# **Locomotion and Movement**

### 1 MOVEMENT AND LOCOMOTION

- Movement
   Significant feature of living beings
- o Locomotion Voluntary movements resulting in change in place/location.
- Locomotion is performed by organisms for variable reasons, e.a.,
  - Their habitats
  - Demand of situation like search of food, mate, breeding ground, escape from enemies/predators

### (2) TYPES OF MOVEMENT / LOCOMOTION

| Туре      | Structure                                                      | Examples and functions                                                                                           |
|-----------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Amoeboid  | Pseudopodia involve microfilaments and streaming of protoplasm | o Leucocytes, macrophages,<br>Amoeba                                                                             |
| Ciliary   | Cilia                                                          | Removing dust particles from trachea     Passage of ova through female reproductive tract                        |
| Flagellar | Flagella                                                       | Maintenance of water current in canal system of sponges     Locomotion in <i>Euglena</i> Swimming of spermatozoa |
| Muscular  | Muscles                                                        | <ul><li>Movement of limbs, jaws, tongue</li><li>Running, walking, climbing, flying</li></ul>                     |



- o In *Paramoecium* Cilia helps in movement of food through cytopharynx and in locomotion as well.
- o In Hydra - Tentacles are used for capturing of prey & also for locomotion.
- o Locomotion requires a perfect coordinated activity of muscular, skeletal and neural systems

# (3) MUSCLES

- o Muscle tissue: Mesodermal in origin
- o 40-50% of body weight of a human adult is contributed by muscles.
- Properties Excitability Contractility Extensibility Elasticity Classification
- o Many cardiac muscle cells assemble in **branching** pattern to form a cardiac muscle

# (4) SKELETAL MUSCLE FIBRES & ITS TYPES

 Skeletal muscles are closely associated with the skeletal components of the body Skeletal muscle

**Fascicles** 

Fascia

(collagenous

Many

Held by





|              | Types    |           |  |  |
|--------------|----------|-----------|--|--|
|              | Red      | White     |  |  |
| Myoglobin    | <b>^</b> | <b>\</b>  |  |  |
| Mitochondria | <b>↑</b> | <b>\</b>  |  |  |
| SR           | <b>V</b> | <b>^</b>  |  |  |
| Respiration  | Mainly   | Mainly    |  |  |
|              | aerobic  | anaerobic |  |  |

- Each muscle fibre have many parallelly arranged myofibrils / myofilaments.
  - Muscle fibre: Anatomical unit of muscle.
  - o Skeletal muscles are primarily involved in locomotion and change in body posture.

## (5) MYOFILAMENTS AND STRUCTURE OF CONTRACTILE PROTEINS

Each myofibril has dark and light bands due to actin and myosin distribution that establish striated appearance.

|             | Filament                          | Held by                              | Protein                               | Monomer                                             | Polymer                  | Typical                                                                          |
|-------------|-----------------------------------|--------------------------------------|---------------------------------------|-----------------------------------------------------|--------------------------|----------------------------------------------------------------------------------|
| ρι          | ∘ Thin/actin                      | Z-line<br>(bisect                    | Actin<br>(contractile)                | Globular<br>'G' - actin                             | Filamentous<br>'F'-actin | F-actin helically arranged                                                       |
| ight/l-band | Troponin Tropomyosin (2 strands)  | l-band)                              | Tropomyosin                           | _                                                   | _                        | <ul> <li>Tropomyosin run close to<br/>F-actin throughout its length</li> </ul>   |
| Ligh        | (2 strains)                       |                                      | Troponin                              | 3                                                   |                          | <ul> <li>Troponin distributed at regular<br/>intervals on tropomyosin</li> </ul> |
|             | F-actin (2 strands)               |                                      |                                       |                                                     |                          | <ul> <li>Mask active binding sites for<br/>myosin on actin filaments</li> </ul>  |
| ۱-band      | o Thick  Head Actin binding sites | M-line<br>(thin fibrous<br>membrane) | (contractile) (MM) (Heavy)- Short arm | nort arm regular distance and angle from each other |                          |                                                                                  |
| Dark/A      | Cross arm                         |                                      |                                       |                                                     | (Light)                  | polymerised myosin filament and is known as <u>cross arm</u> .                   |
|             | -                                 |                                      |                                       |                                                     |                          | 40 <u>51093 41111</u> .                                                          |

#### **Basis** Location → 1. Skeletal of muscles 2. Visceral → 3. Cardiac

**Appearance** Striated Non-striated/smooth Striated

Regulation Voluntary Involuntary Involuntary

# Example

- Muscles of limbs
- Inner walls of visceral organs
- Muscles of heart



 Contraction of muscle fibre takes place by the sliding of the thin filaments over the thick filaments.

A motor neuron alongwith the muscle fibres connected to it constitute a motor unit.

CNS via Motor neuron Neurotransmitter Acetylcholine

At Neuromuscular Junction / Motor end plate, action potential is generated in sarcolemma that causes release of Ca<sup>+2</sup> in sarcoplasm from SR leading to <u>Ca+2</u> increase in sarcoplasm

Ca<sup>+2</sup> binds to troponin subunit, change in its confirmation, unmask active site for myosin binding on actin filament

Energised myosin (Myosin - ADP + Pi) binds to actin

### Cross bridge = Actin-myosin-ADP + Pi

Result Shortening/ contraction

- o Pull thin filaments toward centre
- Pull Z-line
- Length of I-band reduced
- of sarcomere o Length of A-band retained

ADP+Pi released from myosin head

New ATP binds to myosin head

Cross bridge broken

ATP hydrolysis on myosin head

Cycle repeats

Process will continue till Ca2+ pumped back to sarcoplasmic cisternae

Z-line return to original position

- Reaction time of fibres vary in different muscles.
- Repeated activity of muscle leads to accumulation of lactic acid due to anaerobic breakdown of glycogen in them, causing fatique.

- o Globular head is active ATPase enzyme and has binding sites for ATP and active sites for actin.
- Arranged alternately throughout the length of myofibrils o Thin filaments make I/Isotropic band – actin Thick filaments make A/Anisotropic band – actin + myosin parallel to each other and to longitudinal axis of myofibrils
- o Sarcomere: Functional unit of contraction between 2 'Z' lines (elastic fibres) = 1 A-band + 2 half I-band
- o H-zone is non overlapped part of thick filament by thin filaments.

## (7) SKELETAL SYSTEM

- o This system has significant role in movement shown by the body.
- Framework of 206 bones & few cartilages
- Principle division Appendicular skeleton Axial skeleton

Axial skeleton (Bones-80)

| Z line                   | AI                                      | oand                                    | I band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| \$2000 and               |                                         | 200000000                               | 92555555<br>92555555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ** 600<br>*** 600<br>*** |                                         | 000000000000000000000000000000000000000 | 1250as<br>1480311111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| #K 90%                   | 200000000000000000000000000000000000000 | 200000000000000000000000000000000000000 | And the second s |
|                          | H 2                                     | zone                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                          | Sarc                                    | omere                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Bones distributed along main axis                                                                                                                                                                                            |                                    |                                                                                                                                                                                                                                                                                                             |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Structure                                                                                                                                                                                                                    | Bones included                     | No.                                                                                                                                                                                                                                                                                                         | Name of bones                                                                | Typical feature or basic function                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Skull Frontal bone Parietal bone Sphenoid bone                                                                                                                                                                               | Cranium                            | 8                                                                                                                                                                                                                                                                                                           | 1- Frontal 1- Occipital<br>2- Parietal 1- Ethmoid<br>2- Temporal 1- Sphenoid | - Protect brain - Articulates with superior region of vertebral column by 2 occipital condyles (Dicondylic skull)                                                                                                                                                                                                                                                                                                                                                 |
| Ethmoid bone<br>Lacrimal bone<br>Nasal bone                                                                                                                                                                                  | Facial                             | 14                                                                                                                                                                                                                                                                                                          | 2- Nasal 1- Mandible<br>2- Lacrimal 2- Maxilla<br>2- Zygomatic 5- others     | - Form front part of skull                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Zygomatic bone                                                                                                                                                                                                               | Hyoid                              | 1                                                                                                                                                                                                                                                                                                           | 1- U-shaped                                                                  | - Present at the base of buccal cavity                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Maxilla Mandible Hyoid bone Occipital Temporal Occipital bone bone condyle                                                                                                                                                   | Ear<br>ossicles                    | 6                                                                                                                                                                                                                                                                                                           | 2-Malleus<br>2-Incus<br>2-Stapes                                             | - Present in the middle ear                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Vertebral Column  Cervical vertebra (serially arranged units)  Intervertebral disc Sacrum Coccyx  Cocyx  Cervical Vertebrae (serially arranged units)  7- Cervical 12- Thoracic 5- Lumbar 1- Sacral-Fused 1- Coccygeal-Fused |                                    | - Main framework of trunk - Protects spinal cord - Supports head - Point of attachment of ribs and muscles of back   1st vertebra is atlas that articulates with occipital condyles.  Seven cervical vertebrae exist in almost all mammals.  Neural canal of vertebrae - site from where spinal cord passes |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Sternum Chest bone                                                                                                                                                                                                           |                                    | 1                                                                                                                                                                                                                                                                                                           | 1-Flat bone                                                                  | - On ventral, midline of thorax                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ribs  True ribs 5 6 7 Ribs  False 9 ribs 10 Floating ribs 1,12                                                                                                                                                               | True ribs False ribs Floating ribs | 24                                                                                                                                                                                                                                                                                                          | 14-Vertebrosternal 6- Vertebrochondral 4- Vertebral                          | - Attach dorsally to vertebrae and ventrally to sternum with <a href="https://www.hyaline.cartilage">hyaline cartilage</a> - Not directly attached to sternum but to 7th rib with <a href="hyaline cartilage">hyaline cartilage</a> (8th to 10th pair) - Not connected ventrally (11th and 12th pair)  O All ribs are <a href="bicephalic thin flat bones">bice</a> , they have 2 articulating ends on dorsal side O Vertebral column + Sternum + Ribs = Rib Cage |



- Girdles helps in the articulation of limbs with axial skeleton
- Scapula, a dorsal triangular flat bone, have elevated ridge/spine, expanded to form <u>acromion process</u> that articulates with clavicle
- o <u>Glenoid cavity</u> in scapula articulates with humerus head to form shoulder joint
- Acetabulum, formed by fusion of ilium, ischium and pubis, articulates with femur to form hip joint
- 2 halves of pelvic girdle meet ventrally to form <u>pubic</u> <u>symphysis</u> containing <u>fibrous cartilage</u>

# (9) JOINTS

- o They are essential for all types of movements involving bony parts of the body.
- Point of contact between bones or bones and cartilages.
- o Force generated by muscle is used to carry out movement through joint, where joint acts as fulcrum.
- Types of joints (Basis Major structural forms)

| Types         | Bones joined by                              | Movement                                                                        | Examples                                                                                                                                                                          |
|---------------|----------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fibrous       | Dense fibrous connective tissue              | Do not allow any movement                                                       | Flat skull bones fused end to end<br>via <u>sutures</u> to form <u>cranium</u>                                                                                                    |
| Cartilaginous | Fibrous cartilage                            | Limited movement                                                                | Adjacent vertebrae                                                                                                                                                                |
| Synovial      | Fluid filled synovial cavity between 2 bones | Considerable<br>movement, helps in<br>locomotion and<br>many other<br>movements | Humerus & pectoral girdle (Ball and socket joint) Knee joint (Hinge joint) Atlas & axis (Pivot joint) Between carpals (Gliding joint) Carpal & metacarpal of thumb (Saddle joint) |

# **10 DISORDERS**

| Disease            | Causes                                   | Impact                                                                                                       |
|--------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Myasthenia gravis  | Autoimmunity                             | <ul><li>Affect neuromuscular junction</li><li>Fatigue, weakening and paralysis of skeletal muscles</li></ul> |
| Muscular dystrophy | Genetic                                  | o Progressive degeneration of skeletal muscles                                                               |
| Tetany             | Low Ca <sup>+2</sup> in body fluid       | o Rapid spasms in muscle (wild contractions)                                                                 |
| Arthritis          |                                          | o Inflammation of joints                                                                                     |
| Gout               | Accumulation of uric acid crystals       | o Inflammation of joints                                                                                     |
| Osteoporosis       | Age related Decreased levels of estrogen | o Decreased bone mass, increased chances of fracture                                                         |