8

(a) Ni-Cd cell

PRACTICE PAPER

1 im	e allowed: 45 minutes	5		Maximum Marks: 200							
Gene	eral Instructions: Same	as Practice Paper-1.									
Choo	ose the correct option.										
1.	The catalyst used in th	ne contact process of sulp	huric acid manufacture is								
	(a) oxides of nitrogen	(b) nickel	(c) vanadium pentoxid	e (d) manganese dioxide							
2.	The rate of a reaction	can be increased in gener	al by all the factors except								
	(a) using a catalyst.	8	(b) increasing the temp	erature.							
	(c) increasing activation	n energy.	(d) increasing the conce	(d) increasing the concentration of reactants.							
3.	On increasing dilution	n, the specific conductanc	e								
	(a) increases	(b) decreases	(c) remains constant	(d) none of these							
4.		Which of the following statements is false?									
		(a) Units of atmospheric pressure and osmotic pressure are the same.									
	(b) In reverse osmosis, solvent molecules move through a semipermeable membrane from a region of lower concentration of solute to a region of higher concentration.										
		depression constant deper									
		f vapour pressure, is a dim									
5.			e centred unit cell is								
	(a) 6	(b) 4	(c) 10	(d) 12							
6.		omplete in 2 hours and 75	% complete in 4 hours, then	the order of the reaction is							
	(a) Zero	(b) 1	(c) 2	(d) 3							
7.	When lead storage bat	tery is discharged									
	(a) SO ₂ is evolved.		(b) PbSO ₄ is consumed.								
	(c) Lead is formed.		(d) Sulphuric acid is consumed.								
8.	Which one of the follo	wing is a covalent solid?									
	(a) Fe	(b) Diamond	(c) Cu	(d) NaCl							
9.			_	y. The total vapour pressure of							
		nixing 3 moles of P and 2									
	(a) 72 torr	(b) 140 torr	(c) 68 torr	(d) 20 torr							
10.			th CuSO ₄ solution it will libe								
	(a) 63.5 g of Cu	(b) 31.75 g of Cu	(c) 96500 g of Cu	(d) 100 g of Cu							
11.	A device which conver	rts energy of combustion	of fuels like hydrogen and n	nethane, directly into electrical							

c) electrolytic cell (d) none of these

(b) fuel cell

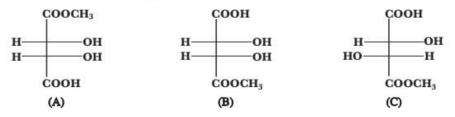
12.	A metallic crystal has the	bcc type staking pattern. W	Vhat percentage of volume o	f this lattice is empty space? (d) 74%							
13.	A sample of hard water was found to contain $40~\rm mg$ of $\rm MgSO_4$ in $10~\rm kg$ of sample. The ppm of $\rm MgSO_4$ in the sample will be										
	(a) 2 ppm	(b) 4 ppm	(c) 8 ppm	(d) 15 ppm							
14.	Kohlrausch's law helps i (<i>a</i>) ionic product of water (<i>c</i>) degree of dissociation		(b) solubility of sparingly soluble salt(d) all of these								
15.	For a reaction, $3A \longrightarrow 2B$, the rate of reaction $+\frac{d}{dt}[B]$ is equal to										
	(a) $-\frac{3}{2}\frac{d[A]}{dt}$ Enzymes are		$(c) -\frac{1}{3} \frac{d[A]}{dt}$	$(d) + 2\frac{d[A]}{dt}$							
		(b) proteins	(c) inorganic compounds	(d) moulds							
17.	Ethylene diammine is a (<i>a</i>) monodentate ligand	(b) bidentate ligand	(e) hexadentate ligand	(d) tridentate ligand							
18.			$^{2} 2p^{6} 3s^{2} 3p^{2}$. What is the atom	omic number of the element							
	which is just below the a	(b) 34	(c) 36	(d) 49							
19.			lytic oxidation of ammonia.								
10.	by the oxidation of two n	[[[[[[[[[[[[[[[[[[[[ly the dataution of unimonia.	The motes of two produced							
	(a) 2	(b) 3	(c) 4	(d) 6							
20.	Which of the following is a best example of S _N 2 reaction?										
	$(a) CH_3Br + OH^- \longrightarrow CH_3OH + Br^-$										
	(b) $(CH_3)_2CHBr + OH^- \longrightarrow (CH_3)_2CHOH + Br^-$										
	(e) $CH_3CH_2OH \xrightarrow{-H_2O} CH_2 = CH_2$										
	$(d) (CH_3)_3 C - Br + OH^{-1}$	\longrightarrow (CH ₃) ₃ C \longrightarrow OH + B	sr ⁻								
21.	The process of concentra	ating Ag and Au ores is bas	ed upon their solubility in								
	$(a) \text{ NH}_3$	(b) HNO ₃	(c) HCl	(d) KCN							
22.	The equilibrium $\operatorname{Cr}_2 \operatorname{O}_7^{2-}$ (a) an acidic medium (c) a neutral medium	==== 2CrO ₄ ²⁻ is shifted to	(b) a basic medium (d) all of these								
23.	Which of the following is	s π-acid ligand?									
	(a) NH ₃	(b) CO	(c) F	(d) ethylenediammine							
24.	Among the following our	termost configuration of tr	ansition metals, which one	shows the highest oxidation							
	states? (a) $3d^3 4s^2$	(b) $3d^5 4s^1$	(c) $3d^5 4s^2$	$(d) \ 3d^6 \ 4s^2$							
25.	The compound which do (a) [Cu(NH ₃) ₄]Cl ₉	bes not show paramagnetism (b) $[Ag(NH_3)_2]Cl$	m is (c) NO	(d) NO ₉							
26.	Bleaching action of SO ₂		. ,								
	(a) reducing property	(b) oxidising property	(c) basic property	(d) acidic property							
27.	Two isomeric alkenes A ar	nd B having molecular form	ula C5H9Cl on adding hydrog	gen, A gives optically inactive							
	compound while B gives a chiral compound. The two isomers are										
		ne and B is 4-chloro-pent-2									
	(b) A is 4-chloro-pent-1-ene and B is 2-chloro-pent-2-ene (c) A is 3-chloro-pent-2-ene and B is 2-chloro-pent-2-ene										
	(d) A is 1-chloro-pent-1-ene and B is 5-chloro-pent-1-ene										

	is called									
	(a) Swarts reaction	(b) Finkelstein reaction	(c)	Sandmeyer reaction	(d) Wurtz reaction					
29.	The number of unpaired electrons in ferrous ion $(Z = 26)$ is									
	(a) 3	(b) 2	(c)	4	(d) 5					
30.	In the extraction of copp	er from its sulphide ore, th	ne n	netal is finally obtained	by the reduction of cuprous					
	oxide with:									
	(a) iron (II) sulphide			carbon monoxide						
	(c) copper (I) sulphide		(d)	sulphur dioxide						
31.	Which of the following n	nolecules will form linear p	oly	meric structure due to h	ydrogen bonding?					
	(a) HCl	(b) HF	(c)	H_2O	(d) NH ₃					
32.	32. In which reaction an aromatic aldehyde is treated with acetic anhydride in presence of correspondence of the acid to give an unsaturated aromatic acid?									
	(a) Friedel crafts reaction		(b)	Perkins reaction						
	(c) Wurtz reation		(d)	None of these						
33.	Which of the following confirms the presence of five —OH groups in glucose?									
	(a) Reaction with HI		(b)	Reaction with acetic an	hydride					
	(c) Reaction with hydroxy	lamine	(d)	Reaction with hydroger	n cyanide					
34.	Terylene is:									
	(a) Polyamide		(b)	Polyethylene						
	(c) Polyvinyl chloride		(d) Polyester							
35.	The compound N-ethyl-N-methylpropanamine forms non-superimposable mirror image but does r show any optical activity. This is due to:									
	(a) absence of a chiral N a		(b) presence of a chiral N atom.							
	(c) presence of a lone pair	r on N atom.	(d)	rapid flipping of one fo	rm into another.					
36.	The reaction of CH2-CI	H ₂ with RMgX leads to the	fori	mation of						
	0									
	(a) RCH(OH)R	(b) RCH(OH)CH ₃	(c)	R ₂ CHCH ₂ OH	(d) RCH ₂ CH ₂ OH					
27			(0)	1120110112011	(6) 101120112011					
31.	Which of the following is (a) Glucose	(b) Sucrose	(c)	Fructose	(d) None of these					
38.	0 0 1	unds the most susceptible t		-	, , ,					
	(a) MeCOCl	(b) MeCHO		MeCOOMe	(d) MeCOOCOMe					
39.	-	chloride with Pd and BaS		•	/// N					
	(a) Benzyl chloride	(b) Benzaldehyde	(c)	Benzoic acid	(d) None of the above					
40.	Bactericidal antibiotic ar	nong the following is								
	(a) ofloxacin	(b) erythromycin	(c)	chloramphenicol	(d) tetracycline					
41.	The repeating unit of PV	C is:								
	(a) Ethylene		(b)	Tetrachloroethylene						
	(c) Vinyl chloride		(d)	Acrylonitrile						
42.	The IUPAC name of H	o o is								
	(a) 5-formylhex-2-en-3-	one	(b)	5-methyl-4-oxohex-2-	-en–5–al					
	(c) 3-keto-2-methylhex-		(d) 3-keto-2-methylhex-4-enal							
	•			-						

28. The reaction involved in the formation of fluoromethane from methyl bromide in presence of silver fluoride

43. Match the medicines given in Column I with their use given in Column II.

Column I	Column II				
A. Ranitidine	(i) Tranquilizer				
B. Furacine	(ii) Antibiotic				
C. Phenelzine	(iii) Antihistamine				
D. Chloramphenicol	(iv) Antiseptic				


(a) A-(iii), B-(iv), C-(i), D-(ii)

(b) A-(iii), B-(iv), C-(ii), D-(i)

(c) A-(iv), B-(i), C-(ii), D-(iii)

- (d) A-(i), B-(ii), C-(iii), D-(iv)
- 44. Phenol on heating with chloroform and conc. KOH gives
 - (a) salicylic acid
- (b) salicylaldehyde
- (c) benzaldehyde
- (d) chlorobenzene
- 45. Which of these when passed over heated Cu at 573 K forms an alkene?
 - (a) An alkane
- (b) An alkyne
- (c) Secondary alcohol
- (d) Tertiary alcohol

46. The correct statement about the compounds A, B and C is

(a) A and B are identical.

(b) A and B are diasteromers.

(c) A and C are enantiomers.

- (d) A and B are enantiomers.
- 47. Which of the following will not be soluble in sodium bicarbonate?
 - (a) 2, 4, 6-trinitrophenol

(b) Benzoic acid

(c) o-Nitrophenol

- (d) Benzene sulphonic acid
- 48. Among the compounds C3H7NH2, NH3, CH3NH2, and C6H5NH2, the least basic is
 - (a) C₃H₇NH₉
- (b) NH₃
- (c) CH₃NH₉
- (d) C₆H₅NH₂
- 49. Number of structural isomers possible from the molecular formula C₃H₉N is
 - (a) 4

(b) 3

(c) 2

- (d) 5
- 50. Given below are two statements labelled as Statement P and Statement Q:

Statement P: Most of the synthetic polymers are not biodegradable.

Statement Q: Polymerisation process induced toxic character in organic molecules.

(a) P is true, but Q is false

(b) P is false, but Q is true

(c) Both P and Q are true

(d) Both P and Q are false

Answers

PRACTICE PAPER — 8													
1.	(c)	2.	(c)	3.	(b)	4.	(b)	5.	(b)	6.	(b)	7.	(d)
8.	(b)	9.	(a)	10.	(b)	11.	(b)	12.	(b)	13.	(b)	14.	(d)
15.	(b)	16.	(b)	17.	(b)	18.	(a)	19.	(a)	20.	(a)	21.	(d)
22.	(b)	23.	(b)	24.	(c)	25.	(b)	26.	(a)	27.	(c)	28.	(a)
29.	(c)	30.	(c)	31.	(b)	32.	(b)	33.	(b)	34.	(d)	35.	(d)
36.	(d)	37.	(c)	38.	(a)	39.	(b)	40.	(a)	41.	(c)	42.	(d)
43.	(a)	44.	(b)	45.	(d)	46.	(d)	47.	(c)	48.	(d)	49.	(a)
50.	(a)												

Solutions

PRACTICE PAPER - 8

 (e) Contact process for the manufacture of sulphuric acid.

$$2SO_2(g) + O_2(g) \xrightarrow{V_2O_5(s)/Pr(s)} 2SO_3(g)$$

- (c) Activation energy is inversely proportional to the rate of the reaction. For fast reactions, activation energy is low whereas for slow reactions, activation energy is high.
- (b) The total of atoms in fcc = 4, and number of octahedral voids = number of atoms.
- 6. (b) For a first order reaction, T_{75%} = 2T_{50%}
 ∴ According to the given condition in question, the reaction is of first order.
- 7. (d) The cell reactions when the battery is in use(discharged) are:

At Anode:
$$Pb(s) + SO_4^{2-}(aq) \longrightarrow PbSO_4(s) + 2e^{-}$$

At Cathode:

$$Pb(s) + SO_4^{2-}(aq) \longrightarrow PbSO_4(s) + 2e^{-}$$

The overall reaction is:

$$Pb(s) + PbO_2(s) + 2H_2SO_4(aq)$$

$$\longrightarrow 2PbSO_4(s) + 2H_9O(l)$$

Thus, sulphuric acid is consumed.

- 8. (b) Covalent solids form crystals which can be viewed as a single giant molecule made up of an almost endless number of covalent bonds. Out of the given solids, diamond is an example of covalent solid while Fe and Cu is a metallic solid, and NaCl is an ionic solid.
- 9. (a) By Raoult's law,

$$\begin{split} &P_T = p_P^{\,\text{o}} \chi_P + p_Q^{\,\text{o}} \chi_Q \\ &P_T = 80 \times \frac{3}{5} + 60 \times \frac{2}{5} = 48 + 24 = 72 \text{ torr} \end{split}$$

10. (b) At cathode, Cu²⁺ (aq) + 2e⁻ → Cu (s)
 1 mole of CuSO₄ required = 2 × 96500 coulomb of electricity.

or, 2×96500 C electricity gives 63.5 g Cu $\therefore 96500$ C will give $= \frac{63.5}{2} = 31.75$ g of Cu

11. (b) Fuel cell is a galvanic cell in which chemical

- (b) Specific Conductivity decreases with a decrease in concentration or increase in dilution. This is because the number of ions per unit volume that carry current in a solution decreases with increase in dilution.
- 4. (b) The correct statement is, In reverse osmosis, solvent molecules move through a semipermeable membrane from a region of higher concentration of solute to a region of lower concentration.
- 15. (b) The instantaneous rate is given as

$$\frac{-1}{3} \frac{d[A]}{dt} = \frac{+1}{2} \frac{d[B]}{dt}$$
$$\Rightarrow \frac{d[B]}{dt} = \frac{-2}{3} \frac{d[A]}{dt}$$

- 16. (b) Enzymes are complex nitrogenous organic compounds produced in living cells of plants and animals. Chemically, enzymes are globular proteins with high molar mass ranging from 15,000 to 1,000,000 g mol⁻¹.
- (b) Ethylene diammine (NH₂CH₂CH₂NH₂) is a bidentate ligand as it contains 2 donor atoms.
- 18. (a) The given element with electronic configuration 1s²2s²2p⁶3s²3p² is silicon having atomic number 14. Therefore, the element just below this will be Germanium having atomic number 32 and electronic configuration [Ar] 3d¹⁰4s²4p².
- 19. (a) $4NH_3 + 5O_2 \xrightarrow{\Delta} 4NO + 6H_2O$ or $2NH_3 + \frac{5}{2}O_2 \xrightarrow{\Delta} 2NO + 3H_2O$
- 20. (a) The order of reactivity of alkyl halide towards S_N2 mechanism follows the order:

 ${
m CH_3Br}$ > $({
m CH_3})_2{
m CHBr}$ > $({
m CH_3})_3{
m C}$ —Br Thus, reaction (a) is a best example of ${
m S_N}2$ reaction.

- 21. (d) Native silver or gold is treated with a dilute solution (0.5%) of sodium or potassium cyanide, they go into the solution forming a soluble complex. From this soluble complex, metal is precipitated by adding zinc.
- 22. (b) $Cr_2O_7^{2-} + 2OH^- \Longrightarrow 2CrO_4^{2-} + H_2O$ Equilibrium can be shifted to right, in an alkaline (or basic) medium.

energy from combustion of fuels like methanol, methane, hydrogen, etc. is converted into electrical energy. The most successful fuel cell uses the reaction of hydrogen with oxygen to form water.

- **12.** (b) Packing efficiency in *bcc* is 68%. Hence empty space = 100 68 = 32%
- 13. (b) $\frac{\text{ppm of solute}}{10^6} = \frac{\text{Weight of solute}}{\text{Weight of solution}}$ $\frac{\text{ppm of MgSO}_4}{10^6} = \frac{40 \text{ mg}}{10 \text{ kg}}$ $\text{ppm of MgSO}_4 = \frac{40 \times 10^{-3} \text{ g}}{10 \times 10^3 \text{ g}} \times 10^6 = 4 \text{ ppm}$
- 14. (d) Kohlrausch's law helps in determining ionic product of water, solubility of sparingly soluble salts, degree of dissociation of weak electrolytes and molar or equivalent conductance at infinite dilution of weak electrolytes.
- 27. (c)

$$H_3C$$
— CH_2 — $C=CH$ — CH_3
 Cl
 3 -chloro-pent-2-ene
 A'
 CH_3 — CH_2 — CH — CH_3
 CH_3 — CH_2 — CH — CH_3
 CH_3 — CH_2 — CH — CH_3
 CH_3 — CH_4 — CH_5
 CH_5 — CH_5
 CH_5 — CH_6
 CH_6
 CH_7 — CH_7
 CH

29. (c) Fe (Z = 26): $1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$ Fe²⁺ (Ferrous ion): $1s^2 2s^2 2p^6 3s^2 3p^6 3d^6$

Number of unpaired electrons = 4.

30. (c) In the extraction of copper from its sulphide ore, the metal is finally obtained by the reduction of cuprous oxide with copper(I) sulphide.

 (b) In Perkins reaction, an aromatic aldehyde undergoes condensation with acid anhydride

- 23. (b) CO is π-acid ligand. It is a good pi acceptor (lewis acid) due to presence of empty pi orbitals and a good sigma donor (lewis acid).
- **24.** (c) $_{25}$ Mn with electronic configuration, [Ar] $3d^5 4s^2$, has the highest oxidation state of +7.
- 25. (b) The electronic configuration of Ag in the ground and excited state is [Kr]4d¹⁰5s¹ and [Kr]4d¹⁰ respectively. Hence, the number of unpaired electron is 0.
- 26. (a) SO₂ bleaches coloured material by reduction and hence bleaching is temporary since when the bleached colouress material is exposed to air, it gets oxidised and the colour is restored.

$$SO_2 + H_2O \longrightarrow H_2SO_4 + 2H$$

Coloured material

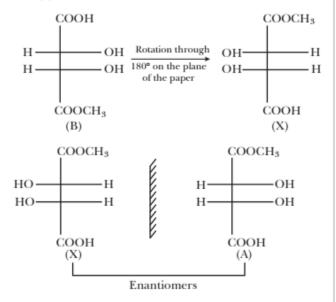
- **35.** (*d*) Flipping takes place rapidly and therefore, isolation of the two forms is not possible.
- **36.** (d)

$$RMgX + CH_2 \xrightarrow{CH_2} CH_2 \xrightarrow{Dry \text{ ether}} RCH_2CH_2OMgX$$

- 37. (c) Fructose belongs to D-series and is a laevorotatory compound. It is appropriately written as D-(-)-fructose. It is also called, levulose, after its laevorotatory property of rotating plane polarised light to the left.
- 38. (a) Since chloride ion is a very good leaving group and therefore MeCOCl is the most susceptible to nucleophilic attack at the carbonyl group.
- **39.** (b)

$$C_6H_5COCl + H_2 \xrightarrow{Pd-BaSO_4} C_6H_5CHO + HCl$$
Benzoyl chloride reduction

40. (a) Ofloxacin is a bactericidal antibiotic while others are bacteriostatic i.e., suppress the multiplication of bacteria. in presence of a base (i.e., sodium salt of the acid from which the anhydride is derived) to form α , β -unsaturated acid.


 (b) Glucose gives pentaacetate derivative on acetylation with acetic anhydride. This confirms the presence of five —OH groups.

$$\begin{array}{c|cccc} CHO & CHO & O \\ | & | & | & | \\ (CHOH)_4 & \xrightarrow{(CH_3CO)_2O} & (CH_O-C_-CH_3)_4 \\ | & | & | & | \\ CH_2OH & CH_2-O-C_-CH_3 \\ | & | & | & | \\ O & & | & | \\ O & & | & | \\ \end{array}$$

34. (d) Polyesters are the polycondensation products of dicarboxylic acids and diols. The formation of terylene or dacron by the interaction of ethylene glycol and terephthalic acid is an example of this type of polymerisation.

 (d) Tertiary alcohols undergo dehydration to give alkenes.

46. (d)

41. (c)
$$CH_2 = CH$$

C1

Vinyl chloride

O

O

Dibenzoyl peroxide

 $CH_2 = CH$
 C

42. (d) $H = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}_{3}^{4} \begin{bmatrix} 4 \\ 5 \end{bmatrix}_{5}^{4}$

IUPAC name: 3-keto-2-methyl-hex-4-enal

44. (b) Reimer–Tiemann reaction: Treatment of phenol with chloroform in the presence of sodium hydroxide followed by hydrolysis of resulting product gives o-hydroxybenzaldehyde(salicylaldehyde) as a major product.

- 47. (c) 2, 4, 6-trinitrophenol, benzoic acid and benzene sulphonic acid are soluble in NaHCO₃. This reaction is possible in the forward direction if acid is more acidic than H₂CO₃. o-nitrophenol is less acidic than H₂CO₃. Hence, it is not soluble in NaHCO₃.
- 48. (d) C₆H₅NH₂ is least basic because due to resonance, unshared electrons on nitrogen in aromatic amines are less available for sharing with a proton.
- 49. (a) There are 4 possible structural isomers for C_gH_0N

$$\begin{array}{c} CH_3\\ CH_3-NH-CH_2CH_3\\ N\text{-methylethanamine}\\ (2^{\circ}\text{amine}) \end{array}; \quad \begin{array}{c} CH_3\\ CH_3-N-CH_3\\ N,N\text{-dimethylmethanamine}\\ (3^{\circ}\text{amine}) \end{array}$$