This Question Paper contains 20 printed pages.

(Part - A & Part - B) Sl.No.

050 (E)

(MARCH, 2024) (SCIENCE STREAM) (CLASS-XII)

Part - A: Time: 1 Hour / Marks: 50 Part - B: Time: 2 Hours / Marks: 50

પ્રશ્ન પેપરનો સેટ નંબર જેની સામેનું વર્તુળ OMR શીટમાં ઘટ્ટ કરવાનું રહે છે. Set No. of Question Paper, circle against which is to be darken in OMR sheet.

(Part - A)

Time: 1 Hour!

[Maximum Marks: 50]

Instructions:

- There are 50 objective type (M.C.Q.) questions in Part A and all questions 1) are compulsory.
- The questions are serially numbered from 1 to 50 and each carries 1 mark. 2)
- Read each question carefully, select proper alternative and answer in the 3) OMR sheet.
- The OMR sheet is given for answering the questions. The answer of each 4) question is represented by (A) O, (B) O, (C) O and (D) O. Darken the circle of the correct answer with ball-pen.
- Rough work is to be done in the space provided for this purpose in the Test 5) Booklet only.
- Set No. of Question Paper printed on the upper- most right side of the Question 6) Paper is to be written in the column provided in the OMR sheet.
- Use of simple calculator and log table is allowed, if required. 7)
- Notations used in this question paper have proper meaning. 8)
- 1) If the lines $\frac{1-x}{2} = \frac{y-2}{1} = \frac{z-1}{2}$ and $\frac{x-2}{p} = \frac{y-1}{2} = \frac{z-2}{1}$ are perpendicular to each other, then p =______

(A)
$$-\frac{2}{3}$$

$$(C) \cdot \frac{4}{3}$$

(D)
$$-\frac{4}{3}$$

Rough Work

For linear programming problem, the objective function is Z = 3x + 2y. If the corner points of the bounded feasible region are (12,0), (4,2), (1,5) and (0,10), then the maximum value of Z is ______

(A) • 36

(B) 46

(C) 13

(D) 56

3) Corner points of the feasible region determined by the system of linear constraints are (0,3), (1,1) and (3,0). Let Z = px + qy, where p,q > 0. Condition on p and q so that the minimum value of Z occurs at (3,0) and (1,1) is _____.

(A) p=2q

(B) • $p = \frac{q}{2}$

(C) p = 3q

(D) p=q

4) The probability of obtaining an even number on each die, when a pair of dice is rolled is _____.

(A) $\frac{1}{9}$

(B) $\frac{1}{2}$

 $(C) \cdot \frac{1}{4}$

(D) $\frac{1}{36}$

Given that events A and B are such that P(A) = 0.5, $P(A \cup B) = 0.6$, P(B) = K. If A and B are mutually exclusive events then K =_____.

 $(A) \cdot 0.1$

(B) 0.2

(C) 0.11

(D) 0

- The relation $R = \{(a,b),(b,a)\}$ is defined on the set $\{a,b,c\}$, then R is _____.
 - (A) Reflexive, but not symmetric and transitive
 - (B). Symmetric, but not reflexive and transitive
 - (C) Transitive, but not reflexive and symmetric
 - (D) An equivalence relation
- 7) Function defined as $f: N \to N$, $f(x) = x^6$, then ______
 - (A) f is one-one and onto.
 - (B) f is many-one and onto.
 - (C) f is one-one, but not onto.
 - (D) f is neither one-one nor onto.
- 8) Let $A = \{1,2,3\}$, then number of equivalence relations containing (1, 2) is _____.
 - (A) 4

(B) 3

(C) · 2

- (D) 1
- 9) $\sin^{-1}\left(-\frac{1}{2}\right) + \cos^{-1}\left(\frac{\sqrt{3}}{2}\right) =$ ______.
 - (A) $\frac{\pi}{2}$

(B) π

(C) $\frac{5\pi}{6}$

(D) • 0

10) $\tan^{-1}\left(\tan\frac{31\pi}{6}\right) =$ _____.

 $(A) \cdot \frac{\pi}{6}$

(B) $\frac{5\pi}{6}$

(C) $\frac{31\pi}{6}$

(D) $-\frac{\pi}{6}$

11) If $\cos^{-1} x = y$, then _____.

- $(A) \quad -\frac{\pi}{2} < y < \frac{\pi}{2}$
- $(B) \quad -\frac{\pi}{2} \le y \le \frac{\pi}{2}$
- (C) $0 < y < \pi$
- (D)• $0 \le y \le \pi$

12) $\cos(\tan^{-1}x) =$ _____. (|x| < 1).

 $(A) \quad \frac{x}{\sqrt{1-x^2}}$

 $(B) \quad \frac{1}{\sqrt{1-x^2}}$

 $(C) \cdot \frac{1}{\sqrt{1+x^2}}$

 $(D) \quad \frac{x}{\sqrt{1+x^2}}$

13) The number of all possible matrices of order 3 × 2 with each entry 1 or 2 is _____.

(A) 512

(B) • 64

(C) 32

(D) 128

(i) If
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 0 \\ 1 & -2 \\ 0 & 3 \end{bmatrix}$, then $AB = \underline{\qquad}$.

 $(A) \begin{bmatrix} 4 & 0 \\ 1 & -2 \\ 0 & 3 \end{bmatrix}$

(B) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

(C) $\begin{bmatrix} 4 & 0 \\ 1 & -2 \end{bmatrix}$

(D) • not defined

15) If A is a square matrix such that $A^2 = A$, then $(I+A)^2 - 3A = \underline{\hspace{1cm}}$

(A) A

(B) I-A

(C) • 1

(D) 3A

16) If $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, then $A^{10} = \underline{^{10}}$

(A) 1024A

(B) • 512A

(C) 10A

(D) A

17) If $f(\theta) = \begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & -\cos \theta \end{vmatrix}$, then $f\left(\frac{\pi}{6}\right) =$ ______.

 $(A) \bullet \ -\frac{1}{2}$

(B) $\frac{1}{2}$

(C) $\frac{\sqrt{3}}{2}$

(D) $-\frac{\sqrt{3}}{2}$

18) If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 3 \\ 1 & 0 & 1 \end{bmatrix}$$
, then $|adj A| = _____.$

(A) 2

 $(B) \cdot 4$

(C) 8

(D) 6

19) If
$$A = \begin{bmatrix} 5 & -2 \\ 4 & 3 \end{bmatrix}$$
, then $A(adj A) =$ _____.

(A) I

(B) A

(C) . 23 I

(D) 23 A

20) If area of a triangle is 3 sq. units with the vertices (3,5), (2,2) and (k,2), then k =_____.

(A) • 0, 4

(B) 0, -4

(C) 3, 1

(D) -3, 1

21) If
$$f(x) = \begin{cases} kx+1, & x \le \frac{\pi}{2} \\ \sin x, & x > \frac{\pi}{2} \end{cases}$$
 is continuous at $x = \frac{\pi}{2}$, then

 $(A) \quad -\frac{2}{\pi}$

(B) $\frac{2}{\pi}$

(C) 1

(D) • 0

22) If
$$y = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$
, then $\frac{dy}{dx} = \underline{\hspace{1cm}}$.

(A) • y

(B) y = 1

(C) 0

(D) does not exist

23) Differentiation of $\sin^2 x$ w.r.t. $\cos^2 x$ is _____.

(A) $tan^2 x$

(B) $-\tan^2 x$

 $(C)^{\bullet} - 1$

(D) 1

24) The rate of change of the volume of a sphere with respect to radius r, at r = 3 cm is ____ cm³/s.

(A) 12π

(B) · 36π

(C) 24π

(D) 81π

25) The total revenue in Rupees received from the sale of x units of a product is given by, $R(x) = x^2 + 6x + 5$. The marginal revenue, when x = 20 is \mathbb{Z}

(A) 525

(B) 126

(C) • 46

(D) 96

26) The function given by $f(x) = x^2 - 6x + 10$ is an increasing in interval.

(A) • (3, ∞)

(B) (-∞, 3)

(C) (-3, 3)

(D) (0, 6)

- 27) The point on the curve $x^2 = 2y$ which is nearest to the point (0, 5) is _____.
 - (A) (2, 2)

(B) (0, 0)

(C) $(2\sqrt{2},0)$

- (D) $(2\sqrt{2},4)$
- 28) $\int \frac{\csc^2 x}{\sec^2 y} dx =$ ______ + C.
 - (A) $\tan x x$
 - (B) $-\cot x x$
 - (C) $\cot x x$
 - (D) $-\cot x + x$
- $29) \int \frac{1}{x + x \log x} dx = \underline{\qquad} + C.$
 - (A) $1 + \log x$

(B) $\log |\log x|$

(C) • log log ex

- (D) $\frac{(1+\log x)^2}{2}$
- 30) $\int \frac{1}{e^x + 1} dx =$ _____+ C.
 - $(A) \cdot \log \left| \frac{e^x}{e^x + 1} \right|$

(C) $\log \left| \frac{1}{e^x + 1} \right|$

(B) $\log \left| \frac{e^x + 1}{e^x} \right|$ (D) $\log \left| \frac{e^x - 1}{e^x + 1} \right|$

31)
$$\int \frac{dx}{x^2 + 2x + 5} =$$
_____+ C.

(A)
$$\tan^{-1}\left(\frac{x+1}{2}\right)$$
 (B) • $\frac{1}{2}\tan^{-1}\left(\frac{x+1}{2}\right)$

(B) •
$$\frac{1}{2} \tan^{-1} \left(\frac{x+1}{2} \right)$$

(C)
$$\tan^{-1}(x+1)$$

(D)
$$\frac{1}{2} \tan^{-1} (x+1)$$

32)
$$\int_{-1}^{1} \sin^{7} x \cdot \cos^{6} x \, dx = \underline{\hspace{1cm}}.$$

$$(A) -1$$

33)
$$\int e^x \tan x (1 + \tan x) dx = \underline{\qquad} + C.$$

$$(A) \cdot e^x (\tan x - 1)$$

(B)
$$e^x \tan x$$

(C)
$$e^x \sec x$$

(D)
$$e^x(\tan x + 1)$$

34)
$$\int_{0}^{2\pi} \sin^{3} x \cos^{2} x \, dx = \underline{\hspace{1cm}}$$

(A)
$$2\pi$$

$$(C)$$
 1

$$(D) \cdot 0$$

35)
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\cos^{\frac{1}{2}}x}{\cos^{\frac{1}{2}}x + \sin^{\frac{1}{2}}x} dx = \underline{\qquad}$$

(A) $\frac{\pi}{4}$

 $o(B) \frac{\pi}{6}$

 $(C) \bullet \frac{\pi}{12}$

(D) $\frac{\pi}{2}$

36) The area bounded by the curve $y = \cos x$ between $x = \frac{\pi}{2}$ and

$$x = \frac{3\pi}{2}$$
 is _____.

(A) 1

(B) · 2

(C) 3

(D) 4

37) Area of the region bounded by the curve $y^2 = 4x$, y - axis and the line y = 3 is ______.

(A) $\frac{9}{2}$

(B) 3

 $(C) \cdot \frac{9}{4}$

(D) 2

38) The area bounded by the curve y = x|x|, x - axis and the ordinates x = 0 and x = 1 is given by _____.

(A) 0

 $(\mathbf{B}) \cdot \frac{1}{3}$

(C) $\frac{2}{3}$

(D) $\frac{4}{3}$

39) The order of the differential equation

$$\left(\frac{d^3y}{dx^3}\right)^4 + \left(\frac{d^2y}{dx^2}\right)^2 + \sin\left(\frac{dy}{dx}\right) + 1 = 0 \text{ is } \underline{\qquad}$$

(A) • 3

(B) 4

(C) 2

- (D) undefined
- 40) The number of arbitrary constants in the particular solution of a differential equation of fourth order are ______.
 - $(A) \cdot 0$

(B) 4

(C) 3

- (D) 2
- 41) The integrating factor of the differential equation

$$x\frac{dy}{dx} + 2y = x^2(x \neq 0) \text{ is } \underline{\hspace{1cm}}$$

(A) $2\log x$

(B) $\log x$

(C) $\frac{2}{x}$

- (D) x^2
- 42) The general solution of a differential equation $\frac{ydx xdy}{y} = 0$
 - (A) = 1

 $(\mathbf{B}) \cdot y = \mathbf{C} x$

(C) $x = C y^2$

(D) xy = C

43) The vector in the direction of a vector $\vec{a} = 4\hat{i} + 3\hat{j} - 2\hat{k}$, that has magnitude $2\sqrt{29}$ is _____.

(A)
$$\frac{4}{\sqrt{29}}\hat{i} + \frac{3}{\sqrt{29}}\hat{j} - \frac{2}{\sqrt{29}}\hat{k}$$

(B)
$$4\hat{i} + 3\hat{j} - 2\hat{k}$$

(C)
$$\cdot 8\hat{i} + 6\hat{j} - 4\hat{k}$$

(D)
$$\frac{2}{\sqrt{29}}\hat{i} + \frac{3}{2\sqrt{29}}\hat{j} - \frac{1}{\sqrt{29}}\hat{k}$$

44) The direction cosines of the vector joining the points A(1,2,-3) and B(-1,-2,1), directed from A to B is _____.

$$(A)^{\bullet} -\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}$$

(B)
$$\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}$$

(C)
$$\frac{1}{3}, \frac{2}{3}, -\frac{2}{3}$$

(D)
$$\frac{1}{3}$$
, $-\frac{2}{3}$, $-\frac{2}{3}$

45) The angle between the vectors $\vec{a} = 6\hat{i} + 2\hat{j} - 8\hat{k}$ and $\vec{b} = 4\hat{i} - 4\hat{j} + 2\hat{k}$ is ______.

(A)
$$\frac{\pi}{3}$$

(B) •
$$\frac{\pi}{2}$$

(C)
$$\frac{\pi}{4}$$

46) The projection of the vector $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$ on the vector $\vec{b} = 2\hat{i} + 3\hat{j} + 2\hat{k}$ is _____.

(A) $\frac{10}{\sqrt{6}}$

(B) $\frac{\sqrt{10}}{6}$

(C) $\frac{\sqrt{10}}{17}$

(D) • $\frac{10}{\sqrt{17}}$

47) The area of a parallelogram whose adjacent sides are $\vec{a} = \hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j}$ is ______.

(A) $2\sqrt{21}$

(B) $\sqrt{42}$

(C)• √21

(D) $\frac{1}{2}\sqrt{21}$

48) For the vectors \vec{a} and \vec{b} , $|\vec{a}| = \frac{2}{3}$, $|\vec{b}| = 3$ and $|\vec{a} \times \vec{b}| = 1$, then the angle between \vec{a} and \vec{b} is _____.

- $(A) \cdot \frac{\pi}{6}$
- (B) $\frac{\pi}{4}$
- (C) $\frac{\pi}{3}$
- (D) $\frac{\pi}{2}$

49) Cartesian equation of a line is $\frac{x-5}{3} = \frac{y+4}{7} = \frac{6-z}{2}$, then the vector equation of the line is _____.

(A)
$$\vec{r} = 3\hat{i} + 7\hat{j} - 2\hat{k} + \lambda (5\hat{i} - 4\hat{j} + 6\hat{k})$$

(B) •
$$\vec{r} = 5\hat{i} - 4\hat{j} + 6\hat{k} + \lambda(3\hat{i} + 7\hat{j} - 2\hat{k})$$

(C)
$$\vec{r} = 3\hat{i} + 7\hat{j} + 2\hat{k} + \lambda (5\hat{i} - 4\hat{j} + 6\hat{k})$$

(D)
$$\vec{r} = 5\hat{i} - 4\hat{j} + 6\hat{k} + \lambda(3\hat{i} + 7\hat{j} + 2\hat{k})$$

The angle between the pair of lines $\frac{x-3}{1} = \frac{y-2}{2} = \frac{z+4}{2}$ and $\frac{x-5}{3} = \frac{y+2}{2} = \frac{z}{6}$ is _____

(A)
$$\sin^{-1}\left(\frac{17}{21}\right)$$

(B)
$$\cos^{-1}\left(\frac{17}{21}\right)$$

(C)
$$\sin^{-1}\left(\frac{19}{21}\right)$$

(D) •
$$\cos^{-1}\left(\frac{19}{21}\right)$$

050 (E)

(MARCH, 2024) (SCIENCE STREAM) (CLASS - XII)

(Part - B)

Time : 2 Hours]

[Maximum Marks: 50

Instructions:

- 1) Write in a clear legible handwriting.
- 2) There are three sections in Part B of the question paper and total 1 to 27 questions are there.
- All questions are compulsory. Internal options are given.
- The numbers at right side represent the marks of the question.
- Start new section on new page.
- 6) Maintain sequence.
- Use of simple calculator and log table is allowed, if required.
- Use the graph paper to solve the problem of L.P.

SECTION-A

From the following question no. 1 to 12 answer any 8 questions as directed. [16] (Each carries 2 marks)

1) Prove that:
$$\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13} = \cos^{-1}\frac{33}{65}$$
. [2]

2) Prove that:
$$\sin^{-1}(2x\sqrt{1-x^2}) = 2\sin^{-1}x$$
, where $-\frac{1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}}$. [2]

3) If
$$x^y + y^x = 1$$
, then find $\frac{dy}{dx}$. [2]

4) Obtain
$$\int \frac{dx}{\sqrt{8+3x-x^2}}$$
 [2]

- 5) Find the area of the region bounded by the ellipse $9x^2 + 16y^2 = 144$. [2]
- 6) Find the area of the region bounded by the line y = 3x + 2, the x axis and the ordinates x = -1 and x = 1.
- 7) Find the general solution of the differential equation: [2] $\sec^2 x \tan y \, dx + \sec^2 y \tan x \, dy = 0.$
- 8) If vertices of triangle are $A(2\hat{i} \hat{j} + \hat{k})$, $B(\hat{i} 3\hat{j} 5\hat{k})$ and $C(3\hat{i} 4\hat{j} 4\hat{k})$, determine the type of triangle they form. [2]
- Find the Cartesian equation of the line passing through the point (1, 2, -4) and perpendicular to the two lines: $\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7} \text{ and } \frac{x-15}{3} = \frac{y-29}{9} = \frac{z-5}{-5}$
- 10) Find vector and the Cartesian equations of the line through the point (5, 2, -4) and which is parallel to the vector $3\hat{i} 2\hat{j} + 8\hat{k}$. [2]
- Given that A and B are events such that P(A) = 0.6, P(B) = 0.3, $P(A \cap B) = 0.2$. Find P(A|B) and P(B|A).
- 12) An unbiased die is thrown twice. Let the event E be 'odd number on the first throw' and F the event 'odd number on the second throw'. Check the independence of events E and F.

 [2]

SECTION - B

- From the following question no.: 13 to 21 answer any 6 questions as directed.

 (Each carries 3 marks)

 [18]
 - 13) Check whether the relation R in R defined by $R = \{(a,b) : a \le b^3\}$ is reflexive, symmetric or transitive. [3]

14) If
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$$
, prove that $A^3 = 6A^2 - 7A - 2I$. [3]

- 15) Using the cofactor of elements of third column, evaluate $\Delta = \begin{vmatrix} 1 & x & yz \\ 1 & y & zx \\ 1 & z & xy \end{vmatrix}$. [3]
- 16) If $y = (\tan^{-1} x)^2$, show that $(x^2 + 1)^2 \frac{d^2 y}{dx^2} + 2x(x^2 + 1) \frac{dy}{dx} 2 = 0$. [3]
- 17) Find the maximum value of $f(x) = 2x^3 24x + 107$ in the interval $x \in [1, 3]$. Find the maximum value of the same function in $x \in [-3, -1]$.
- 18) The scalar product of the vector $\hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of vectors $2\hat{i} + 4\hat{j} 5\hat{k}$ and $\lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to one. Find the value of λ . [3]
- 19) Find the shortest distance between the lines $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$ and $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}.$ [3]
 - Solve the following Linear Programming problem graphically: For Z = -3x + 4ySubject to $x + 2y \le 8$, $3x + 2y \le 12$, $x \ge 0$, $y \ge 0$. Find minimum and maximum values of Z.
 - 21) In a factory which manufactures bolts, machines A, B and C manufacture respectively 25%, 35% and 40% of the bolts of their outputs, 5, 4 and 2 percent are respectively defective bolts. A bolt is drawn at random from the product and is found to be defective. What is the probability that it is manufactured by the machine B?

 [3]

(P.T.O.)

SECTION-C

From the following question no.: 22 to 27 answer any 4 questions as directed.

(Each carries 4 marks) [16]

22) Find x, if
$$\begin{bmatrix} x & -5 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} = 0$$
. [4]

23) Using matrix method, solve the system of equations: [4]

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 6$$
, $\frac{1}{y} + \frac{3}{z} = 11$, $\frac{1}{x} - \frac{2}{y} + \frac{1}{z} = 0$

24) If
$$x = a(\cos t + t \sin t)$$
 and $y = a(\sin t - t \cos t)$, then find $\left(\frac{d^2y}{dx^2}\right)_{t=\frac{\pi}{4}}$. [4].

25) Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is $\tan^{-1} \sqrt{2}$. [4]

26) Evaluate:
$$\int_{0}^{\frac{\pi}{4}} \log(1 + \tan x) dx$$
. [4]

27) Find the particular solution of the differential equation [4] $2y e^{\frac{x}{y}} dx + \left(y - 2x e^{\frac{x}{y}}\right) dy = 0,$

given that x = 0 when y = 1.