice en- 
ergy is defined as the energy required to separate the crystal into individual -. 
ions at an infinite distance apart. 

It is convenient again to introduce quantities p, such that r, = p,R, where 
R is the nearest-neighbor separation in the crystal. If we include the repulsive 
interaction only among nearest neighbors, we have 

(CGS) 
q2 A exp-Wp) - - (nearest neighbors) 
R 

u,, = (19) 
+- - (otherwise). 
P,- R 

Thus 

where z is the number of nearest neighbors of any ion and 

(21) 

The sum should include the nearest-neighbor contribution, which is just z. 
The (2) sign is discussed just before (25). The value of the Madelung constant 
is of central importance in the theory of an ionic crystal. Methods for its calcu- 
lation are discussed next. 

At the equilibrium separation dU,,ldR = 0, so that 

This determines the equilibrium separation R, if the parameters p, A of the re- 
pulsive interaction are known. For SI, replace q2 by q2/4'7r€,. 

The total lattice energy of the crystal of 2N ions at their equilibrium sepa- 
ration R, may he written, using (20) and (23), as 

The term -Naq2/R, is the Madelung energy. We shall find that p is of the 
order of O.lRo, so that the repulsive interaction has a very short range. 



Figure 9 Line of ions of alternating signs, with &stance H between ions. 

Evaluation of the Madelung Constant 

The first calculation of the coulomb energy constant a was made by 
Madelung. A powerful general method for lattice sum calculations was devel- 
oped by Ewald and is developed in Appendix B. Computers are now used for 
the calculations. 

The definition of the Madelung constant a is, by (21), 

For (20) to give a stable crystal it is necessary that a be positive. If we take the 
reference ion as a negative charge, the plus sign will apply to positive ions and 
the minus sign to negative ions. 

An equivalent definition is 

where 5 is the distance of thejth ion from the reference ion and R is the near- 
est-neighbor distance. The value given for a will depend on whether it is 
defined in terms of the nearest-neighbor distance R or in terms of the lattice 
parameter a or in terms of some other relevant length. 

As an example, we compute the Madelung constant for the infinite line of 
ions of alternating sign in Fig. 9. Pick a negative ion as reference ion, and let R 
denote the &stance between adjacent ions. Then 

the factor 2 occurs because there are two ions, one to the right and one to the 
left, at equal distances r,. We sum this series by the expansion 

Thus the Madelung constant for the one-dimensional chainis a = 2 In 2. 
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Figure 10 Energy per molecule of KC1 clystal, showing Madelung (coulomb) and repulsive 
contribut~ons. 
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In three dimensions the series presents greater difficulty. It is not 
possible to write down the successive terms by a casual inspection. More 
important, the series will not converge unless the successive terms in the se- 
ries are arranged so that the contributions from the positive and negative 
terms nearly cancel. 

Typical values of the Madelung constant are listed below, based on unit 
charges and referred to the nearest-neighbor distance: 

- 
- 

- 
(2.4 x lo4) exp(-RI0.30) eV 

- 

- 

- 

1 2 3 4 s 6 R, in 1 ~ c m  

Equiliblium 
- position 

- 

- (2521R) eV 

- 

- 

- 

The Madelung and repulsive contributions to the binding of a KC1 crystal 
are shown in Fig. 10. Properties of alkali halide crystals having the sodium 
chloride structure are given in Table 7. The calculated values of the lattice en- 
ergy are in exceedingly good agreement with the observed values. 



Table 7 Properties of alkali halide crystals with the NaCl structure 

All values (except those in square brackets) at room temperature and atmospheric pressure, with no correction for changes in R, and U from 
absolute zero. Values in square brackets at absolute zero temperature and zero pressure, from private communication by L. Brewer. 

Nearest- Repulsive Repulsive 
neighbor Bulk modulus B,  energy range Lattice energy compared 

separatip in 10" dyn/cmP parameter parameter to free ions, in kcal/mol 

R, in A or loLo ~ / m %  %A, in 10F erg p, in A Experimental Calculated 

LiF 2.014 6.71 0.296 0.291 242.3[246.81 242.2 
LiCl 2.570 2.98 0.490 0.330 198.9[201.8] 192.9 
LiBr 2.751 2.38 0.591 0.340 189.8 181.0 
LiI 3.000 (1.71) 0.599 0.366 177.7 166.1 

NaF 2.317 4.65 0.641 0.290 214.4[217.91 215.2 
NaCl 2.820 2.40 1.05 0.321 182.6[185.3] 178.6 
NaBr 2.989 1.99 1.33 0.328 173.6[174.31 169.2 
NaI 3.237 1.51 1.58 0.345 163.2[162.3] 156.6 

KF 2.674 3.05 1.31 0.298 189.8[194.5] 189.1 
KC1 3.147 1.74 2.05 0.326 165.8[169.51 161.6 
KBr 3.298 1.48 2.30 0.336 158.5[159.3] 154.5 
KI 3.533 1.17 2.85 0.348 149.9[151.1] 144.5 

RbF 2.815 2.62 1.78 0.301 181.4 180.4 
RbCl 3.291 1.56 3.19 0.323 159.3 155.4 
RbBr 3.445 1.30 3.03 0.338 152.6 148.3 
RbI 3.671 1.06 3.99 0.348 144.9 139.6 

Data from various tables by M. P. Tosi, Solid State Physics 16, 1 (1964). 
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Figure 11 Calculatrd valence electron concentration in germanium. The numbers on the con- 
tours give the electron concentration per primitive cell, with four valence electrons per atom 
(eight electrons per primitive cell). Note the high concentration midway along the Ce-Ge bond, 
as we expect for covalent honding. (After J. R. Chelikowsband M. L. Cohen.) 

COVALENT CRYSTALS 

The covalent bond is the classical electron pair or homopolar bond of 
chemistry, particularly of organic chemistry. It is a strong bond: the bond be- 
tween two carbon atoms in diamond with respect to separated neutral atoms is 
comparable with the bond strength in ionic crystals. 

The covalent bond is usually formed from two electrons, one from each 
atom participating in the bond. The electrons forming the bond tend to be 
partly localized in the region between the two atoms joined by the bond. The 
spins of the two electrons in the bond are antiparallel. 

The covalent bond has strong directional properties (Fig. 11). Thus car- 
bon, silicon, and germanium have the diamond structure, with atoms joined to 
four nearest neighbors at tetrahedral angles, even though this arrangement 
gives a low filling of space, 0.34 of the available space, compared with 0.74 for 
a close-packed structure. The tetrahedral bond allows only four nearest neigb- 
bors, whereas a close-packed structure has 12. We should not overemphasize 
the similarity of the bonding of carbon and silicon. Carbon gives biology, but 
silicon gives geology and semiconductor technology. 

The binding of molecular hydrogen is a simple example of a covalent bond. 
The strongest binding (Fig. 12) occurs when the spins of the two electrons are 
antiparallel. The binding depends on the relative spin orientation not because 
there are strong magnetic dipole forces between the spins, but because the Pauli 
principle modifies the distribution of charge according to the spin orientation. 
This spin-dependent coulomb energy is called the exchange interaction. 
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Table 8 Fractional ionic character of bonds in binary crystals 

- ~ 

Fractional Fractional 
Clvstal ionic character Clystal ionic character 

Si 
Sic 
Ge 

Zno 
ZnS 
ZnSe 
ZnTe 

CdO 
CdS 
CdSe 
CdTe 

InP 
InAs 
InSb 

LiF 
NaCI 
RbF 

~ -- - - ~ ~ 

After J. C. Phillips, Bonds and bands in semiconductors. 

There is a continuous range of crystals between the ionic and the covalent 
limits. It is often important to estimate the extent a given bond is ionic or cova- 
lent. A semiempirical theory of the fractional ionic or covalent character of a 
bond in a dielectric crystal has been developed with considerable success by 
J. C. Phillips, Table 8. 

METALS 

Metals are characterized by high electrical conductivity, and a large num- 
ber of electrons in a metal are free to move about, usually one or two per atom. 
The electrons available to move about are called conduction electrons. The 
valence electrons of the atom become the conduction electrons of the metal. 

In some metals the interaction of the ion cores with the conduction elec- 
trons always makes a large contribution to the binding energy, but the charac- 
teristic feature of metallic binding is the lowering of the energy of the valence 
electrons in the metal as compared with the free atom. 

The binding energy of an alkali metal crystal is considerably less than that 
of an alkali halide c~ystal: the bond formed by a conduction electron is not very 
strong. The interatomic distances are relatively large in the alkali metals because 
the kinetic energy of the conduction electrons is lower at large interatomic 
distances. This leads to weak binding. Metals tend to crystallize in relatively 



Figure 13 The hydrogen difluoride ion HF4 
is stabilized by a hydrogen bond. The sketch 
is of an extreme model of the bond, extreme 
in the sense that the proton is shown bare of 
electrons 

close packed structures: hcp, fcc, bcc, and some other closely related structures, 
and not in loosely-packed structures such as diamond. 

In the transition metals there is additional binding from inner electron shells. 
Transition metals and the metals immediately following them in the periodic 
table have large d-elec~on shells and are characterized by high binding energy 

HYDROGEN BONDS 

Because neutral hydrogen has only one electron, it should form a covalent 
bond with only one other atom. I t  is known, however, that under certain condi- 
tions an atom of hydrogen is attracted by rather strong forces to two atoms, 
thus forming a hydrogen bond between them, with a bond energy of the 
order of 0.1 eV It  is believed that the hydrogen bond is largely ionic in charac- 
ter, being formed only between the most electronegative atoms, particularly F, 
0, and N. In  the extreme ionic form of the hydrogen bond, the hydrogen atom 
loses its electron to another atom in the molecule; the bare proton forms the 
hydrogen bond. The atoms adjacent to the proton are so close that more than 
two of them would get in each other's way; thus the hydrogen bond connects 
only twc atoms (Fig. 13). 

The hydrogen bond is an important part of the interaction between HzO 
molecules and is responsible together with the electrostatic attraction of the 
electric dipole moments for the strihng physical properties of water and ice. It 
is important in certain ferroelectric crystals and in DNA. 

ATOMIC RADII 

Distances between atoms in crystals can be measured very accurately by 
x-ray diffraction, often to 1 part in lo5. Can we say that the observed distance 
between atoms may be assigned partly to atom A and partly to atom B? Can a 
definite meaning be assigned to the radius of an atom or an ion, irrespective of 
the nature and composition of the crystal? 

Strictly, the answer is no. The charge distribution around an atom is not 
limited by a rigid spherical boundary. Nonetheless, the concept of an atomic 





radius is fruitful in predicting interatomic spacing. The existence and probable 
lattice constants of phases that have not yet been synthesized can be predicted 
from the additive properties of the atomic radii. Further, the electronic config- 
uration of the constituent atoms often can be inferred by comparison of mea- 
sured and predicted values of the lattice constants. 

To make predictions of lattice constants it is convenient to assign (Table 9) 
sets of self-consistent radii to various types of bonds: one set for ionic crystals 
with the constituent ions 6-coordinated in inert gas closed-shell configura- 
tions, another set for the ions in tetrahedrally-coordinated structures, and an- 
other set for 12-coordinated (close-packed) metals. 

The predicted self-consistent radii of the cation Na+ and the anion F- as 
given in Table 9 would lead to 0.97 k + 1.36 A = 2.33 A for the interatomic 
separation in the crystal NaF, as compared with the observed 2.32 A. This 
agreement is much better than if we assume atomic (neutral) configurations 
for Na and F, for this would lead to 2.58 A for the interatomic separation in the 
crystal. The latter value is $(n.n. distance in metallic Na+ interatomic distance 
in gaseous F,). 

The interatomic distance between C atoms in diamond is 1.54 A; one-half 
of this is 0.77 k. In silicon, which has the same crystal structure, one-half the 
interatomic distance is 1.17 A. In Sic each atom is surrounded by four atoms 
of the opposite kind. If we add the C and Si radii just given, we predict 1.94 k 
for the length of the C-Si bond, in fair agreement with the 1.89 observed for 
the bond length. This is the kind of agreement (a few percent) that we shall 
find in using tables of atomic radii. 

Ionic Crystal Radii 

Table 9 gives the ionic crystal radii in inert gas configurations for &fold 
coordination. The ionic radii can be used in conjunction with Table 10. Let us 

Table 10 Use of tbe standard radii of ions given in Table 9 
The interionic distance D is represented by D, = RC + RA + A,, for ionic c~ystals, 
where N is the coordination number of the cation (positive ion), R, and R, are the stan- 
dard radii of the cation and anion, and A, is a correction for coordination number. 
Room temperature. (After Zachariasen.) 
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consider BaTiO, with a lattice constant of 4.004 A at room temperature. Each 
Ba++ ion has 12 nearest 0-- ions, so that the coordination number is 12 and 
the correction A,, of Table 10 applies. If we suppose that the strncture is 
determined by the Ba-0 contacts, we have Dl,  = 1.35 + 1.40 + 0.19 = 2.94 A 
or a = 4.16 A; if the Ti-0 contact determines the structure, we have D, = 0.68 + 
1.40 = 2.08 or a = 4.16 A. The actual lattice constant is somewhat smaller 
than the estimates and may perhaps suggest that the bonding is not purely 
ionic, hut is partly covalent. 

ANALYSIS OF ELASTIC STRAINS 

We consider the elastic properties of a crystal viewed as a homogeneous 
continuous medium rather than as a periodic array of atoms. The continuum 
approximation is usually valid for elastic waves of wavelengths A longer than 
10-6cm, which means for frequencies below 10" or 10" Hz. Some of the ma- 
terial below looks complicated because of the unavoidable multiplicity of sub- 
scripts on the symbols. The basic physical ideas are simple: we use Hooke's law 
and Newton's second law. Hooke's law states that in an elastic solid the strain 
is directly proportional to the stress. The law applies to small strains only. We 
say that we are in the nonlinear region when the strains are so large that 
Hooke's law is no longer satisfied. 

We specify the strain in terms of the components e,, e,,, em, exY, e,, e,, 
which are defined below. We treat infinitesimal strains only. We shall not 
distinguish in our notation between isothermal (constant temperature) and 
adiabatic (constant entropy) deformations. The small differences between the 
isothermal and adiabatic elastic constants are not often of importance at room 
temperature and below. 

We imagine that three orthogonal vectors i r , j . ,  i of unit length are emhed- 
ded securely in the unstrained solid, as shown in Fig. 14. After a small uniform 
deformation of the solid has taken place, the axes are distorted in orientation 
and in length. In a uniform deformation each primitive cell of the crystal is 
deformed in the same way. The new axes x', y', z' may he written in terms of 
the old axes: 

The coefficients eaB define the deformation; they are dimensionless and have 
values < 1 if the strain is small. The original axes were of unit length, hut the 
new axes will not necessarily be of unit length. For example, 



Figure 14 Coordinate axes for the description of the state of strain; the 
orthogonal unit axes in the unstrained state (a) are deformed in the 
strained state (b). 

whence x' - 1 + E,  +.  . .. The fractional changes of length of the i, 9, and i 
axes are e,, eyy, E,,, respectively, to the first order. 

What is the effect of the deformation (26) on an atom originally at r = 

x i  + yf + zi? The origin is taken at some other atom. If the deformation 
is uniform, then after deformation the point will he at the position 
r' = xx' + yy' + zz'. This is obviously correct if we choose the 2 axis such that 
r = xi; then r' = xx' by definition of x'. The displacement R of the deforma- 
tion is defined by 

or, from (26), 

This may be written in a more general form by introducing u, u, w such that 
the displacement is given by 

If the deformation is nonuniform we must relate u, v, w to the local strains. We 
take the origin of r close to the region of interest; then comparison of (28) and 
(29) gives, by Taylor series expansion of R using R(0) = 0, 
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It is usual to work with coefficients enP rather than E , ~  We define the 
strain components e,, eYY, em by the relations 

using (30). The other strain components e,, e,, e, are defined in terms of the 
changes in angle between the axes: using (26) we may define 

We may replace the - signs by = signs if we neglect terms of order 2. The six 
dimensionless coefficients eaP(=epm) completely define the strain. 

Dilation 

The fractional increase of volume associated with a deformation is called 
the dilation. The dilation is negative for hydrostatic pressure. The unit cube of 
edges i, 9, i has a volume after deformation of 

by virtue of a well-hown result for the volume of a parallelepiped having 
edges x', y', z'. From (26) we have 

Products of two strain components have been neglected. The dilation 8 is then 
given by 

Stress Components 

The force acting on a unit area in the solid is defined as the stress. There 
are nine stress components: &, Xy, Xz, Yx, Yy, Y,, Z,, Zy ,  Zz. The capital letter 
indicates the direction of the force, and the subscript indicates the normal to 
the plane to which the force is applied. In Fig. 15 the stress component XI 
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ELASTIC COMPLIANCE AND STIFFNESS CONSTANTS 

Hooke's law states that for sufficiently small deformations the strain is di- 
rectly proportional to the stress, so that the strain components are linear func- 
tions of the stress components: 

The quantities S,,, Slz . . . are called elastic compliance constants or 
elastic constants; the quantities Cll, C,,, . . . are called the elastic stiffness 
constants or moduli of elasticity. The S's have the dimensions of [area]/ 
[force] or [volume]/[energyl. The CS have the dimensions of [forcel/[area] or 
[energyl/[volume]. 

Elastic Energy Density 

The 36 constants in (37) or in (38) may be reduced in number by several 
considerations. The elastic energy density U is a quadratic function of the 
strains, in the approximation of Hooke's law (recall the expression for the energy 
of a stretched spring). Thus we may write 

where the indices 1 through 6 are defined as: 

The C's are related to the C's of (38), as in (42) below. 



The stress components are found from the derivative of U with respect to 
the associated strain component. This result follows from the definition of 
potential energy. Consider the stress X, applied to one face of a unit cube, the 
opposite face being held at rest: 

au -au- - l 6  - & = - = - - C,,e, + 2 2 (CIB + Cpl)ep de, de, 8 =z 

Note that only the combination $(Ea8 + eBa) enters the stress-strain relations. 
It follows that the elastic stiffness constants are symmetrical: 

Thus the thirty-six elastic stiffness constants are reduced to twenty-one. 

Elastic Stiffness Constants of Cubic Crystab 

The number of independent elastic stiffness constants is reduced further 
if the crystal possesses symmetry elements. We now show that in cubic crystals 
there are only three independent stiffness constants. 

We assert that the elastic energy density of a cubic crystal is 

and that no other quadratic terns occur; that is, 

do not occur. 
The minimum symmetry requirement for a cubic structure is the exis- 

tence of four three-fold rotation axes. The axes are in the [ I l l ]  and equivalent 
directions (Fig. 17). The effect of a rotation of 2 ~ 1 3  about these four axes is to 
interchange the x, y, z axes according to the schemes 

according to the axis chosen. Under the first of these schemes, for example, 

and similarly for the other terms in parentheses in (43). Thus (43) is invariant 
under the operations considered. But each of the terms exhibited in (44) is 
odd in one or more indices. A rotation in the set (45) can be found which will 
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Figure 17 Rotation by 2 ~ 1 3  about the axis 
marked 3 changes r + y; y + z:  andz + x .  

change the sign of the term, because e,, = -e,(_y,, for example. Thus the 
terms (44) are not invariant under the required operations. 

It remains to venfy that the numetical factors in (43) are correct. By (41), 

aulae,, = & = Clle, + cl,(ey, + e,) . (46) 

The appearance of C,,e, agrees with (38). On further comparison, we see that 

C l 2 = C l 3 ;  c L 4 = C 1 5 = C 1 6 = o .  (47) 

Further, from (43), 

on comparison with (38) we have 

Thus from (43) we find that the array of values of the elastic stiffness 
constants is reduced for a cubic crystal to the matrix 



For cubic crystals the stiffness and compliance constants are related by 

These relations follow on evaluating the inverse matrix to (50) 

Bulk Modulus and Compressibility 

Consider the uniform dilation e, = e,  = e, = iS. For this deformation the 
energy density (43) of a cubic crystal is 

We may define the bulk modulus B by the relation 

which is equivalent to the definition -Vdp/dV. For a cubic crystal, 

The compressibility K is defined as K = 11B. Values of B and K are given in 
Table 3. 

ELASTIC WAVES IN CUBIC CRYSTALS 

By consideling as in Figs. 18 and 19 the forces acting on an element of 
volume in the crystal we obtain the equation of motion in the x direction 

azu a& a% ax, P - = - + -  +- ;  
at2 ax ay az 

here p is the density and u is the displacement in the x direction. There are 
similar equations for the y and 2 directions. From (38) and (50) it follows that 
for a cubic crystal 

here the x, y, z directions are parallel to the cube edges. Using the definitions 
(31) and (32) of the strain components we have 

where u, v ,  w are the components of the displacement R as defined by (29). 
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Figure 18 Cube of volume hr Ay hz acted 
on by a stress -&(XI on the face at r ,  and 

ax, 
&(x + h r )  = Z(x)  + hr on the parallel 

face at r + h. The net force is 

( 2 h r ) A y  hz. Other forces in the x direction 

anse from the vanahon across the cube of 
the stresses& and&, whch are not s h m  The 
net x component ofthe force on the cube is 

The force equals the mass of the cube times 
the component of the acceleration in the r 
direction. The mass is p 4.z Ay 4 s  and the 
acceleration is a2u/af?. 

Figure 19 If springs A and B are stretched equally. the black between them experiences no net 
force. This illustrates the fact that a uniform stress & in a solid does not give a net force on a "01- 
ume element If the spring at B is stretched more than the spring at A ,  the block between them 
will be accelerated by the farce X,(B) - &(A). 

The corresponding equations of motion for a2~/at2 and aZw/at2 are found 
directly from (57a) by symmetly: 

We now look for simple special solutions of these equations. 

Waves in the [loo] Direction 

One solution of (57a) is given by a longitudinal wave 

where u is the x component of the particle displacement. Both the wavevector 
and the particle motion are along the x cube edge. Here K =  27r/A is the 



wavevector and o = 2 . 7 ~  is the angular frequency. If we substitute (58) into 
(57a) we find 

thus the velocity olK of a longitudinal wave in the [loo] direction is 

Consider a transverse or shear wave with the wavevector along the x cube 
edge and with the particle displacement o in they direction: 

o = v, exp [ i ( k  - ot)] . (61) 

On substitution in (57h) this gives the dispersion relation 

thus the velocity o/K of a transverse wave in the [loo] direction is 

0, = (c&p)'" . (63) 

The identical velocity is obtained if the particle displacement is in the z direc- 
tion. Thus for K parallel to [I001 the two independent shear waves have equal 
velocities. This is not true for K in a general direction in the crystal. 

Waves in the [ I 1 0 1  Direction 

There is a special interest in waves that propagate in a face diagonal direc- 
tion of a cubic crystal, because the three elastic constants can be found simply 
from the three propagation velocities in this direction. 

Consider a shear wave that propagates in the xy plane with particle dis- 
placement w in the z direction 

whence (32c) gives 

independent of propagation direction in the plane. 
Consider other waves that propagate in the xy plane with particle motion 

in the xy plane: let 

u = u, exp [ i ( G  + Kyy - ot)] ; o = v, exp [ i ( Q  + Kyy - wt)] . (66) 

From (57a) and (57b), 
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This pair of equations has a particularly simple solution for a wave in the [I101 
direction, for which & = K,, = . The condition for a solution is that the 
determinant of the coefficients of u and o in (67) should equal zero: 

This equation has the roots 

The first root describes a longitudinal wave; the second root describes a 
1 shear wave. How do we determine the direction of paficle displacement? The 

j first root when substituted into the upper equation of (67) gives 

whence the displacement components satisfy u = o. Thus the particle dis- 
placement is along [I101 and parallel to the K vector (Fig. 20). The second 
root of (44) when substituted into the upper equation of (67) gives 

whence u = -0. The particle displacement is along [IiO] and perpendicular to 
the K vector. 

Selected values of the adiabatic elastic stiffness constants of cubic crystals 
at low temperatures and at room temperature are given in Table 11. Notice the 
general tendency for the elastic constants to decrease as the temperature is in- 
creased. Further values at room temperature alone are given in Table 12. 

, 
Wave in [lo01 direction Wave in L l l O I  direction Wave in [I111 direction 
L:C11 L : k(Cl1 + C12 + 2C&j L : $C,, + ZC12 + 4C4) 
T : C 4  TI : C, T:f(C, , -C12+ C,) 

T2:;(cll-cl%) 

Figure 20 Effective elastic constants for the three modes of elastic waves in the principal propa- 
gation directions in cubic crystals. The hvo transverse modes are degenerate for propagation in 
the [loo] and [ I l l ]  directions. 



Table 11 Adiabatic elastic stiffness constants of cubic crystals 
at low temperature and at room temperature 

The values given at 0 K were obtained by extrapolation of measurements carried out 
down to 4 K. The table was compiled with the assistance of Professor Charles S. Smith. 

Stiffness constants, in 10" dyne/cmZ (10"~lrn') 

Crystal GI CIS C, Temperature, K Density, g/crn3 

Table 12 Adiabatic elastic stiffness constants of several 
cubic crystals at room temperature or 300 K 

Stiffness constants, in 10" dynelcmP or 10" N/m2 

Diamond 
Na 
Li 
Ge 
Si 
Gash 
InSb 

MgO 
NaCl 
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There are three normal modes of wave motion in a clystal for a given 
magnitude and direction of the wavevector K. In general, the polarizations 
(directions of  article displacement) of these modes are not exactly parallel or 
perpendicular to K. In the special propagation directions [loo], [I l l ] ,  and 
[I101 of a cubic crystal two of the three modes for a given K are such that the 
 article motion is exactly transverse to K and in the third mode the motion 
is exactly longitudinal (parallel to K). The analysis is much simpler in these 
special directions than in general directions. 

SUMMARY 

Crystals of inert gas atoms are bound by the van der Waals interaction (in- 
duced dipole-dipole interaction), and this varies with distance as 1/R6. 

The repulsive interaction between atoms arises generally from the electro- 
static repulsion of overlapping charge distributions and the Pauli principle, 
which compels overlapping electrons of parallel spin to enter orbitals of 
higher enera.  . Ionic crystals are hound by the electrostatic attraction of charged ions of 
opposite sign. The electrostatic energy of a structure of 2N inns of charge 
?q is 

where a is the Madelung constant and R is the distance between nearest 
neighbors. . Metals are hound by the reduction in the hnetic energy of the valence elec- 
trons in the metal as compared with the free atom. 

A covalent bond is characterized by the overlap of charge distributions of 
antiparallel electron spin. The Pauli contribution to the repulsion is reduced 
for antiparallel spins, and this makes possible a greater degree of overlap. 
The overlapping electrons hind their associated ion cores by electrostatic 
attraction. 

Problems 

1. Quantum solid. In a qnantum solid the dominant repulsive energy is the zero- 
point energy of the atoms. Consider a crude one-dimensional model of crystalline 
He4 with each He atom confined to a line segment of length L. In the ground state 
the wave function within each segment is taken as a half wavelength of a free pari- 
cle. Find the zero-point kinetic energy per particle. 



2. Cohesive energy of bcc and fcc neon. Using the Lennard-Jones potential, cal- 
culate the ratio of the cohesive energies of neon in the bcc and fcc structures (Ans. 
0.958). The lattice sums for the bcc structures are 

3. Solid molecular hydrogen. For Hz one finds from measurements on the gas that 
the Lennard-Jones parameters are r = 50 X erg and u = 2.96 A. Find the 
cohesive energy in kJ per mole of H,; do the calculation for an fcc structure. 
Treat each H, molecule as a sphere. The observed value of the cohesive energy is 
0.751 kJ/mol, much less than we calculated; thus, quantum corrections must be 
very important. 

4. Possibility of ionic cryatab R+R-. Imagine a crystal that exploits for binding the 
coulomb attraction of the positive and negative ions of the same atom or molecule 
R. This is believed to occur with certain organic molecules, but it is not found 
when R is a single atom. Use the data in Tables 5 and 6 to evaluate the stability of 
such a form of Na in the NaCl structure relative to normal metallic sodium. Evalu- 
ate the energy at the observed interatomic distance in metallic sodium, and use 
0.78 eV as the electron affinity of Na. 

5. Linear ionic crystal. Consider a line of 2N ions of alternating charge ?q with a 
repulsive potential energy AIR" hehveen nearest neighbors. (a) Show that at the 
equilibrium separation 

(h) Let the clystal be compressed so that &+&(I - 6) .  Show that the work done 
in compressing a unit length of the crystal has the leading term $a2, where 

To obtain the results in SI, replace q2 by q 2 / 4 ~ 6 .  Note: We should not expect to ob- 
tain this result from the expression for U(Ro), hut we must use the complete expres- 
sion for U(R). 

6. Cubic ZnS structure. Using A and p from Table 7 and the Madelung constants 
given in the tea ,  calculate the cohesive energy of KC1 in the cubic ZnS structure 
described in Chapter 1. Compare with the value calculated for KC1 in the NaCl 
structure. 

7 .  Divalent ionic crystab. Barium oxide has the NaCl structure. Estimate the 
cohesive energies per molecule of the hypothetical crystals BaiO- and Batto-- 
referred to separated neutral atoms. The observed nearest-neighbor internuclear 
distance is & = 2.76 A; the first and second ionization potentials of Ba are 5.19 
and 9.96 eV; and the electron affinities of the first and second electrons added 
to the neutral oxygen atom are 1.5 and -9.0 eV. The first electron affinity of the 
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Undeformed body 7 

Tension 

, 

Figure 21 Youngs modulus is defined as stresslstrain for a ten- 
sile stress acting in one direction, with the specimen sides left Figure 22 This deformation is compounded 
free. Poisson's ratio is defined as (h/1o)/(SI/l) for this situation. from the two shears e, = -e,. 

neutral oxygen atom is the energy released in the reaction 0 + e + 0-. The sec- 
ond electmn affinity is the energy released in the reaction 0- f e + 0--. Which 
valence state do you predict will occur? Assume R,, is the same for both forms, and 
neglect the repulsive energy. 

8. Young's modulus and Poisson's ratio. A cubic crystal is subject to tension in the 
[loo] direction. Find expressions in terns of the elastic stiffnesses for Young's 
modulus and Poisson's ratio as defined in Fig. 21. 

9.  Longitudinal wave velocity. Show that the velocity of a longitudinal wave in the 
[ I l l ]  direction of a cubic crystal is given by o, = [$(C,,+ 2C,, + 4~,)/~]*. Hint: 
For such a wave u = v = w. Let u = u8'~'+yfzJAe~'"l, and use Eq. (57a). 

10. Transverse wave velocity. Show that the velocity of transverse waves in the [ I l l ]  
direction of a cubic crystal is given by v, = [+(c,,- C,, + C,lplE. Hint: See 
Problem 9. 

11.  Effective shear constant. Show that the shear constant :(c,, -CIS) in a cubic 
clystal is defined by setting e, = -eyy = $e and all other strains equal to zero, as in 
Fig. 22. Hint: Consider the energy density (43); look for a C' such that U = ;C'eP. 

12. Determinantal approach. It is known that an R-dimensional square matrix with 
all elements equal to unity has roots R and 0, with the R occurring once and the 
zero occurring R - 1 times. If all elements have the value p,  then the roots are 
Rp and 0. (a) Show that if the diagonal elements are q and all other elements are 
p, then there is one root equal to ( R  - l )p  + q and R - 1 roots equal to q - p. 
(b) Show from the elastic equation (57) for a wave in the [ I l l ]  direction of a cubic 
clystal that the determinantal equation which gives o2 as a function of K is 

where q = $P(c,, + 2C,) and p = $?(c,, + C,). This expresses the condition 
that three linear homogeneous algebraic equations for the three displacement 



components u, u, w have a solution. Use the result of part (a) to find the three 
roots of 0%; check with the results given for Problems 9 and 10. 

13. General propagation direction. (a) By substitution in (57) find the determinan- 
tal equation which expresses the condition that the displacement 

R ( ~ )  = [u,$ + yo? + ~ $ 1  exp li(K . r - wt)l 

be a solution of the elastic wave equations in a cubic crystal. (b) The sum of the 
roots of a determinantal equation is equal to the sum of the diagonal elements at<. 
Show from part (a) that the sum of the squares of the three elastic warre velocities 
in any direction in a cubic crystal is equal to (CII + 2C,)lp. Recall that v: = oz/lC. 

14. Stability criteria. The criterion that a cubic crystal with one atom in the primi- 
tive cell be stable against small homogeneous deformations is that the energy den- 
sity (43) be positive for all cornhinations of strain components. What restrictions 
are thereby imposed on the elastic stiffness constants? (In mathematical language 
the problem is to find the conditions that a real symmetric quadratic form should 
be positive definite. The solution is given in books on algebra; see also Korn and 
Korn, Mathematical Handbook, McGraw-Hill, 1961, Sec. 13.5-6.) Ans. C,, > 0, 
C,, > 0, Cf, - C t  > 0, and C,, + ZC,, > 0. For an example of the instability 
which results when C,, - C,,, see L. R. Testardi et al., Phys. Rev. Letters 15, 
250 (1965). 
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