Coefficient of Correlation

Q.1. The data for marks in Physics and History obtained by a ten students are given below :

Marks in Physics	15	12	8	8	7	7	7	6	5	3
Marks in History	10	25	17	11	13	17	20	13	9	15

Using this data compute Karl Pearson's coefficient of correlation between the marks in Physics and History obtained by 10 students.

Solution: 1

Physics (x)	History (y)	ху	x ²	y ²
15	10	150	225	100
12	25	300	144	625
8	17	136	64	289
8	11	88	64	121
7	13	91	49	169
7	17	119	49	189
7	20	140	49	400
6	13	78	36	169
5	9	45	25	81
3	15	45	9	225
78	150	1192	714	2468

Karl Pearson's coefficient ,

 $r = \{1/n[\Sigma xy - (\Sigma x \Sigma y)/n]\}/\sqrt{\{(\Sigma x^{2})/n - (\Sigma x/n)^{2}\}}\{(\Sigma y^{2})/n - (\Sigma y/n)^{2}\}.$

 $= [\{1192 - (78 \times 150)/10\}]/[\sqrt{\{714 - (78 \times 78)/10\}}\{2468 - (150 \times 150)/10\}]$

 $= (1192 - 1170) / [\sqrt{(714 - 608.4)(2468 - 2250)}]$

 $= 22/\sqrt{(105.6 \times 218)} = 22/151.7 = 0.14.$

Q.2. Calculate the coefficient of correlation between X and Y from the following data using Karl Pearson's method :

x	1	2	3	4	5
Y	2	5	3	8	7

Solution: 2

X	Y	x ²	y ²	ху
1	2	1	4	2
2	5	4	25	10
3	3	9	9	9
4	8	16	64	32
5	7	25	49	35
15	25	55	151	88

Karl Pearson's correlation coefficient

 $r = \{ \sum xy - (\sum x \sum y)/n \} / \sqrt{[\{ \sum x^2 - (\sum x)2/n \} \{ \sum y^2 - (\sum y)^2/n \}]}$ = [88 - (15 × 25)/5]/[$\sqrt{\{55 - 225/5\} \{ 151 - 625/5 \}]}$ = (88 - 75)/ $\sqrt{\{(10)(26)\}}$ = 13/ $\sqrt{(260)}$

= 0.806 = 0.81.

Q.3. The following table shows the sales and advertisement expenditure of a firm :

	Sales Rs. (in crores)	Advertisement Expenditure Rs. (in crores)
Mean	40	6
Standard Deviation 10		1.5

Coefficient of correlation = $\gamma = 0.9$.

Estimate the likely sales for a proposed advertisement expenditure of Rs. 10 crores.

Solution: 3

	Sales Rs. (in crores)	Advertisement Expenditure Rs. (in crores)
Mean	40	6
Standard Deviation	10	1.5

Coefficient of correlation = $\gamma = 0.9$

Regression coefficient x on y = $b_{xy} = \gamma(\sigma_x/\sigma_y) = 0.9 (10/1.5) = 90/15 = 6$

Equation required (x on y) $(x - M_x) = b_x y (y - M_y)$

Or, x - 40 = 6 (y - 6)

Or, x - 40 = 6y - 36

Or, x = 6y + 4

Therefore, when y = 10, $x = 6 \times 10 + 4 = 64$

Therefore, Sales for expenditure of Rs. 10 crores = Rs.64Crores.