ANIMAL NUTRITION

INTRODUCTION

Animals are not able to synthesise their own food, therefore they depend on ready-made food for their nutritional requirements. The term nutrition refers to the sum total of all the processes related with the conversion of the raw foodstuff into the stuff of the body to supply energy for different metabolic activities and also for the repair and growth. In other word we can define nutrition as the process by which an organism derives energy to work and other materials, required for growth and maintenance of the various activities of life.

Food intake : Different organisms obtain food in different ways but carry out similar chemical reactions to utilize it. To take food, protozoans use pseudopodia, flagella or cilia; sponges and mussels, a current of water; Hydra, tentacles beset with stinging cells; planarians and earthworms, a muscular pharynx; flukes and leeches, oral sucker; insects and other arthropods, mouth parts of various kinds; and seastars and sea urchins, tubefeet. Sharks capture prey with the jaws; frog and lizard with the tongue; birds with beaks of sorts; rabbit and hare use forepaws, lips and teeth; cattle, lips and teeth; carnivores, claws and teeth; giraffes, tongue; elephants, proboscis (trunk); humans, monkeys and apes use hands.

3.1 DIGESTION

The process by which complex food is converted into simplest food with the help of digestive enzymes (Hydrolytic enzymes), hence process of digestion is a hydrolytic process.

Types of digestion

(i) **Intracellular :** When the process of digestion occurs within the cell in the food vacuole. Examples : Protozoa, Porifera, Coelenterata and free living platyhelminthes. With the help of lysosomal enzymes. Food particle is taken in through endocytosis (phagocytosis). It forms a phagosome which fuses with a lysosome. Digestion occurs and the digested materials are passed on to cytoplasm. The undigested materials is thrown out by exocytosis.

(ii) **Extracellular :** When the process of digestion occurs outside the cell. Examples : Coelenterates and phylum platyhelminthes to phylum chordata. Therefore, coelenterata and free living platyhelminthes (flat worms) perform both intracellular and extracellular digestion.

3.2 DIGESTIVE SYSTEM OF HUMAN

Digestion in vertebrates occurs in the digestive tract or alimentary canal. The various parts involved in digestion can be broadly grouped in two groups -

(i) Digestive tract or alimentary canal

(ii) Digestive glands

(i) Digestive tract or alimentary canal

On the basis of the embryonic origin, the alimentary canal of vertebrates can be divided into three parts –

(a) **Fore gut / Stomodaeum :** Ectodermal. It includes buccal cavity / oral cavity.

(b) **Mid gut / Mesodaeum :** Endodermal. It includes pharynx, oesophagus, stomach, small intestine, and large intestine.

(c) **Hind gut / Proctodaeum :** Ectodermal. It includes anal canal and anus.

Parts of alimentary canal and its histology

(a) Mouth

(b) Vestibule

(c) Bucco-pharyngeal cavity

(d) Oesophagus

(e) Stomach

(f) Small intestine consist of duodenum, jejunum, lleum

(g) Large intestine consist of caecum, colon, rectum

(h) Anal canal and anus

(i) Generalized histology of alimentary canal

(a) **Mouth :** The mouth is a transverse slit bounded by two movable lips or labia, upper lip and lower lip. Upper lip has small ridges on the sides, a tubercle in the middle and a vertical groove (philtrum) above.

(b) **Vestibule :** It is a narrow space between lips and gums in front and gums and cheeks on the sides. Its lining contains mucous glands. In the vestibule, a small median fold of mucous membrane, the superior labial frenulum, connects the middle of the upper lip to the gum and usually a similar but smaller inferior labial frenulum connects the middle of the lower lip to the gum.

(c) **Buccopharyngeal cavity :** It includes anterior buccal cavity lined by stratified squamous epithelial cell and posterior pharyngeal cavity lined by columnar epithelial cell. It is distinguished into three region. Pharynx is a vertical canal beyond the soft palate. The food and air passages cross here. Pharynx may be divided into three parts.

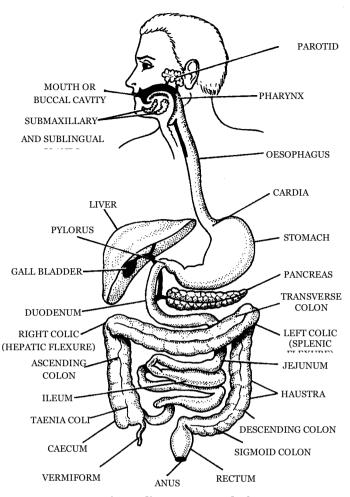


Fig. – Alimentary canal of man

Nasopharynx	Oropharynx	Laryngopharynx	
Upper part of pharynx.	Middle part of pharynx.	Lower part of pharynx.	
Lined by pseudostratified columnar epithelium	Lined by stratified squamous epithelium.	Lined by columnar epithelium.	
It has internal nares in the roof, a pair of openings of the eustachian tube on the sides leading to middle ear.	Oral cavity open to it.	It lead to oesophagus behind and larynx in front.	
Lymphoid Pharyngeal tonsil (Adenoid) in the back wall of Nasopharynx.		Opening of oesophagus is called gullet and opening of larynx is called glottis. A cartilagenous flap epiglottis present in the front of glottis.	

The various structure present in buccopharyngeal cavity are as follows –

(a) **Fauces :** A triangular area present between buccal cavity and pharynx in human.

(2) **Palate :** The roof of buccal cavity is called Palate. In crocodiles and mammals horizontal shelf like processes of premaxilla and maxilla and the palatine bones of upper jaw fused and form a secondary palate. Which separates the buccal cavity from nasal cavity. Palate is distinguished into three regions –

(i) **Hard palate :** Anterior, bony portion formed of maxilla and palatine bones in human and premaxilla, maxilla and palatine bones in rabbit. Hard palate have transverse ridges called palatine rugae Such rugae or ridges are more

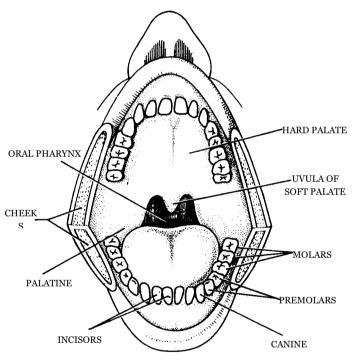


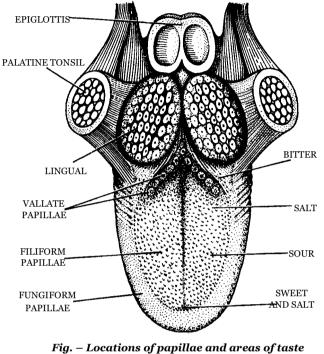
Fig. – The mouth and permanent dentition of a man

develop in carnivorous mammals because their function is to firmly grip the food and prevent it from slipping out the cavity.

(ii) Soft palate : Posterior soft part, made up of connective tissue and muscles.

(iii) **Vellum palate/uvula :** Part of soft palate, which hangs in the region of pharynx. It closes the internal nostrils during degglutition.

(3) **Palatine glands :** Numerous mucous glands. Chiefly present in soft palate, secretes mucous for lubrication.


(4) **Naso-palatine duct :** One pair, present in rabbit, extends from nasal passage to the buccal passage, contains Jacobson's organ concerned with olfaction.

(5) Vibrissae : A tuft of hairs on upper lip of rabbit.

(6) **Hare-cleft :** A cleft on the upper lip of rabbit, which makes it bilobed.

(7) **Tongue (lingua) :** Ectodermal, single, pinkish, oval, elongated highly muscular (mesodermal) and protrusible present on the floor of buccopharyngeal cavity the cells present are stratified squamous epithelial cells. A furrow termed the sulcus terminalis divides the oral part and pharyngeal part of the tongue. The limbs of the sulcus terminalis run laterally and forward from a median pit, named the foramen caecum.

Posterior part of tongue (endodermal) is attached with hyoid, middle one with the floor of buccopharyngeal cavity with the help of frenulum lingum and anterior part is free. The tongue is provided with two specialized structure viz. lingual papillae and lingual glands or weber's gland. Lingual glands are the mucous glands, which secretes mucous. Lingual papillae are numerous, minute

on the tongue

projections chiefly present on the dorsum of the tongue. All these lingual papillae can be grouped as simple lingual papillae and taste papillae. Taste papillae are of following types –

(i) **Circumvallate :** Circular largest 8-12 in number, present in the posterior part of the tongue extending from one side to another. They possess taste buds.

These are the largest of all the papillae.

(ii) **Fungiform :** Mushroom shaped (Fungi – shaped), numerous, present at the anterior margins and tip of the tongue. They have taste buds.

(iii) **Foliate :** Leaf like flat, less in number, present at the posterior margin of the tongue. They are absent/vestigeal in human.

(iv) **Filliform :** Conical shaped, smallest and most numerous distributed throughout tongue. They are without taste buds.

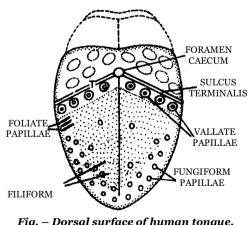


Fig. – Dorsal surface of human tongue, showing four kinds of papillae and some other associated structures

Hence, in human taste is recognized with the help of circumvallate and fungiform taste papillae. In man the anterior end of tongue feels sweet taste, posterior part feel bitter taste, sides feel sour taste and a small part behind the anterior end feel salty taste.

Functions of tongue : Important function of tongue are as follows -

(i) Acts as universal toothbrush, as it helps in tooth cleaning.

(ii) Helps in speaking.

(iii) Helps in degglutition.

(iv) Helps in mixing saliva with food.

(v) Acts as a curry comb in many animals, hence help in body cleaning.

(vi) Helps in taste detection.

(vii) In dog helps in regulation of body temperature. The phenomenon is called as "Panting".

(viii) In frog and other animals, it helps in prey capturing

(8) **Teeth :** Teeth is a living structure.

(i) On the basis of embryonic origin, teeth in vertebrates are of following two types -

(a) **Horny/ectodermal/epidermal/false teeth :** The teeth which develops only from ectoderm. Examples – Cyclostomes, tadpole larva of frog, prototherian mammals etc.

(b) **True teeth :** The teeth which develops from both ectoderm and mesoderm. Examples – Fishes, amphibians, reptiles, eutherian mammals etc.

(ii) **Differentiation of teeth :** Morphologically, teeth can be distinguished as homodont or heterodont.

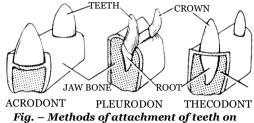
(a) **Homodont :** When all the teeth are structurally and functionally similar. Examples – Vertebrates except metatherian and eutherian mammals.

(b) **Heterodont :** When the teeth are different in structure and functions. They are distinguished into four types incisors, canines, premolars and molars. Examples – metatherian and eutherian mammals.

(1) **Incisors :** These are the front teeth borne by the premaxillae in upper jaw and tips of dentaries in lower jaw. They are single-rooted monocuspid and long, curved and sharp-edged. They are adapted for cutting or cropping and biting.

(2) **Canines :** There is one pointed canine in each maxillary of upper jaw and each dentary of lower jaw next to the incisors. They are meant for piercing, tearing and offence and defence. They are single rooted and monocuspid.

(3) **Premolars :** They have two roots and two cusps (bicuspid). They are meant for crushing, grinding and chewing.


(4) Molars : They have more than two roots and 4-5 cuspid.

(iii) Attachment of teeth : On the basis of attachment of teeth at their bases with the jaw bones, teeth can be differentiated into -

(a) **Acrodont :** Teeth are attached to the free surface or summit of the jaw bone, as in a shark or frog. Such teeth are apt to break off easily but are replaced.

(b) **Pleurodont :** In this condition, common in urodeles and lizards, teeth are attached to the inner side of jaw bone by their base as well as one side.

(c) **Thecodont :** Such teeth are characteristic of mammals. Teeth have well developed roots implanted in deep individual pits or socketes called alveoli or theca, in the jaw bone. These type of teeth also present in crocodilians, fossil toothed bird (Archeaeopteryx).

(iv) **Succession of teeth :** According to their replacement (succession), teeth can be divided into 3 categories: polyphyodont, diphyodont and monophyodont.

(a) **Polyphyodont :** In lower vertebrates, teeth can be replaced an indefinite number of times during life. e.g. – amphibia, reptilia.

(b) **Diphyodont :** In most mammals teeth develop during life in two successive sets, a condition known as diphyodont. Teeth of the first set are known as deciduous teeth or milk teeth or lacteal teeth whereas the second set is called permanent teeth.

(c) **Monophyodont :** In some mammals such as platypus, marsupials, moles, sirenians, toothless whale etc. only one set of teeth develops known as monophyodont condition.

Important Tips

- Canines are absent in some herbivores such as rodents (rats), lagomorphs (rabbits) and some ungulates (ox), leaving a wide toothless space called diastema.
- ☞ Upper canine form tusk in walrus for digging mollusc and for locomotion.
- Premolars and molars are called cheek teeth.
- In carnivores, last premolars in upper jaw and first molars in lower jaw may have very sharp cusps for cracking bones and shearing tendons. These are called carnassial teeth.
- *The Birds are edentulous i.e. teeth are absent.*
- ☞ In lemurs, first premolars are like canines.
- ☞ In crabeater seal, molars bear denticulate processes to strain plankton.
- ☞ In higher primates (man), last molar is called wisdom teeth.
- ☞ Incisors may be totally absent in sloths and absent in the upper jaw in ox.
- Tartar is a hard deposit of calcium phosphate from saliva on the teeth.
- Tonsillectomy Surgical removal of tonsil.
- Toothless mammals In spiny anteaters (tachyglossus) no teeth are found at any stage of life but platypus (ornithorhynchus) embryonic teeth replaced in the adult by horny epidermal plates.

(v) Types of cheek teeth

(a) **Bunodont :** Crown with small, blunt and round cusps as in man, monkey, pig etc. found in mixed diet mammals.

(b) Secodont : With sharp cutting edges for tearing flesh as in carnivores.

(c) Lophodont : With transverse ridges called lophos, e.g., Elephant.

(d) **Selenodont :** With vertical crescentic cusps as in grazing mammals like cow, sheep and goat. Selenodont teeth are two type –

(1) **Brachyodont :** Normal low crowned selenodont teeth with short roots are termed brachyodont. e.g. Ground squirrel.

(2) **Hypsodont :** In large grazing mammals teeth are elongated, prism shaped with high crown and low roots. e.g. Horse, cattle.

(vi) Structure of teeth : Teeth divided into three parts -

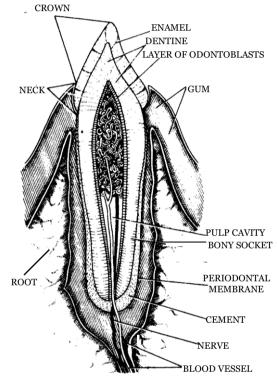
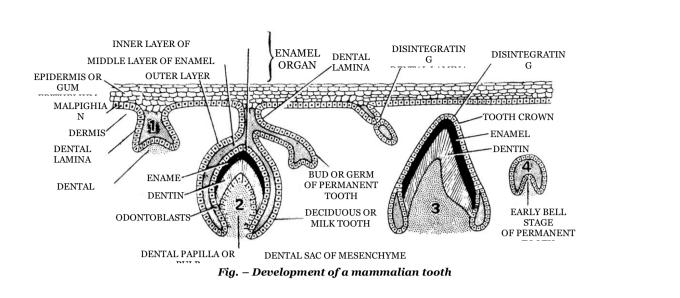
(a) **Root :** Inner most attached to the bone with help of cement (hyaluronic acid).

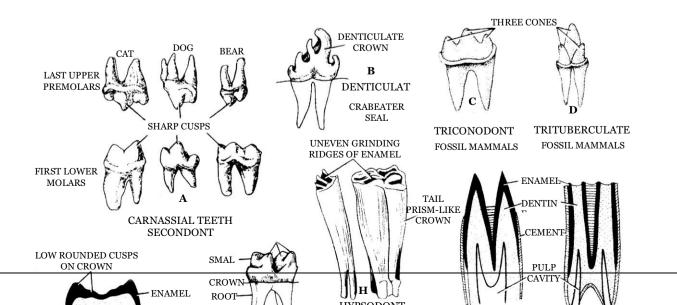
(b) Neck : Middle, small, covered with gum. Gum provides strength to the teeth.

(c) Apex or crown : External exposed part of teeth. Longest part, white in colour.

Teeth are made up of a hollow cavity, called as pulp cavity or dentine pulp cavity. It contains blood vessels lymphatic vessels nerve fibres, connective tissue etc. and provides nutrition to odontoblast cells or osteoblast cells. The odontoblast cells are mesodermal in embryonic origin forming immediate covering of the pulp cavity. The cells secrete dentine/ivory. Bulk of tooth in a mammal is formed of dentine. Dentine is a layer of inorganic substances (62-69%), which surrounds the odonto-blast cells. It is mesodermal in origin. Enamel. secreted bv Ameloblast/Enameloblast cells, forms the outermost covering. It is ectodermal and made up of 92% of inorganic substances, hence considered as hardest part of the body. The inorganic substances present are $[Ca_3(PO_4)_2, Ca(OH)_2, H_2O]$ Calcium phosphate (85%). Calcium hydroxide and Calcium Carbonate.

Cement/Cementum attaches the tooth root to the bone. A thin peritoneal membrane is present between the two


Fig. – Structure of tooth

called as peridontal membrane or Sharpey's fiber running from cement to bone. Gum is chiefly made up of connective tissue. In the incisors of rodents, lagomorphs and elephants, pulp cavity remains open basally so that these teeth continue to grow throughout life and are termed open-rooted. In the majority of mammals, including man, the basal aperture of pulp cavity becomes closed at a certain age so that nourishment stops and further growth ceases. Such teeth are termed close-rooted.

(vii) **Odontogenesis :** In mammals, teeth develop in the gum or the soft tissue covering the borders of premaxillae, maxillae and dentaries. Enamel of tooth is derived from epidermis, while the rest of tooth from dermis or mesenchyme. In the beginning there is a thickening of ectoderm along the margin of Jaw bone. The basal layer of ectoderm, the Malpighian layer, forms a continuous solid ridge-like vertical invagination into the underlying dermis. This forms the dental lamina, which retains its connection with the outer epidermis.

Mesodermal cells multiply rapidly beneath the ectodermal ingrowth or dental lamina forming a series of solid bud-like outgrowths at intervals, called tooth germs. Their number is as many as the number of milk teeth. In each tooth germ, the inverted cup-like epithelial cap will secrete the enamel, hence termed the enamel organ. The mesodermal aggregation beneath enamel organ is termed dermal or dental papilla. Its outer columnar cells become differentiated into odontoblasts, which secrete a layer of dentine on their outer surface. The cells of inner epithelial layer of enamel organ similarly become ameloblasts, which form a cap of hard enamel around the top and sides of dentine. No enamel is deposited on the root. Dental papilla is retained as pulp. Its central cavity goes on increasing to become the pulp cavity. Nerves and blood vessels enter the pulp cavity through the basal opening. Upto this stage the tooth remains inside the tissue (gum). Later, its eruption through the overlying epidermis is known as cutting of tooth. Around the root of tooth appears cement or cementum, which is a modified bone. Odontoblasts become inactive when tooth is fully formed. However in rodents, lagomorphs, etc. the odontoblasts remain active throughout life and teeth continue to grow.

(viii) **Dental formula :** Each mammalian species is characterized by its own specific dentition with a definite number and arrangement of teeth. Hence, dentition is of taxonomic importance. It is expressed by a dental formula as below –

Rabbit : $i\frac{2}{1}, c\frac{0}{0}, pm\frac{3}{2}, m\frac{3}{3} = \frac{8}{6} \times 2 = 28$ or briefly, $\frac{2300}{1023} = \frac{2+0+3+3}{1+0+2+3} \times \frac{2}{2} = \frac{16}{12} = 28$

(*i* = incisors; c = canines; pm = premolars; m = molars)

Horse and pig	$\frac{3.1.4.3}{3.1.4.3} = 44$	Cat	$\frac{3.1.3.1}{3.1.2.1} = 30$
Dog	$\frac{3.1.4.2}{3.1.4.3} = 42$	Squirrel	$\frac{1.0.2.3}{1.0.1.3} = 22$
Lemur	$\frac{2.1.3.3}{2.1.3.3} = 36$	Rat	$\frac{1.0.0.3}{1.0.0.3} = 16$
Man	$\frac{2.1.2.3}{2.1.2.3} = 32$	Elephant	$\frac{1.0.0.3}{0.0.0.3} = 14$
Cow	$\frac{0.0.3.3}{3.1.3.3} = 32$	Permanent set milk set	$\frac{2.1.2.0}{2.1.2.0} = 20$

Dental formulae of some common mammals

- Baleen Whale bone whale have in the buccal cavity a special structure called baleen or whale bone. It consists of several parallel horny plates hanging from the palate.
- Cheek pouches In some rodents (squirrel, rat) certain old world monkey, the vestibule extends to form cheek pouches for temporary storage of masticated food.
- Taste buds contain group of sensory epithelial cells. These cells are anteriorly provided with kinocilium and posteriorly with nerve fibres. The taste centres are present in brain.
- F Gustatoreceptor The organ concerned with taste detection. They are a type of chemoreceptor

found in the parietal lobe of cerebrum.

- The formula of the second seco
- The tongue of snake is bifid and sensitive to odour and vibration.
- Toothpaste protects the gum, whereas fluorides present in toothpaste clean the apex. The excess of fluorides causes the disease fluorisis which leads to decaying of teeth and bones.
- *Elephant tusk is the upper incisors.*
- 3rd molar in human is called as wisdom teeth as arises after the age of 16-17 years. Wisdom teeth 4 in number.
- Teeth of fishes are modified placoid scales.
- Teeth in frog are present only on upper jaw.
- The Caries Decay of teeth due to degeneration of enamel and formation of cavities.
- Typorrhoea infected gums and tooth sockets.
- The Maximum number of teeth present in opossum is $50\frac{5134}{4134} = 50$.
- The number of teeth that grows once and twice in humans life is 12 and 20 respectively.
- Tophodont teeth in elephant are premolar and molar.
- The isors of rats are polyphyodont.
- Teeth of sloths and armadillos have no enamel.
- The Enamel is lacking in the teeth of whales.
- Jacobson organ (Vomeronasal organs) They are independent chambers below nasal cavities found in most tetrapods, although they are sometimes vestigial (like human). Absent in fish but occurs embryonic rudiments in most vertebrates. In reptiles, they are best developed in lizards, snakes and sphenodon but are absent in adult crocodiles. Jacobsons organ well developed in such animals that hold food in their mouth. This organ serve to smell food and recognize its chemical nature. They also help enemy recognition, locating members to opposite sex, courtship etc.
- Teeth absent in Bufo and Pipa (Toads).
- Taste of chilli is not real taste but it is burning sensation of nerves.
- Fangs of poisonous snake attached to maxillary bones, they are replaceable. Solenoglyphous, Proteroglyphus and Opisthoglyphus types of fang occurs in poisonous snake.

(d) Oesophagus (food tube)

(1) **Morphology :** Single, endodermal, dorsal to trachea, approximately 25-40 *cm* long. passes through thoracic cavity and opens into stomach present in abdominal cavity. Oesophagus anteriorly opens into pharynx through gullet and posteriorly into stomach through cardiac orifice.

(2) **Histology :** Serosa is absent but outermost layer of connective tissue is called *as* tunica adventitia. Muscular layer are stratified voluntary in anterior region and unstriated involuntary in

posterior part. The epithelial lining is made up of non-keratinized stratified squamous epithelial cells. Goblet cells are present.

(3) **Function :** Conduction of food.

(e) Stomach

(1) **Structure :** Single oval, elongated, unilobed present within abdominal cavity below diaphragm. It consists of three parts as cardiac/fundic (anterior), corpus/body (middle, chief part) and pyloric (posterior part) in human, whereas in rabbit stomach is bilobed and consists of three parts as cardiac (Anterior) fundic (middle), chief part and pylorus (posterior). Two types of valves are present in the stomach *viz*. Cardiac sphincter valve between oesophagus and stomach and pyloric sphincter valve between stomach and duodenum.

(2) **Histology :** Outermost layer is serosa. Muscular layer is three – layered with outer longitudinal, middle circular and inner oblique. Muscles are involuntary and unstriated. Epithelial

lining is made up of simple columnar epithelial cells and specialized cells present in the gastric glands. The nomenclature of gastric glands is according to the parts of the stomach. The various type of gastric glands and the cells present in them are as follows –

Anterior part : Cardiac gastric glands in rabbit and human cells present are mucous neck cells secreting mucous.

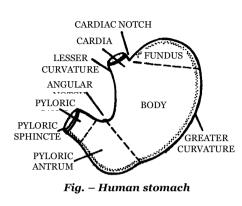
Middle part : Fundic gastric glands in rabbit and corpus in human has at least four distinct types of cells –

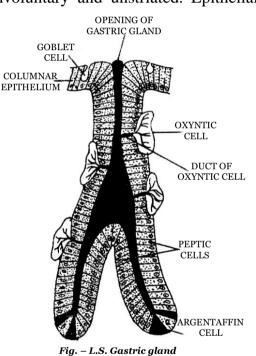
(i) **Peptic or zymogenic or chief or central cells :** Secretes two digestive proenzymes pepsinogen and prorenin.

(ii) **Oxyntic or parietal cells :** Secretes *HCl* and castle's intrinsic factor required for the absorption of vitamin B_{12} . Hyperacidity is a abnormally high a degree of acidity due to the secretion of large quantity of HCl i.e. gastric juice.

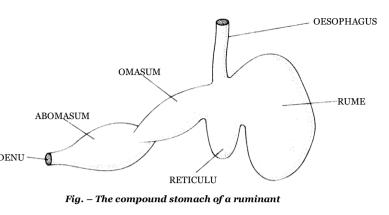
(iii) Mucous neck cells : Secretes alkaline mucous.

(iv) Argentaffin cells or Kultchitsky or enterochromaffin cells : Responsible for the secretion of vasoconstrictor seratonin.


Posterior part : Pyloric gastric glands in rabbit and human-cells are mucous neck cells secreting mucous and some cells, called "gastrin" or "G" cells, secrete a hormone, named gastrin, which increases the motility of gastric wall and stimulates gastric glands for active secretion.


(3) Functions

(i) Storage of food.


(ii) Trituration or churning of food to mix with gastric juice.

(iii) Functions of gastric juice (discussed along with gastric juice).

(4) Stomach of ruminants (cudchewing mammals) : The stomach of cattles have four parts, as rumen (paunch), reticulum(honeycomb), omasum (psalterium) and abomasum (rennet). Some authors believe that first three chambers are parts of the oesophagus, the DUODENUfourth chamber is the real stomach secretes HCl and enzymes. The

embryological studies have proved that all the chambers are parts of the real stomach.

The cattles rumen stores the quickly fed food. So cud chewing animals are called ruminants. e.g. cow, buffaloes, goat etc. Rumen is the largest part of stomach. Primitive digestion and bacterial action takes place in rumen. Which later on moves again to buccal cavity where it is properly chewed, then

this food passes into reticulum to omasum which concentrates the food by absorbing water and bicarbonates. Finally, the food reaches in the fourth chamber, abomasum. First three chamber are lined by cornified epithelium but fourth chamber abomosum is lined glandular epithelium and gastric glands, so it is true stomach. Camel and deer lack omasum. Reticulum is the smallest part and its cells are provided with water pockets for the storage of metabolic water.

In the rumen, food undergoes mechanical and chemical breakdown. Mechanical breakdown results

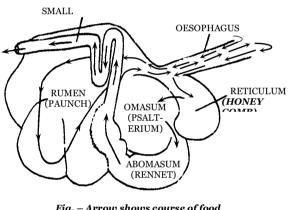
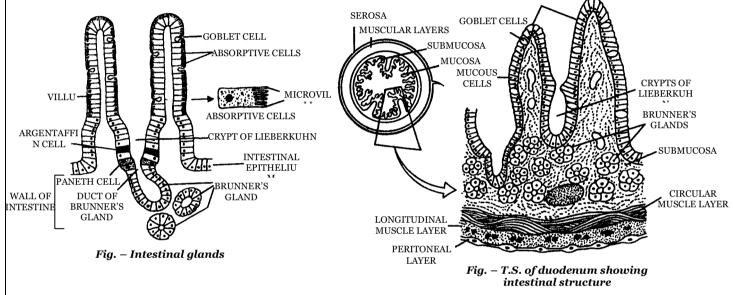


Fig. – Arrow shows course of food

from thorough churning brought about by muscular contractions and aided by cornified surface of villi. Chemical breakdown is caused by symbiotic microorganisms (bacteria and ciliates) that release enzymes, cellulase, which act on cellulose and simplify it to short-chain fatty acids, such as acetic acid, butyric acid, propionic acid. This is called microbial digestion. The fatty acids are neutralized by sodium bicarbonate of saliva and are absorbed. These two processes reduce the hard plant food to a pulp.

- Tumen is the hollow space present in the middle of alimentary canal and is the site where process of digestion takes place
- Stomach of frog is unilobed with two parts as anterior cardiac (various type of cells present in it secretes mucous, pepsinogen enzyme and HCl) and posterior pyloric (cells present secretes mucous). Frogs stomach has only pyloric sphincter valve present between stomach and duodenum.
- During hunger the folds of stomach deepen are called 'rugae'. P
- The length of human alimentary canal is approximately 9–10 meters. P
- The length of the alimentary canal depends on the basis of feeding habits. i.e. more complex the

food (Herbivorous condition) more the length of alimentary canal, hence smallest alimentary canal is of carnivores and medium sized in omnivores.


- Greenish faecal matter passed by infant in first two days of birth due to sterilized intestine is called meconium.
- ☞ National institute of nutrition in Hyderabad.
- ☞ Gastritis Inflammation of stomach due to excessive intake of alcohol.
- Gastric ulcer (inflammation of mucosa of stomach) and duodenal ulcer is due to excess of acidic gastric juices.
- Amount of rennin decreases with age, then the curdling of milk is done by pepsin and chymotrypsin.
- The policeman to the abdomen is omentum.
- Removal of stomach causes dumpong syndrome.
- The inner surface of small intestine is raised into longitudinal and circular fold called valvulae.
- *Chief* cells of the gastric glands secreting zymogen, have well-developed rough ER.
- Argentaffin cells occur both in stomach and duodenum.
- *•* Splanchnology is the study of the viscera.
- Achalasia cardia condition is characterised by failure of cardiac sphincter to relax completely on swallowing causing food accumulation in oesophagus and proximal oesophagus dilates.
- Chyme is the acidic food which passes from stomach to duodenum.
- Stomach is the site for digestion of protein. Size of stomach depend on the basis of proteineous diet, in carnivorous animal stomach large than herbivorous animal.
- Oesophagus does not secrete any enzyme.
- Stomach absent in labeo, lamprey and hag fish.
- Hunger pangs Stomach churns every 20 second, when an empty stomach churns, hunger pangs are feel.
- Liver is well developed in carnivorous animals.

(f) Small intestine

(1) **Structure :** Endodermal, longest part of alimentary present in the abdominal cavity, supported by a peritoneal membrane called mesentery. Wall of jejunum and ileum has circular or spiral internal fold called fold of kerckring or valvulae conniventes. Also numerous finger like projection called villi project from the wall of lumen, increasing internal surface are about eight time. The distal end of ileum is leads into the large intestine by ileo-caecal valve in man but in rabbit sacculus rotundus and ileo-coecal valve both are present.

(2) **Parts :** It is approximately 6 metres in human. It is divisible into three parts. In man small intestine divided into three parts –

Duodenum (Proximal part)	Jejunum (Middle part)	Ileum (Posterior part)	
2.5 cm. Long	About 2.4 <i>m</i> long and about 4	About 3.6 <i>m</i> long and about 3.5	
Forming U-shaped loop before	<i>cm</i> . wide.	<i>cm</i> . wide.	
leading to jejunum pancreas	Wall is thicker and more	Wall is thinner and less	
lies in the loop.	vascular.	vascular.	
	Villi thicker and tongue-like.	Villi thinner and finger-like.	
	Plicae best developed.	Plicae less developed.	
	Peyer's patches are lacking.	Peyer's patches are present.	
		VILLI	

(3) **Histology :** Serosa is the outer most covering. Muscular layer is generalized with involuntary, unstriated muscles. The cells present in the epithelial lining are simple columnar epithelial cells, which are brush- bordered *i.e.* provided with villi and microvilli to increase the surface area. The folds present are longitudinal and are called folds of kerckring or valvulae canniventes. Goblet cells secrete mucous. Payer's patches are the oval, rounded masses of lymphatic tissue present in between lamina propria and epithelial lining. They produce lymphocytes. Brunner's glands or Duodenal glands are the multicellular mucous glands present in the submucosa of duodenum only. They secrete mucous. In addition there are also found granular arogyrophil cell.

Brunner's glands	Payer's patches	Crypts of Leiberkuhn	
Found in duodenum only.	These are lymph nodules.	Known as intestinal gland.	
Mucus secreating gland as so known as mucus gland.	They produce lymphocytes. Lymphocytes are phagocyte in nature which destroy harmful bacteria.	only.	
		Formed by folding of lamina	

	propia.

Each gland has three types of cells : (i) Undifferentiated epithelial cell (ii) Zymogenic cell (paneth cell) and (iii) Argentaffin (Enterochromaffin cell).

(5) **Function :** Digestion and absorption of food.

(g) Large intestine : The name large intestine is due to large diameter.

(1) Structure : Endodermal, approximately 1.5-1.75 metre long.

(2) Parts : They are following –

(i) **Caecum :** Spirally coiled 10-15 cm long in human and 45 cm long in rabbit. Its posterior end is present as a blind sac in abdominal cavity called vermiform appendix. Vermiform appendix is vestigeal but contains lymphatic tissue. Caecum in human is concerned with passage of food whereas in rabbit it is concerned with cellulose digestion and conduction of food. Vompyrella bacteria helps cellulose digestion. Vermiform appendix produce antibody. It is functional in ruminents and vestigeal in man. If food may collect and decay in it or intestinal worms may settle in it and causes inflammation or appendicitis in man, in such case its removed by operation known as appendictomy.

(ii) **Colon :** Single endodermal approximately 1.3 *m* long in human distinguished into four limbs as ascending, transverse, descending and pelvic or sigmoid limb. Colon posses two specialized structures as Taeniae (present in the middle of colon) and Haustra, (dilated sac-like or pockets like structures surrounding taeniae).

Serosa is the outer most layer. The serious layer (visceral peritoneum) forms small pendulous projections, the appendices epiploicae filled with adipose tissue. Muscular layer is two layered contain involuntary unstriated muscles. The innermost lining is made up of columnar epithelial cells. Goblet cells and absorptive cells are also present. Cells are without villi and microvilli *i.e.* not brush–bordered. Colon is concerned with absorption of water (80-85%), salts, vitamins etc. hence concerned with faeces formation. Colon bacteria also synthesized vit. *B* and *K*.

Differences between sman and large intestines				
Small intestine	Large intestine			
Longer (about 6 m.) but narrower than large	Shorter (about 1.5 m.) but wider than small			
intestine.	intestine.			
Differentiated into duodenum, jejunum and	Differentiated into caecum, appendix, colon and			
ileum. rectum.				
Mucous membrane has plicae circulares and villi.	Mucous membrane is mostly smooth (without			
	plicae and villi). Rectum has longitudinal folds.			
Lacks taeniae coli, haustra and epiploic	Has taeniae coli, haustra and appendices			
appendages.	epiploicae.			
Peyer's patches are present in the ileum.	Peyer's patches not formed, lymphoid nodules			
	beins scattered.			
Completes digestion and absorbs digestion	Absorbs water, forms and eliminates faeces,			

Differences between small and large intestines

products. Also produces some hormones.	produces vitamins B and K by bacterial activity			
	and excretes certain inorganic ions.			
Mucosal irritation due to infection causes	Mucosal irritation due to infection causes			
diarrhoea. dysentery.				

(iii) **Rectum :** Single small dilated sac like in human whereas large beaded in rabbit. It is concerned with storage of faeces rectum has strong sphinctor muscle in its wall. The sphinctor keeps the canal as well as anus, closed when not used for defecation.

(3) Function : Absorption of water from undigested food.

(h) **Anal canal and anus :** Anal canal connects rectum with anus and it is about 3 cm. long. Anus is the terminal inferior opening of alimentary canal, which is guarded by an internal involuntary sphincter and an external voluntary sphincter.

(i) **Generalized histology of alimentary canal :** The alimentary canal consist of following layers from outer to inner side:

(a) **Serosa :** Outermost, mesodermal, single layered made up of squamous epithelial cells.

(b) **Muscular layer :** Mesodermal, consist of outer longitudinal and inner circular layer. Muscles are involuntary unstriated. In between the two layers there is a nerve network called the plexus of Auerbach.

(c) **Submucosa :** Mesodermal, made up of connective tissue and contains major

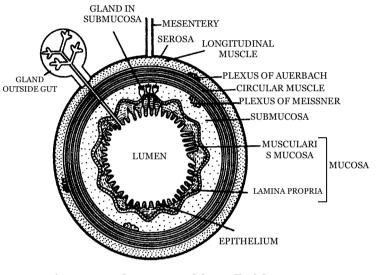


Fig. – General structure of the wall of the mammalian gut and associated structures

blood vessels, lymphatic vessels, nerve fibres etc. Mucous glands are also present in some parts of alimentary canal. In this region nerve network, called plexus of Meissner.

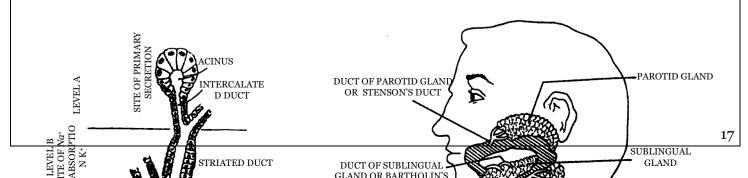
(d) **Muscularis mucosa :** Thin layer, made up of outer longitudinal muscles and inner circular muscles. The muscles are involuntary unstriated.

(e) **Mucosa :** Inner most ectodermal in buccal cavity and anal canal whereas in the rest part of alimentary canal it is endodermal.

(f) **Tunica propria (lamina-propria) :** Outer, thin layer of connective tissue containing fine blood vessels, lymphatic vessels and nerve fibres.

(g) **Mucous membrane / epithelial lining :** Ectodermal or endodermal, single layered, made up of columnar epithelial cells. Goblet cells are also present in this layer. These cells are cup-shaped unicellular mucous glands secreting mucous. Epithelial lining is folded which are generally longitudinal and increases surface area.

- Cellulose is digested by the enzyme cellulase synthesized by the microorganisms present in the lumen.
- Cellulose Cellulaseby Acetic acid + Propionic acid + Butyric acid + Small chain fatty acid.
- Sacculus rotundus is a dilated sac like structure present in rabbit at the junction of ileum, caecum and colon. It contains ileo-caecal valve, which guides the direction of food from ileum to caecum. Sacculus rotundus is absent in human but ileo-caecal valve is present.
- *The hindgut of all vertebrates (except metatherian and eutherian mammals) includes cloaca and cloacal aperture, instead of anal canal and anus.*
- *Cloaca is divided into three parts*
 - (i) Coprodaeum is a part of rectum, where faeces are stored.
 - (ii) Urodaeum a depression in the part of cloaca where urinary duct and urinary bladder open.


(iii) Proctodaeum terminal part of cloaca that is common opening for the excretion of urinary, genital and faecal matter and externally open by anus.

- Digestion of cellulose takes place in caecum of rabbit with the help of enzyme cellulase produced by symbiotic microorganism. Cellulose digestion does not occur in human.
- *Peyer's patches in the intestine are the site of production of B-lymphocyte.*
- *The most of the vertebrate's protein digestion ends in ileum.*
- *The study of alimentary canal is called Enterology.*
- *Auerbach's plexus is present in small intestine.*
- Triconympha found in their intestine that secretes enzyme β -glucosidaes which hydrolyse the cellulose to sugars which are used by both symbionts.
- Bursa fabricus is also called cloacal thymus, is a lymphoid mass in the cloaca of birds. It is site of differentiation of B-lymphocytes. So a part of immune system.

(ii) **Digestive glands :** The various types of digestive glands present in mammals are salivary glands, gastric glands, intestinal glands, pancreas and liver. The digestive glands secrete digestive juices. Parasympathetic nervous system increases the secretion of digestive juice whereas sympathetic nervous system decreases it.

(a) Salivary glands : The three pairs of salivary glands present in humans are as follows -

(1) **Parotid :** One-pair, largest salivary gland present below pinna. A stenson's duct arises from each gland, opening between the teeth of upper jaw. Parotid glands secrete enzymes. Viral infection of parotid glands causes "Mumps".

(2) **Sub-mandibular / sub-maxillary :** One-pair, present at the junction of upper and lower jaw in cheek region. A wharton's duct arises from each gland and opens on lower jaw. These are seromucous glands.

(3) **Sub-lingual :** One-pair, present in the floor of buccopharyngeal cavity. These are mucous glands 6-8 ducts, called ducts of rivinus or Bartholin's duct arises from these glands and opens below tongue on the floor of buccopharyngeal cavity. The sub-lingual and sub-maxillary glands mostly secrete a glycoprotein called mucin (mucous secretion) while parotid glands secrete a watery fluid (serous secretion) which contains a digestive enzyme, the ptyalin or salivary amylase. Both these secretions together form the saliva. Infra orbital lie below the orbit and are absent in man.

Saliva / salivary juice : The secretion of salivary glands is called saliva or salivary juice. Some of the characteristics are as follows –

(i) Amount : 1.5 litre/day

(ii) Chemical nature : Slightly acidic.

(iii) pH - 6.8

(iv) Control of secretion : Autonomic reflex (parasympathetic nervous system increases salivation while sympathetic nervous system inhibit secretion.)

(v) Chemical composition : Water (98.2%), mucous (acts as lubricant), salts (*NaCl, NaHCO*₃ etc.), enzymes (ptyalin, lysozyme) etc.

Functions : Salivary juice and its enzymes -

(i) Makes the medium slightly acidic for the action of its enzyme.

(ii) Help in taste detection, deglutition, speaking etc.

(iii) Starch $\frac{Ptyalin/Diastase}{(Salivary amylase)}$ Maltose + Isomaltose + Limit dextrin.

(iv) Bacteria (living) $___{Lysozyme}$ Bacteria killed.

- *•* Chlorides act as catalase and activate the ptyalin.
- Poisonous glands of snakes are modified parotid salivary glands or maxillary gland.
- *•* Salivary glands are absent in frog, whale and dolphin etc.
- *carnivores, cattles and other cud-chewing mammals lack ptyalin enzymes in their saliva.*

- Approximately 5% of food are digested in buccopharyngeal cavity.
- N-Acetyl muramidase active in saliva.

(b) **Gastric glands :** There are approximately 35 million of gastric glands present in human stomach and grouped into three categories as already described along with stomach. The gastric gland secretes gastric juice.

Gastric juice

(1) Amount : 2-3 liters/day.

(2) Chemical nature : Highly acidic

(3) $pH \rightarrow 1.0$: 3.5 (due to presence of *HCl*)

(4) Control of secretion : By gastric hormone.

(5) Chemical composition : Water (99%), mucous, inorganic salts, castle's intrinsic factor, *HCl* (0.5%, conc.) and enzymes prorennin and pepsinogen and gastric lipase.

Functions of gastric juice and its enzymes

(1) Inactivates the action of saliva.

(2) Makes the medium acidic for the action of gastric enzymes.

(3) HCl kills micro organisms.

(4) *HCl* kills the living organism (prey etc.) if ingested.

(5) Pepsinogen (inactive) \xrightarrow{HCl} Pepsin (active).

(6) Prorenin (inactive) \xrightarrow{HCl} Rennin (active).

(7) Pepsinogen (inactive) $\xrightarrow{\text{Pepsin}}$ Pepsin (active).

- (8) Proteins + Peptones $\xrightarrow{\text{Pepsin}}_{pH-1-3}$ Polypeptides + Oligopeptides.
- (9) Casein (Soluble milk protein) $\xrightarrow{\text{Chymosin/Renint/Rennet}}$ Calcium paracaseinate (insoluble curd- Ca^{++}

like). Above phenomenon is called "curdling of milk".

(10) Lipids $\xrightarrow{\text{Gastric Lipaset}}_{negligibleinhuman stomachactsat pH 4-6}$ Triglycerides + Monoglycerides.

(11) HCl is antiseptic.

(12) It act as preservative.

Lactose intolerance : Among mammals, man alone takes milk even after becoming adult. In some humans, secretion of lactase decreases or ceases with age. This condition is called lactose intolerance. Lactose intolerant persons fail to digest lactose of milk. In their large intestine, lactose fermented by bacteria, producing gases and acids. This causes flatulence (distension of stomach and intestine), intestinal cramps, abdominal pain and diarrhoea. These people can take yoghurt (yaourt)¹ and *or* curd² and cheese without any digestive problem. In yoghurt, lactose is fermented into lactic acid. In curd, lactose is left in the whey.

- Pepsin is an autocatalytic enzymes.
- Rennet Rennin containing tablets obtained from calf and is commercially use for curdling of milk

to make cheese.

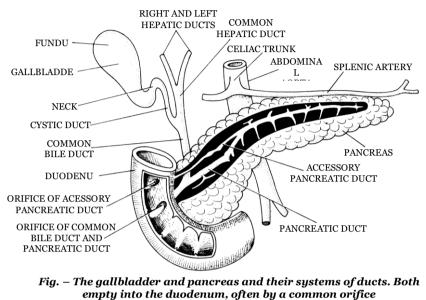
- Enzyme rennin is found only in infant mammals but its presence is doubtful in human children. The digestion of milk is brought out by pepsin enzyme.
- Erosion of gastric epithelial lining due to effect of pepsin is called "peptic ulcers" and due to HCl, is called gastric ulcers.
- Pepsin hydrolyses the peptic bonds on c-terminus side of tyrosine, tryptophan and methionine amino acids.
- *Secretion of gastric juice is controlled by gastrin hormone + vagus nerve + seratonin + histamine.*
- Secretion of gastric juice stimulated by parasympathetic autonomic nervous system and inhibited by sympathetic nervous system.

(c) **Intestinal glands :** Intestinal glands in mammals is a collective name for crypts of Lieberkuhn (secretes alkaline enzymatic juice) and Brunner's glands (secretes mucous). Intestinal glands secrete intestinal juice.

(1) Succus entericus (intestinal juice)

(i) Amount : 1.5 - 2.0 l/day.

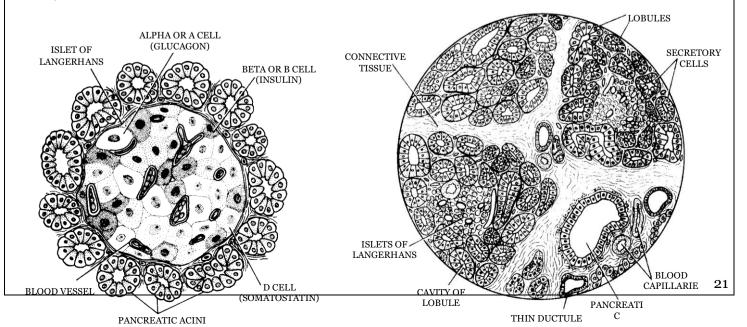
(ii) Chemical nature : Alkaline.


(iii) pH: 7.5-8.3

- (iv) Control of secretion : Nervous and hormonal (Enterocrinin Duocrinin etc.)
- (v) Chemical composition : Water (99%) mucous, inorganic salts, enzymes etc.
- (vi) Function : Intestinal juice and its enzymes.
- (a) Inhibits the action of gastric enzymes.
- (b) Makes the medium alkaline for the action of it's enzymes.
- (c) Starch $_$ Amylase \rightarrow Maltose + Isomaltose + limit dextrin.
- (d) Maltose $\xrightarrow[(\alpha-glucosidase)]{}$ Glucose + Glucose.
- (e) Isomaltose $_$ Isomaltase \rightarrow Glucose + Glucose.
- (f) Lactose (milk sugar) $\xrightarrow[(\beta-galactosidase)]{}$ Glucose +Galactose.
- (g) Sucrose (cane sugar) $\xrightarrow{\text{Sucrase / Invertase}}$ Glucose + Fructose.
- (h) Polypeptides + Oligopeptides $\xrightarrow[(Amino-peptidase)]{Erypsin}$ Amino acids.
- (i) Trypsinogen (inactive) _____ Trypsin (active).
- (j) Lipids $__{Lipase}$ Fatty acids + Glycerol + Monoglycerides.
- (k) Phospholipids $\xrightarrow{Phospholipuse}$ phosphorous + Fatty acids + Glycerol + Monoglycerides.
- (1) Organic phosphate _____ Free phosphate.

(m) Nucleic acid <u>Polynucleatidase</u> Nucleotides.

(n) Nucleosides ______ Nucleosidase ______ Nitrogenous bases.


(d) **Pancreas :** Single endodermal, flat, leaf-like yellowish, heterocrine (mixed) gland, present between the ascending and descending limb of duodenum and opens into duodenum through pancreatic duct.

(1) Parts

(i) **Exocrine :** It is the major part of pancrease. The exocrine tissue of the pancreas consists of rounded lobules (acini) that secrete an alkaline pancreatic juice. The juice is carried by the pancreatic duct, also called duct of Wirsung, into the duodenum through the hepatopancreatic ampulla. An accessory pancreatic duct, also named duct of Santorini, may sometimes lead directly into the duodenum.

(ii) **Endocrine :** Minor part also called as islets of Langerhans scattered in the exocrine part. It consist of four various type of cells, as $\alpha(A)$ cells, $\beta(B)$ cell and $\delta(D)$ cells. α -cells secretes glucagon hormone, β -cells secretes insulin hormone and δ cells secrets somatostatin. The secretion passes directly into blood.

(2) Pancreatic juice

- (i) Amount : 1-1.5 *l*/day
- (ii) Chemical nature : alkaline
- (iii) *pH* : 8.6
- (iv) Control of secretion : Hormonal

Secretin hormones stimulate the production of more alkaline pancreatic juice but low in enzyme content.

Pancreozymin stimulates the production of enzyme rich pancreatic juice.

(v) Chemical composition : Water (99%) enzymes and salts.

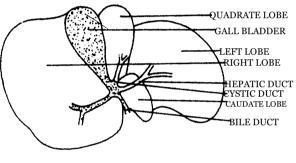
(3) Functions of pancreas and its enzymes

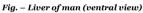
- (i) The islets of Langerhans secrete insulin and glucagon hormones.
- (ii) The exocrine part of pancreas secretes pancreatic juice.
- (iii) Elastase : It act upon elastin protein.
- (iv) Trypsinogen $__{Interokinase of}$ Trypsin.
- (v) Trypsinogen $\xrightarrow[(Autocatalysis)]{Trypsin}$ Trypsin.
- (vi) Chymotrypsinogen $\xrightarrow{\text{Trypsin}}$ chymotrypsin.
- (vii) Polypeptides + peptones $\xrightarrow{\text{Trypsin}}$ Tripeptides + Dipeptides + Oligopeptides.
- (viii) Starch $\xrightarrow{\text{Amylopsin}}$ Maltose + Isomaltose + limit dextrin.
- (ix) Emulsified Lipids $\xrightarrow{\text{Steapsin}}$ Fatty acids + Glycerol + Monoglycerides.
- (x) Nucleic acid ______ Nucleotides + Nucleosides.
- (xi) Nucleic acid _____ Purines + Pyrimidines.
- (xii) Polypeptides $__{Chynotrypsin}$ Oligopeptides.

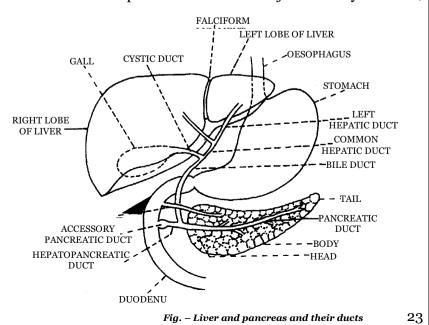
- ☞ Trypsin hydrolyses the peptide bonds on C-terminus side of arginine and lysine.
- Trypsin is called universal enzyme as found from protozoans to mammals.
- ☞ Nucleases of pancreatic juice digest about 80% of nucleic acid.
- Pancreatic juice is called as "complete digestive juice" as it is protease enzymes can break all type of peptide bonds.
- Amylases act on glycoside linkages.
- * Proteolytic enzymes are always secreted in inactive form hence prevents cell digestion. These

enzymes becomes active in the lumen of alimentary canal but are generally unable to digest the cells of epithelial lining due to continuous secretion and presence of thick mucous covering.

- *•* Pepsin, trypsin and chymotrypsin are endopeptidases whereas carboxy peptidase is exopeptidase.
- Chymotrypsin acts on peptide bonds on C-terminus side of tyrosine, tryptophan and phenylalanine amino acid.
- Blood is digested by trypsin.
- *•* Enterokinase is a non-digestive protease while bile is a non-enzymatic digestive juice.
- Duct of santorini is an accessory pancreatic duct.
- Pisiform cells loaded with zymogen granules can be seen in pancreas.
- Galactosemia is a disease of children in which amount of galactose increases in blood. Such children are kept on milk free diet.
- Sucrase changes dextro-rotatory sucrose to a leavo-rotatory mixture of glucose and fructose by inversion.

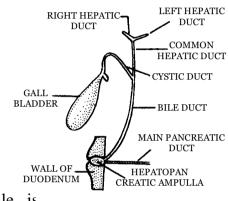

(e) Liver

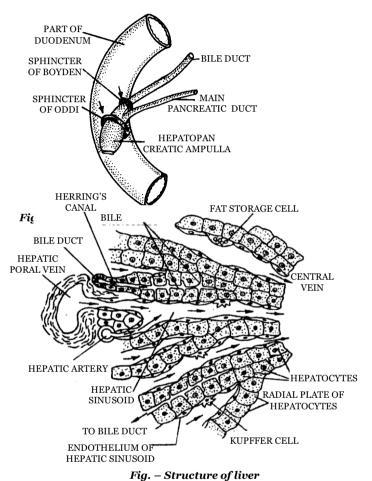

(i) **Structure :** The liver is largest gland in the body. Its upper and anterior surfaces are smooth and curved to fit the under surface of the diaphragm; the posterior surface is irregular in outline.


It consists of three lobes in frog: right, left and median; five lobes in rabbit: left lateral, left central, spigelian, right central and caudate; four lobes in

man: right, left, quadrates and caudate lobe. These are surrounded by a thick capsule, mostly overlaid with reflected peritoneum. It is heavier in males than females. In males it generally weights 1.4 - 1.8 kg and in females 1.2 - 1.4 kg. It is divided into two main lobes : right and left lobes separated by the falciform ligament. The latter is a membrane that is continuous with the peritoneum. The right lobe of the liver is differentiated into right lobe proper, a quadrate lobe and a caudate lobe in the inferior side. A pear-shaped sac, the gall bladder is attached to the posterior surface of the liver by connective tissue. The right and left hepatic ducts join to form the common hepatic duct. The latter joins the cystic duct,

which arises from the gall bladder. The cystic duct and common hepatic duct join to form bile duct, which passes downwards posteriorly to join the main pancreatic duct to form the hepatopancreatic ampulla (ampulla of Vater). The ampulla opens into the duodenum. The opening is guarded by the sphincter of Oddi. The sphincter of Boyden surrounds the opening of the bile duct before it is joined with the




pancreatic duct. The basic structural and functional unit of the liver is the hepatic lobule.

The liver is encapsulated in rabbit and man by two sheaths-an outer membranous serous capsule consisting of visceral peritoneum and an inner Glisson's capsule of a thin layer of dense connective tissue. In frog Glisson's capsule is absent. Numerous thin and profusely branched septa-like trabeculae extend inwards from Glisson's capsule, dividing each liver lobe into numerous minute and polyhedral units called hepatic lobules. Thus, the adjacent lobules are separated by interlobular Glisson's capsules. Each hepatic lobule is about one millimetre in diametre. A slender intralobular branch of hepatic vein, called central vein or venule, forms the axis of each lobule.

Each lobule is Fig. -Showing gall bladder, different polyhedral, glycogaticts and hepatopancreatic ampulla arranged radially aro

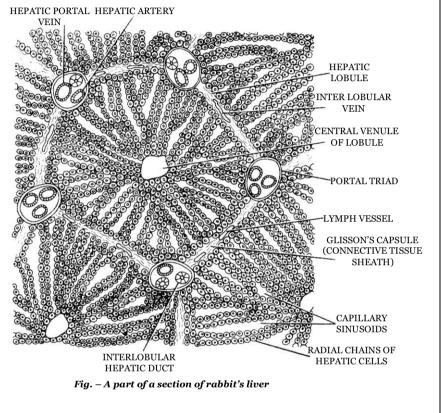
the plates are radial blood sinusoids. At the periphery of the lobules, the branches of portal vein, hepatic artery, bile ducts, and lymphatics course together. A network of tubular spaces between the hepatocytes represents the bile canaliculi. At the periphery of the lobule the bile canaliculi empty into small hering's canals walled by cuboidal epithelium. These canals lead into bile ducts walled by columnar epithelium. The sinusoids are lined by

incomplete endothelium with scattered phagocytic Kupffer cells, that eat bacteria and foreign substances.

Gall bladder : The gall bladder is a slate-blue, pear-shaped sac connected with an supported from liver by a small omentum or ligament. Its distal part is called fundus, while the narrow part, continued as cystic duct, is called the neck.

(ii) **Functions of liver :** Liver, the largest gland of vertebrate body, is an essential organ, which performs many functions –

(1) **Secretion :** It secretes bile which is a complex watery fluid containing bile salts (Na taurocholate and glycocholate), bile pigments (biliverdin and bilirubin), cholesterol, mucin, lecithin and fats etc. The bile aids in intestinal digestion as it breaks and emulsifies the fat, prevents


putrefaction of food by checking the growth of bacteria, makes the chyme better suited for pancreatic digestion by neutralizing the acid in it, and helps in the absorption of fat from the intestine.

(2) **Excretion :** In the liver, haemoglobin of the worn out erythrocytes breaks down to bile pigments bilirubin and biliverdin. The liver excretes these pigments as a major constituent of bile, a part of which carried to the kidney through general circulation for excretion through urine. The bile pigments are also converted in the bowel into stercobilin which colours the faeces but, apart from this, are waste products having no other function.

(3) **Glycogenesis :** Excess quantities of carbohydrates (glucose) are converted to glycogen in the presence of insulin in the liver cells, and stored therein.

(4) **Glycogenolysis :** Glycogen is a reserve food material, which is changed into glucose and released into the blood at concentrations maintained constant by the liver. In this way, blood–sugar level is maintained under diverse dietary conditions.

(5) **Gluconeogenesis** : Under abnormal conditions, liver can convert proteins and fats into glucose by complex chemical reactions. Formation of this "new sugar" *i.e.* from non–

carbohydrate sources, is called gluconeogenesis.

(6) **Lipogenesis :** If the level of blood–glucose rises beyond normal even after glycogenesis and catabolism, the excess glucose is converted into fat and stored in the liver. The process is termed lipogenesis.

(7) **Transamination and deamination :** Amino acids resulting from protein digestion finally come into the liver from the intestine. They are partly released into the blood for distribution and protein synthesis, partly transaminated into other amino-acids and deaminated. Any resulting keto-acids are converted into carbohydrates or fats and the free amino-groups appear as ammonia. This is excreted as such (*e.g.*, aquatic animals) or after prior conversion to urea (*e.g.* amphibians, mammals) or uric acid (*e.g.*, insects and birds).

(8) **Haemopoiesis :** In the embryo, red blood cells are manufactured by the liver. In the adult, liver stores inorganic salts of iron, copper and vitamin B_{12} (anti–anaemic factor) and thus helps in the formation of red blood cells and haemoglobin.

(9) **Store-house of blood :** Liver functions as a store-house for blood and regulates blood-volume.

(10) **Blood clotting :** Fibrinogen, prothrombin and certain other blood coagulation factors are formed in the liver which are instrumental in blood clotting. Heparin is an intravascular anticoagulant that is stored in the liver. It originates in mast cells, which are abundant in the liver, among other sites.

(11) **Production of plasma proteins :** The plasma proteins serum albumin and serum globulin are synthesized by the liver from the amino acids derived from the protein in the diet.

(12) Synthesis and storage of vitamins : Liver synthesizes vitamin A from the provitamins A (carotenoid pigments). Liver cells also store fat-soluble vitamins A, D, K and E. Besides, it is the principal storage organ for vitamin B_{12} .

(13) **Detoxification :** It is the process by which toxic substances are rapidly made excretable through different biochemical changes. The liver is the site of detoxification of different toxic substances either produced in the body or taken along with food. This is done by the process of oxidation, hydrolysis, reduction and conjugation. Many drugs like phenylbutazone pethidine, chloromycetin etc. are also made excretable by the liver enzymes.

(14) **Alcohol metabolism :** Liver is the main site of alcohol metabolism. By various enzymes in the liver, alcohol is first catabolised to acetaldehyde, which is converted into acetyl CoA. The latter may be oxidised to CO_2 and H_2O or converted to other biochemical compounds including fatty acids through TCA cycle. The direct effect of alcohol may be alcoholic fatty liver, which results from increased fatty acid synthesis.

(15) **Desaturation of fats :** Fats is stored in the body in a saturated form (*i.e.*, they cannot take any more hydrogen into their composition). Before the saturated fats can be used by the tissues of the body, they are conveyed to the liver, which converts them into unsaturated form (by the removal of hydrogen). The unsaturated fats are then used by the tissues to provide energy.

(16) **Heat production :** A large number of chemical processes are carried out by the liver, that involve the production of a great deal of heat. It is the main heat producing organ of the body.

(17) **Phagocytosis :** Kupffer cells in the liver sinusoids phagocytose and remove bacteria, wornout blood elements and foreign particles.

(18) Lymph formation : Liver is an important site of lymph formation.

(iii) Bile/chole :

(1) Amount : 0.6-1 litre/ day	(2) Source : Secreted by hepatic cells
(3) Storage site : Gall bladder	(4) Colour : Greenish-blue

(5) Chemical nature : Alkaline (6) pH : 7.7-8.0

(7) Control of secretion-Hormonal, hormone concerned is cholecystokinin (cck) or pancreozymin (pz).

(8) Composition –

(i) Water : 90% in (Gall bile), and 98% in hepatic

(ii) Mineral salts and *NaHCO*₃(increases alkalinity)

(iii) Mucous

(iv) Bile salts : Sodium taurocholate and sodium glycocholate causes fat emulsification

(v) Bile pigments : Bilirubin and biliverdin

(vi) Cholesterol

(vii) Lecithin

(viii) Bile pigment bilirubin (yellow colour) and biliverdin green (green colour)

(ix) The quantity of bilirubin is more in carnivorous animals but in quantity of biliverdin is more in herbivorous animal.

(9) Functions of bile

(i) Emulsification of fats.

(ii) Helps in absorption of fat-soluble vitamins.

(iii) Increases alkalinity to make the medium suitable for enzymatic action.

(iv) Elimination of heavy metals such as Cu, Hg, Zn etc.

(v) Elimination of excess of bile pigments.

(vi) Stercobilin and urobilin is formed by bilirubin and biliverdin is responsible for colouration of faeces.

- In human and frog, the common bile duct unites with pancreatic duct to form hepato pancreatic duct or choledochous duct which in turn opens into duodenum.
- *The rabbit common bile duct and pancreatic duct opens into duodenum through separate openings.*
- Sphincter of boyden is absent in rabbit and frog.
- Ampulla of vater is the dilated sac like structure present near sphincter of oddi in human and rabbit.
- Digestive enzymes are absent in bile juice.
- Jaundice is the yellowing of skin, eyes, nails etc. due presence of increased level of bile pigments especially bilirubin in blood. It may be due to hepatitis or liver cirrhosis (fatty liver syndrome).
- Gall stone under certain abnormal conditions such as too much absorption of water, bile salts or lecithin from bile excess formation of cholesterol, inflammation of gall bladder tissue etc., bile cholesterol precipitates, forming solid crystals called gall stones.
- Cholecystectomy Surgical removal of gall bladder.
- Liver does not synthesize gamma globulin.
- Phyrygian cap is associated with fundus of gall bladder.
- Bile is produced by hepatocytes.
- ☞ Liver produces biles, cholesterol and iron.
- Prussic acid formed during metabolism is rendered harmless by liver.

- ☞ Septicaemal anemia causes destruction of liver.
- Gall bladder is absent in adult lamprey, grain eating birds, rats, whales, all the perrissodactyla (odd toed hoofed mammals, such as horse and some Artiodactyla (even toed hoofed mammals).
- *•* Bile is alkaline in man but acidic in cats and dogs.
- *•* Choleretic are substance which increase bile secretion from liver e.g. bile salts.
- *•* Cholagogues are substances which causes the contraction of the gall bladder.
- Sphincter of oddi is present at the terminal end of common bile duct in rabbit and choledochus duct in human but is absent in frog.
- *Glisson's capsule is a fibrous connective tissue encloses the lobules of the vertebrate liver.*
- Entero hepatic circulation It is related to the circulation of bile salts. Bile salts enters into the lumen of small intestine through bile. Some amount of bile salts are absorbed along with fatty acids and monoglyceride and ultimately reaches back to the liver. It is known as entero hepatic circulation.
- Hepatopancreas is a gland found in prawn, which not only secrets an enzymes containing digestive juice but also store glycogen, fat and Ca. It thus act as both the liver and pancrease of vertebrates.
- Obstructive jaundice is the condition when hepatic or common bile duct may be obstructed and failing to be excreted bile by the bile capillaries.

3.3 PHYSIOLOGY OF DIGESTION

The process of digestion involves following steps -

(i) **Ingestion :** It is the intake of food most of the animals capture the prey/food with the help of mouth or tongue. Such as frog, rabbit, cattle etc. Some are filter–feeders such as paramecium, pila etc. In human food is ingested with the help of hands.

(ii) **Mastication :** The process occurs in the buccopharyngeal cavity of mammals with the help of teeth. During this process food is broken down into small pieces, which increases its surface area. In frog teeth are not meant for mastication but prevents the escape of prey from mouth.

(iii) **Degglutition / swallowing :** The passage of food from buccopharyngeal cavity to oesophagus/stomach. In mammals bolus of the masticated food is formed in buccopharyngeal cavity which easily slides into oesophagus. It is a voluntary reflex mechanism. Peristalsis is alternative contraction and relaxation of circular and longitudinal muscles produces the wave of contraction due to which the food passes from front to backward direction in the lumen of alimentary canal. The phenomenon is called as peristalsis. Beside alimentary canal, it is also found in vas deference, ureter etc.

Peristalsis in stomach is called trituration or pendular movement, in small intestine segmentation pendular movement. Whereas in large intestine (colon) it is called as haustration or segmentation movements. Peristalsis is maximum in oesophagus and minimum in rectum.

Antiperistalsis is the peristaltic wave occurs in the reverse direction. It occurs in alimentary canal and results in vomiting. The phenomenon is called as "Regurgitation". The food, which passes out through mouth in vomiting, is chiefly of stomach and sometimes from the anterior part of duodenum. Vomiting may also be due to blockage of gut or amalstasis. Vomiting centre is present in medulla oblongata.

(iv) **Digestion :** The process by which complex food is converted into simple food with the help of digestive enzymes. The process of digestion in mammals starts in buccopharyngeal cavity and is found in stomach and small intestine, whereas in frog the process starts in stomach and continues in small intestine.

(a) **Digestion in buccopharyngeal cavity :** In buccopharyngeal cavity of mammals only starch is digested which is 5% of total food or 20-30% of carbohydrates.

(b) **Digestion in stomach :** Chiefly proteins is digested in stomach.

(c) **Digestion in small intestine :** All three component carbohydrates, proteins and fats digested in small intestine with the help of enzymes secreted by pancreas and intestinal glands. About 50% of starch is digested by pancreatic amylase and 10-20% by intestinal amylase. Only 60% of lipids are digested in the small intestine major part of proteins is digested in the stomach. The end product of digestion is as follows

Summary of chemical digestion of food

ChemicalChemical digestion ofdigestion of proteincarbohydrates		Chemical digestion of fats	Chemical digestion of nucleic acid	
Protein Food Polysaccharides		Fat	Nucleid acid	
Pepsin (gastric juice) Proteoses and Peptons Trypsin and Chymotrypsin (pancreatic juice)	(starches) ← Ptyalin (saliva) ← Amylase (pancreatic juice) Disaccharides (sugars) ←	Bile salts (bile) Emulsified Fats Lipase (pancreatic and intestinal juice)	(DNA and RNA) Pancreatic	
Tri and Dipeptides	Maltase,	Fatty acids and glycerol	(DNAase & RNAase)	
 Peptidases (intestinal juice) Amino acids (monopeptides) 	Lactase Sucrase (intestinal juice) Monosaccharides (glucose, fructose, galactose)		Nucleotides Intestinal Nucleotidases and Nucleosidases Nitrogen bases Pentose sugars and inorganic phosphate	

(v) **Absorption :** Ingestion and digestion are the first two phases of the physiological processes occuring in the alimentary tract. The third phase is that of absorption by which the digested nutrients are absorb through the wall of gut into blood.

(a) Absorption from the mouth : Normally, there is no absorption from the mouth, but a few

drugs may be absorbed into the blood through the mucous membrane, if allowed to dissolve under the tongue, *e.g.*, isoprenaline, glyceryl trinitrate.

(b) **Absorption from the stomach :** In the stomach, absorption takes place to a limited degree. The only substances normally absorbed from the stomach are some water, glucose and considerable amounts of alcohol. These substances are absorbed through the walls of the stomach into the venous circulation. Although iron absorption takes place in the

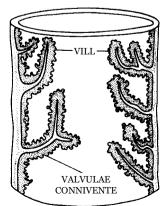
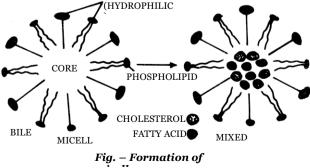


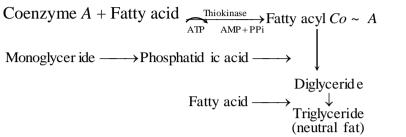
Fig. – Valvulae conniventes and villi in human intestine

small intestine, it is dissolved out of foods most effectively in the stomach in the presence of HCl.

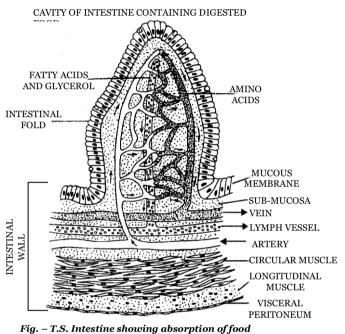
(c) **Absorption from the small intestine :** The small intestine is the main absorptive organ. About 90% of the ingested foodstuffs is absorbed in the course of passage through the small intestine. The surface area of the intestine through which absorption can take place is vastly increased by the circular folds (plicae semilunares) of the mucous membrane and by the large number of villi. The intestinal wall appears very much like a Turkish towel. Surface area of the intestine is further increased by the microscopic folds, the microvilli, protruding out from the surface of the intestinal epithelial cells.


There are two general pathways for the transport of materials absorbed by the intestine; the veins of the hepatic portal system which lead directly to the liver; and the lymphatic vessels of the intestinal area, which eventually lead to the blood by way of the lymphatic system and the thoracic duct.

(1) Absorption of carbohydrates : The products of carbohydrate digestion is absorbed from the intestine into blood of the portal venous system in the form of monosaccharides, chiefly the hexoses (glucose, fructose, mannose and galactose). Two mechanisms are responsible for absorption of monosaccharides: active transport (against concentration gradient) and simple diffusion. Active transport takes place through carrier proteins and considerable amount of ATP. Sodium ions (Na^+) play an important role in this carrier transport system. Hence it is called Na^+ co-transport mechanism.


(2) Absorption of amino acids and protein : It is probable that under normal circumstances the dietary proteins are almost completely digested to their constituent amino acids and that these end products of protein digestion are then actively transported from the intestine into the portal blood. There are exist several different carrier systems for transporting different classes of amino acids. Some of these required Na^+ , just as in the case of carbohydrate transport. Surplus amino acids are also withdrawn from portal blood by liver cells and deaminated into ammonia and keto acids. The ammonia is converted to urea and released into blood for excretion by kidneys, while the keto acids are converted to glucose or pyruvic acid and utilized for energy-production or for storage as glycogen and fat.

(3) **Absorption of fats :** The dietary fat is digested, by the action of the pancreatic lipase present in the intestine, partially into glycerol and fatty acids and partially to split products such as monoacyl glycerols. These products of fat digestion enter the mucosal cells of the small intestine in two forms.


(i) Some of the liberated fatty acids and monoacyl glycerols aggregate to form water-soluble particles known as micelles. The structure of a micelles is similar to that of the lipid emulsion except that these are smaller in size. Formation of micelles helps absorption of free fatty acids and monoacyl glycerols from intestinal lumen into the epitherous by simple diffusion

(ii) With the aid of the bile salts many fatty acids and glycerol enter the epithelial cells of the intestinal mucosa. During their passage through the epithelial cells, they combine together resulting in the resynthesis of triacylglycerides.

The resynthesized fat then passes into the lacteals (lymph vessels) of the intestinal villi, primarily in the form of small lipid droplets about 0.5 µm in diameter, known as chylomicrons. These small droplets contain about 90% triglyceride and small amounts of phospholipid, cholesterol, free fatty acids and protein. By the lacteals, the fat is carried to the cisterna chyli (meaning 'the receiver of the chyle') and then by the thoracic (lymph) duct to the left branchiocephalic vein, where it enters the blood. The lymph reaching the thoracic duct from the intestines contains an excess of fat giving it a milky appearance. It is called chyle. In this way, fatty acids and glycerol are eventually brought

into the blood stream and so, by a circuitous route, to the liver. In the liver, they are reorganized and recombined to form human fat.

(4) **Absorption of vitamins :** Water-soluble vitamins like members of B complex (except B_{12}) and vitamin C readily diffuse across the walls of the intestine into the blood. To move vitamin B_{12} across the wall of the ileum, a special system is required. In the stomach, the vitamin combines with a special protein secreted by the gastric glands, known as the castle's intrinsic factor. During the absorption process in the ileum, vitamin B_{12} is released from the intrinsic factor and enters the blood. The fat-soluble vitamins *A*, *D*, *E* and *K* are dissolved in micelles, which enter the mucosal cells of the intestine, by simple diffusion. The absorption of these fat-soluble vitamins is markedly decreased in the absence of bile.

(d) Absorption in large intestine : Major part of the water is absorbed in the colon. It helps in maintaining the body water level. Some amount of mineral salts and vitamins are also absorbed. The symbiotic bacteria (E. coli) present in the large intestine, converts the inactive vitamins into active forms (*i.e.*, they synthesizes vitamins (vitamin B complex and vitamin K) which are absorbed. It has

been also found that some amount of amino acids is also absorbed in large intestine produced due to digestion, with the help of symbiotic bacteria. The epithelial cells of large intestine secrete no digestive enzyme.

(vi) **Assimilation :** Conversion of absorbed food into active cytoplasm within cell is called as assimilation.

(vii) **Faeces formation :** The phenomenon occurs in colon due to absorption of water, salts, minerals and vitamins. The peristalsis in colon also helps in faeces formation.

Diffusion	Active transport	
It is a physical process.	It is a vital process.	
It moves small nutrient molecules across the cell membranes only down the concentration gradient.	It moves small nutrient molecules across the cell membranes independent of concentration gradient (both down and against).	
It does not use carrier protein molecules in moving materials.	It uses carrier protein molecules in moving materials.	
It does not utilize energy.	It consumes energy derived by hydrolysis of ATP.	
It is a slow process.	It is a rapid process.	
No material can be fully absorbed by diffusion.	Materials can be fully absorbed from the intestine.	

Differences	between	diffusion	and	active	transport
-------------	---------	-----------	-----	--------	-----------

(viii) **Egestion / defaecation :** At fairly long intervals, a wave of strong peristalsis sweeps along

the transverse colon forcing its contents into the descending and pelvic colons. This is known as mass movement, which is often precipitated by the entry of food into the stomach and is known as the gastro-colic reflex. When a mass movement force the contents of the pelvic colon into the rectum, the nerve endings in the walls of the rectum are stimulated the act of defaecation, while reflex in the infant, and adult is under the control of the will.

(a) Actions during defaecation

(1) The sphincter muscle of the anus relaxes.

(2) The muscular walls of the rectum contract.

(3) The muscles of the floor of the pelvis contract.

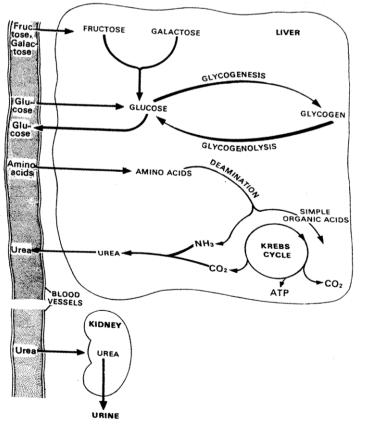


Fig. – Transformation of absorbed nutrients in liver

(4) The pressure within the abdomen is raised.

(5) By holding the breath and contracting the diaphragm.

(6) By contracting the muscles of the abdominal wall.

The defecation is carried out in response to the desire in children and adults, to empty the bowel production by distension of the rectum with faeces. Biliverdin and bilirubin are reduced to urobilinogen in the large intestine. Urobilinogen in the large intestine is converted to stercobilin. The odour of the stool is due to aromatic substances like indole and skatole. Indole and skatole result from the action of bacteria on amino acid tryptophan.

(b) **Constituent of faeces :** The faeces, consist of a semi-solid, paste-like mass coloured brown by stercobilin, a pigment derived from the bilirubin and biliverdin of the bile.

(1) Water (65-70% of the total bulk) (2) Undecomposed cellulose

(3) Protein residue (skatole, histidine, indole and tryptophan) (4) Dead and live microorganisms

(5) Epithelial cells from the walls of the tract (6) Some fatty acids

(7) Mucous-secreted by the mucosa lining of the large intestine.

Pseudo-rumination or coprophagy : Animals swallows night faeces and recycle it through the gut to complete the digestion of cellulose and, making full use of their food. This habbit is called coprophagy. Example – Rabbit.

Major gast ontestinal enzyme in manimals					
Name of gland	Name of digestive juice & optimum pH	Name of enzyme	Site of action	Substrates	Products
Salivary glands	Saliva (6.8)	Ptyalin / Salivary amylase	Mouth	Starch, dextrins, glycogen	Dextrins, maltose, isomaltose and limit dextrin.
Gastric glands	Gastric Juice (1- 3)	Pepsin	Stomach	Proteins, casein (Milk)	Peptones, paracasein (curd). Proteases
		Rennin	Stomach	Casein	Paracasein
		Gastric lipase	Stomach	Fats	Fatty acid and Glycerol.
Bile juice	Liver	No enzymes	Duodenum	Fat	Makes the food alkaline, emulsifies fat and kills the harmful bacteria.

Summary of physiology of digestion

Major gastrointestinal enzyme in mammals

Liver	Bile (7.7 – 8.0)	No enzyme but useful digestive juice, provides alkaline medium, stops the action of HCl. Emulsifies fats and kills – harmful bacteria.			
Pancreas	Pancreatic Juice (7.3 – 8.6)	Amylase/Di ast-ase	Small intestine	Starch, dextrins, glycogen.	'Limits' dextrins, maltose, isomaltose.
		Trypsin	Small intestine	Proteins, Chymotry- psinogen (inactive) procarboxy pept- idases (inactive) Fibrinogen (blood) Casein (milk)	Peptides, Chymotrypsin (active) carboxy pepti-dases (active) Elastase (active), Fibrin (clot) Para- casein (curd)
		Chymotryps in	Small intestine	Peptones	Peptides
		Carboxypep tidases	Small intestine	Peptides	Smaller peptides and Amino acids.
		Lipase / Steapsin	Small intestine	Triglyceride s	Mono-glycerides, fatty acids
		DNA ase	Small intestine	DNA	Deoxyribonucleotide s
		RNA ase	Small intestine	RNA	Ribonucleotides
Intestinal glands	Intestinal Juice (7.6–8.3)	Enteropepti dase (enterokinas e)	Small Intestine	Trypsinoge n (inactive)	Trypsin (active)
		Aminopepti dase	Small Intestine	Peptides	Smaller peptides and amino acid
		Dipeptidase s	Small Intestine	Dipeptides 'Limit' dextrins	Amino acids

	Isomaltase	Small	Isomaltose	Glucose
		Intestine		
	Maltase	Small	Maltose	Glucose
		Intestine		
	Sucrase/Inv	Small	Sucrose	Glucose, fructose
	ertase	Intestine		
	Lactase	Small	Lactose	Glucose, galactose
		Intestine		
	Lipase	Small	Triglyceride	Monoglycerides,
		Intestine	S	fatty acids
	Nucleotidas	Small	Nucleotides	Nucleosides,
	e	Intestine		inorganic phosphate
	Nucleoside	Small	Nucleosides	Purine, pyrimidine,
	Phosphoryla	Intestine	phosphate	pentose, phosphate
	ses			

(ix) **Hormonal control of digestion :** Activities of digestive tract are coordinated by nervous and endocrine systems. Sight and smell of food stimulates nervous system which induces the salivary glands to produce large quantity of saliva, stomach to release its hormone gastrin and intestine to produce intestinal hormones. Other hormones are produced in sequential order. All of them are polypeptide hormones.

Gasti onnesunai noi mones in manimais					
Hormone	Source	Stimulus for secretion	Target organ	Action	
Gastrin	Mucosa of pyloric stomach		Stomach	Stimulates secretion of gastric juice. Constricts cardiac sphincter.	
Enterogastrone	Duodenal epithelium	Chyme entry into duodenum	Stomach	Slows gastric contractions to delay its emptying. Stops secretion of gastric juice.	
Secretin	Duodenal epithelium	Acidic chyme entry into duodenum	Pancreas Liver Stomach	Releaseofsodiumbicarbonateinpancreaticjuice	

Gastrointestinal hormones in mammals

		1	1	
Cholecystokini	Duodenal	Presence of fats	Pancreas	Release of enzymes in
n	epithelium	in duodenum	Gall Bladder	pancreatic juice.
(Pancreozymin				Release of bile from gall
)				bladder.
Villikinin	Intestinal	Food in small	Intestine	Accelerates movements of
	epithelium	intestine		villi.
Duocrinin	Intestinal	Acidic chyme in	Intestine	Release of viscous mucous
	epithelium	intestine	(Brunner's	from Brunner's glands.
	(Duodenal		gland)	
	mucosa)			
Enterocrinin	Intestinal	Acidic chyme in	Intestine	Release of enzymes from
	epithelium	intestine	(crypts of	Lieberkuhn's crypts.
	(Duodenal		Lieberkuhn's)	
	mucosa)			

Important Tips

- ☞ World food day (W.F.D) is 16th october.
- ☞ Iodine deficiency disorder day (I.D.D.D) : is 21st october.
- ☞ White revolution Increased milk production.
- Blue revolution Increased fish production.
- Yellow revolution Increased oil production.
- *F* High cholesterol patients are avoided to use groundnut oils, margarine and vegetable oils.
- The foul & flatus odour of the faeces is due to presence of gases such as CH₄, NH₃, H₂S, CO₂ etc. and presence of indole, skatole and mercaptones amines formed due to decarboxylation of tryptophan amino acid.
- Digestion of fat is slowest and never completed.
- Main aim of nucleic acid digestion is to release phosphate molecule.
- Villus is the unit of absorption of food.
- ☞ Fructose and mannose are absorbed by facilitated diffusion.
- Role of bile salts is to form water soluble mixed micelles is called hydrotrophic action.
- *•* Chyle is the alkaline food, which passes from small intestine to lacteals.
- ☞ It takes about 2-6 hours after a meal for the stomach to empty.
- Aminopeptidase, a digestive enzyme produces smaller peptides.
- In most of the vertebrates protein digestion ends in ileum.
- *The enzymes that converts glucose to glucose 6-phosphate is hexokinase.*
- Amylopsin act on carbohydrates.

- Most of the fat digestion occurs in small intestine.
- Lipase hydrolyse ester bond.
- Protein digestion is necessary because it cannot be absorbed as such.
- Carbohydrate are digested in duodenum.
- Amylase broken 1,4 glycosidic bonds of starch.
- Loose bond of enzymes between proteinous and prosthetic groups can be separated by the process of dialysis.
- *•* Enzyme, vitamins and hormones are biological chemicals which aid in the regulating mechanism.
- *•* Enzymes accelerate the rate of chemical reactions.
- Human insulin is known as Humulin.
- *Stimulation of acid secretion of stomach is due to gastrin, histamine and vagal activation.*
- \sim The end product of carbohydrate metabolism is CO₂ and H₂O.
- Mammals also get water from the oxidation of glucose.

3.4 NUTRITION

The substance used for nutrition are called nutrients. Nutreology is the study of food and their use in diet and therapy.

(i) Types of nutrition

(a) **Autotrophic / Holophytic :** The individuals, which synthesizes their own food. It can be grouped into two following categories –

(1) **Photoautotrophs :** The individual, which synthesizes their own food from CO_2 and H_2O in presence of sunlight. These individuals have a specialized pigment chlorophyll in their cells. Examples – Green plants, euglena, green sulphur bacteria, chlorobium.

(2) **Chemoautotrophs :** The individuals which synthesizes their food with the help of chemical. The energy consumed in synthesis of nutrients is obtained from oxidation of hydrogen gas, ammonia, methane, hydrogen sulphide, nitrites etc. Examples – Sulphur bacteria, nitrite bacteria, nitrate bacteria, nitrosomonas, nitrifying bacteria– nitrosomonas, nitrobacter etc.

(b) **Heterotrophic :** The animals derive organic food materials by consuming bodies or products of other living or dead plants or animals. Heterotrophs are of following three types on the basis of their mode of feeding.

(1) Holotrophic or Holozoic : These individuals ingest mostly solid food. Example – Animals.

(2) **Saprotrophic or Saprobiotic :** They feed on dead organic matter. They absorb food through their body surface, organic fluids formed due to putrefaction of dead organism. These are called saprozoic if the putrefying organism is an animal and saprophytic, if the later is a plant. Saprobionts usually themselves pour out certain enzymes which hydrolyses the complex molecules of putrefied food and help in absorption. Saprozoic nutrition involves absorption of food by osmosis, *i.e.*, through

general body surface. This method of food-getting is referred to as osmotrophy and animals are called osmotrophs. Example – Bacteria, fungi, some protozoans etc.

(3) **Parasitic :** These individuals derive their food from the body of their host. These may live inside or upon the bodies of their hosts, or may only periodically visit them for feeding.

(c) **Myxotrophic nutrition :** They carry out autotrophic as well as heterotrophic nutrition. Example – euglena.

(ii) **Modes of animal nutrition :** On the basis of food, holozoic or holotrophic or ingestive nutritionally animals are classified into following –

(a) **Herbivorous :** The animal which exclusively feeds on plants. Their length of alimentary canal is more as compared to others. Examples – Tadpole larva of frog, rabbit, cow, horse, sheep etc.

(b) **Carnivorous :** The animal which kills and feeds on other animals. The length of their alimentary canal is minimum. Examples – Tiger, lion etc.

(c) **Omnivorous :** The animal which can take both plant and animal product as food. They have maximum type of digestive enzymes. Example – Human.

(d) Insectivorous : The animal which feeds on insects. Example – Frog.

(e) **Sanguivorous :** The animal which feeds on blood of other animal. Examples – Leech, body louse.

(f) **Carrion Eaters (scavengers) :** They feeds on dead animals also termed as scavengers. Examples – Hyaena, neltura, kites etc.

(g) **Cannibalus :** Organisms which feeds on its own species. Examples – Cockroaches, some fishes, frog, snakes etc.

(h) **Detritus :** Animals feed chiefly upon organic matters present in the humus. Examples – Earthworm.

(i) **Coprophagus or pseudorumination or refection :** Animals which feeds on their own faeces. Example – Rabbit.

(j) Larvivorous : Feeds on larva. Example – Gambusia (mosquito fish).

(k) Frugivorous : Feeding on fruits. Example – Parrot.

(iii) Feeding mechanism

(a) Feeding mechanism in liquid feeders (fluid feeders) are as follows -

(1) **Diffusion :** Many parasitic organisms (protozoans, tapeworm) absorb the dissolved organic food through general body surface.

(2) **Pinocytosis (cell drinking) :** Ingestion of liquid food by invagination through surface of body. Pinocytosis channels are formed at body surface to enclose the fluid food from surrounding medium. Lower ends of channels are pinched off as pinocytic vesicle or pinosomes.

(3) **Blood sucking :** Their mouthparts are modified for sucking blood. Examples – Vampire bat, mosquito etc.

(b) **Feeding mechanism in microphagus animals (filter feeders) :** The food of such animals (paramecium, sponges, corals, bivalves, tadpole etc.) is suspended in water fluid and they have filtering devices (clusters of pseudopodia, cilia, flagella, sheets of mucous etc.) or feeding on small microscopic animals like – Amoeba, paramacium etc.

3.5 NUTRITIONAL REQUIREMENTS

(i) **Food :** All living organism needs food, animal are unable to synthesize their own food hence they obtain it from outside sources. Animals require food for three main purposes, such as food as a fuel which provides energy and material for body maintenance, food for movement of body includes muscles contraction etc., food for growth as well as for the synthesis of body substances.

(ii) Components of food : These are following types -

(a) Carbohydrates	(b) Lipids and fats	(c) Proteins	(d)	Nucleic	acid
(e) Water	(f) Vitamins	(g) Minerals			

(a) **Carbohydrates :** They are made up of C : H : O, having H and O in the ratio of 2 : 1 and the general formula is C_nH They are the chief source of energy. The source of carbohydrates in our food is cereals and pulses.

(1) Classification of carbohydrates : Carbohydrates are grouped into three categories –

(i) Monosaccharides : Simplest carbohydrates. They are of following types -

(a) **Trioses :** $(C_3H_6O_3)$; Example – Glyceraldehyde, dihydroxyacetone.

(b) **Tetroses :** $(C_4H_8O_4)$; Example – Erythrose.

(c) **Pentoses :** $(C_5 H_{10} O_5)$; Example – Xylose, ribose, arabinose.

(d) **Hexoses :** $(C_6H_{12}O_6)$; Example – Glucose, fructose, galactose.

(e) **Heptoses :** $(C_7 H_{14} O_7)$; Example – Sedoheptulose.

(ii) **Oligosaccharides :** They contain 2 - 9 molecules of monosaccharides. They are of following types –

(a) **Disaccharides :** Examples – Maltose (malt sugar), sucrose (cane sugar), lactose (milk sugar), etc.

(b) **Trisaccharides :** Example – Raffinose, mannotriose etc.

(c) Tetrasaccharides : Example – Stachyose, scordose etc.

(d) **Pentasaccharides :** Example – Verbascose.

(iii) Polysaccharides : Two types -

(a) **Homosaccharides :** When polysaccharides are made up of single kind of monosaccharide. Examples – Starch, glycogen, cellulose, agar-agar and dextrin etc.

(b) **Heterosaccharides :** When polysaccharides are made up of two or more kind of monosaccharides or their derivatives. Examples – Mucopolysaccharides, chitin, peptidoglycan and heparin etc.

(2) Specific features

(i) Storage amount : 900 gm approx.

(ii) Storage site : Chiefly liver and muscles.

(iii) Daily requirement : 500 gm approx.

(iv) Source : Chiefly cereals (rice, wheat, maize), pulses, potato, fruits, sugarcane, milk, honey, sugar etc.

(v) Caloric value : 4.1 k cal./gm

(vi) Physiological value : 4.0 k cal./gm

(vii) Carbohydrates may have an aldehyde (aldoses) or ketone (ketoses) group.

(viii) Simple carbohydrates having free aldose or ketose group are called reducing sugars.

(ix) Reducing sugars can reduces cupric ion to cuprous state (Fehling's or Benedict's solution)

(x) Fructose (levulose) is fruit sugar while glucose (dextrose) is grape sugar as well as blood sugar.

(xi) Two monosaccharides are linked by means of 'glycosidic bond' (C–O–C) in formation of a disaccharide. This is a dehydration or condensation reaction.

(xii) Comparing to the milk of cow, buffalo and goat, lactose is highest in human milk.

(xiii) Chitin is a polysaccharide found in the exoskeleton of arthropods. Its basic unit is not glucose but *N*-acetylglucosamine.

(xiv) Our food mostly contains carbohydrates.

(3) Functions of carbohydrates :

(i) As respiratory fuels : Carbohydrates, especially glucose, are the main respiratory fuels. About 60% of our total energy needs is provided by the breakdown of carbohydrates. Caloric fuel value of one gram of carbohydrates is 4.1 k cal of energy while physiological fuel value of one gram of carbohydrates is 4.0 k cal (17 kJ) of energy. To provide energy, the glucose undergoes biological oxidation in the mitochondria (power house) of the cell to produce about 36 or 38 molecules of ATP. So the theoretical recovery of energy from one glucose molecule is 40%. Main reasons for the glucose being chief respiratory fuel are its presence in abundance and its easy oxidisability.

(ii) Monosaccharides as structural components

(a) Ribose (Pentose sugar) is component of RNA; coenzymes like NAD, FAD etc., and energy carriers like ATP, GTP etc.

(b) 2'-Deoxyribose (Pentose) is component of DNA.

(c) Galactose is a structural component of medullary sheath.

(iii) As building blocks : Monosugars act as monomers for the formation of disaccharides and polysaccharides.

(iv) **Reserve foods :** There are two main polysaccharides which act as reserve foods *e.g.* starch is a storage polysaccharide of plants and is stored as granules in amyloplasts. Glycogen (animal starch) is the principal reserve food of animals and is mainly stored in liver (about 500 *gms.*) and skeletal muscles. Liver glycogen is used to regulate blood sugar level by the process of glycogenolysis or glycogenesis as required while the muscle-glycogen provides energy for muscle contraction.

(v) Excess of glucose may also be changed into fats (lipogenesis) and stored in liver, adipose tissue and mesenteries.

(vi) Glucose has antiketogenic role as it prevents the incomplete oxidation of fats and formation of ketonic bodies in the blood.

(vii) Glucose spares the amino acids for protein synthesis.

(viii) Sucrose is the major form in which sugar is transported in the plant body. Sucrose is storage sugar of sugarcane and sugar beet.

(ix) Polysaccharides as structural components

(a) Cellulose, hemicellulose etc. are the main components of cell wall of plants.

(b) Chitin is main component of cell wall of fungi and exoskeleton of crustaceans.

(x) Anticoagulants : Heparin prevents the blood clotting inside the blood vessels.

(xi) **Protective coat :** Glycoproteins form a protective layer, glycocalyx, on intestinal cells.

(xii) Hyaluronic acid : It acts as a lubricating fluid in the synovial joints between the limb bones.

(xiii) Blood antigens like A, B and Rh-factor are glycoproteinaceous and provide immunity to the individual.

(xiv) Sugars are also important components of some glycoproteinaceous hormones like FSH (Follicular stimulating hormone), LH (Luteinizing hormone) etc. FSH controls gametogenesis while LH controls the ovulation and formation of corpus luteum.

(xv) Carbohydrates may be changed into amino acids.

(xvi) Oligosaccharides of cell membrane help in cellular recognition.

(xvii) Cellulose forms roughage of food which stimulates the secretion of digestive juices. It also helps in peristalsis.

(xviii) Cellulose nitrate is used in explosives.

(xix) Carboxy-methyl cellulose is used in cosmetics and medicines.

(xx) Cellulose acetate is used in preparing cellulose plastics, shatter-proof glass, fabrics etc.

Characters		Caloric fuel value Physiological fuel value
Site production	of	Energy in kcal produced by the complete combustion of 1 gm. of substance in a bomb calorimeter.Energy in kcal produced by the oxidation of 1 gm. of substance in the
Amount	of	1 gm. of carbohydrates provide 4.1 kcal. 1 gm. of carbohydrates provide 4.0 kcal.

Differences between caloric fuel value and physiological fuel value

C	
energy of energy.	of energy.

(b) **Lipids and fats :** Fats and all fat like substances are called lipids. They are composed of C, H and O. They are insoluble in water but soluble in ether, alcohol, chloroform etc.

(1) **Types of lipids**

(i) Simple lipids : Examples – Fats in the body in the form of adipose tissues, fatty acids, wax.

(ii) **Complex lipids :** Examples – Phospholipids, glycolipids etc.

(iii) **Derived lipids :** Obtained by hydrolysis of simple or complex lipids. Examples – Cholesterol, ergosterol.

(2) Specific features

(a) Source : Butter, ghee, liver oil, vegetable cooking oil etc.

(b) Daily requirement : 50 gm.

(c) Storage site : Subcutaneous fat, adipose cells.

(d) Caloric value : 9.45 k *cal/gm*.

(e) Actual value : 9.0 *k cal/gm*.

(3) Functions of lipids

(i) The fats acts as concentrated fuel. The caloric fuel value of 1 gm of fats is 9.45 kcal, while the physiological fuel value of 1 gm of fats is 9.0 kcal (37 kJ), which is about 2.25 times more than the energy provided by same amount of glucose.

(ii) The fats are also highly suitable for storage as the reserve food material. It is mainly stored in the liver, beneath the skin, in the brown deposits and in the fat bodies. Normally, the fats constitute about 4% of liver by weight.

(iii) Fats stored in the subcutaneous tissue insulate the body against the loss of heat energy, so conserve the body heat. Thus, fats help in homeothermy.

(iv) Medullary sheath is formed of white fatty substance, myelin, which insulates the nerve fibres and prevents the loss of energy.

(v) Fats from the protective shock absorbing cushions around a number of organs like the eye balls, kidneys (renal fat), ovaries, etc.

(vi) These help in the absorption of fat-soluble vitamins like A, D, E and K.

(c) **Proteins :** They are composed of *C. H. O. N* and some of in addition contain *S* and *P*. They are complex, versatile, macromolecules with very high molecular weight. Their unit is amino acids. Out of the 20 amino acids, required in human to build proteins, half of them are essential and rest are non-essential amino acid. Essential amino acids are those, not synthesized by human body and are present in food. The non-essential amino acids are those which can be synthesized by human body.

Dispensable or Essential amino acids	Non-dispensable or Nonessential amino acids
*Arginine	Glycine
*Histidine	Alanine
Isoleucine	Serine
Leucine	Aspartic acid
Methionine	Asparagine
Phenylalanine	Cysteine
Threonine	Glutamic acid
Tryptophan	Glutamine
Lysine	Proline
Valine	Tyrosine

Amino acids

Arginine and histidine are considered semi indispensable amino acids. These two are not essential in the adult organisms.

(1) Classification of proteins : They are following types -

(i) On the basis of structure of molecules

(a) **Fibrous :** Examples – Collagen, myosin, keratin, fibrin of coagulated blood etc.

(b) **Globular :** Examples – Albumin, globulin, haemoglobin, enzymes, snake venom etc.

(ii) On the basis of their chemical nature : The proteins are divided into three categories –

(a) **Simple proteins :** These are formed of peptide chains and yield only amino acids on hydrolysis. On the basis of shape, these may be fibrous proteins e.g. collagen of white fibres, elastin of yellow fibres, keratin of exoskeletal structures like nails, horns, hoofs, hair, feather etc.; globular proteins e.g. albumins and globulin of blood plasma, protamines, histones, glutelins etc.

(b) **Conjugated proteins :** These are formed of a proteinaceous and a non-proteinaceous prosthetic group. These include nucleoproteins (of chromosomes-DNA and proteins; and ribosomes-RNA and proteins), glycoproteins (of blood-antigens), phosphoproteins (casein of milk), lipoproteins (lipovitellin of egg-yolk), chromoproteins (haemoglobin of RBCs), haemocyanin, rhodopsin (visual purple), iodopsin (visual violet), cytochromes), metalloproteins (carbonic anhydrase enzyme with Zn^{2+}) etc.

(c) **Derived proteins :** These are formed by the partial hydrolysis of simple proteins and include peptones, proteoses etc.

(2) Functions of protein

(i) Many proteins act as structural proteins and take part in building and repairing of the body tissues so these are essential for the growth, especially for the growing children. These include ossein of the bones, chondrin of the cartilages, collagen of white fibres, elastin of yellow fibres etc.

(ii) Certain proteins act as functional proteins and regulate the metabolism. These includes enzymes like pepsin, trypsin etc. hormones like insulin, TSH etc., carrier proteins acting as permeases in active transport etc.

(iii) During the deficiency of carbohydrates and fats, the proteins are hydrolysed into amino acids which act as respiratory fuels to provide the energy. Caloric fuel value of 1 gm of protein is 5.65 kcal. while the physological fuel value of 1 gm of proteins is 4.0 kcal.

(iv) Some proteins take part in the formation of useful products :

(a) Globin protein combines with four haem prosthetic groups to form haemoglobin which transports 97-99% of O_2 from the lungs to the body cells.

(b) Actin and Myosin are main structural and functional proteins of the muscles and help in muscle contraction, so in movements and locomotion.

(c) Rhodopsin and Iodopsin proteins are the components of rod and cone cells respectively and help in night and day vision respectively.

(v) γ -globulins of blood plasma act as antibodies which provide immunity against the microbes.

(vi) Prothrombin and fibrinogen proteins of blood plasma are involved in blood-clotting to prevent excessive bleeding at the injuries.

(vii) Certain proteins of blood act as buffers (e.g. haemoglobin) which help in the constancy of pH of the body fluids.

(viii) Amino acids of the proteins may transform into carbohydrates and fats.

(ix) Exoskeletal elements like epidermal scales of reptiles; feathers of birds; and hair, nails, claws etc. of mammals are formed of keratin protein. These elements are protective in function.

(x) Hormone receptors are always proteinous in nature and help in biological response from the target cells.

(xi) Some proteins act as reserve food *e.g.* zein of maize and glutein and gliadin of wheat etc. Thus, the proteins are essential for the body growth. Their acute deficiency in the food causes retardation of physical and mental growth. Deficiency of proteins causes two diseases in infants : marasmus and kwashiorkor.

(xii) Protein acts as a building material.

(xiii) As an enzymes & coenzymes.

(xiv) As a hormones.

(xv) As a carrier proteins.

(xvi) As a component of tissue and cell organelles.

(xvii) As a fuel material and biological buffer.

(3) Specific features

(i) Source : Chief source is pulses, egg, milk, meat, fish, leafy vegetables, soyabean, groundnut etc.

(ii) Daily requirement : 70-100 gm.

(iii) Caloric value : 5.6 *k cal/gm*.

(iv) Physiological caloric value : 4 k cal/gm.

(v) Caloric value and Physiological fuel value and complete combustion of one *gram* of substance produces energy in *kcal* in a bomb calorimeter is called the caloric value of substance, while complete oxidation of one *gram* of substance produces in *kcal* in the body is called physiological fuel value of substance.

Nutrient	Caloric value	Physiological fuel value		
Carbohydrates	4.1 <i>kcal</i>	4.0 kcal		
Proteins	5.65 kcal	4.0 kcal		
Fats	9.45 kcal	9.0 kcal		

(d) **Nucleic acids :** These are compounds of carbon, hydrogen, oxygen, nitrogen and phosphorus. These occur in all body cells and transmit coded informations of all morphological and functional hereditary characteristics from one generation to the next. The molecules of nucleic acids are long-chain polymers of nucleotide monomers. These megamolecules are called polynucleotides. These are the largest and most complex molecules of nature.

Nucleic acids are of two types : Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). Only nine types of nucleotide monomers occur in cells; only four of these link by "phosphopdiester bonds" forming polynucleotide chains (megamolecules) of DNA and another four of RNA. Each nucleotide is itself a complex molecule formed by linking of a nitrogenous base, a pentose sugar and a phosphate group. "Phosphodiester bonds" are also dehydration or condensation linkages. Hence, in digestion, nucleic acids of food are hydrolysed first into nucleotides. Then the nucleotide molecules are further degraded to their component nitrogenous bases, pentose sugars and phosphate groups.

(e) **Water :** Water is an essential constituent of protoplasm, which forms the physical basis of life, though it does not yield any energy. The water is an inorganic compound, composed of hydrogen and oxygen in the ratio of 2 : 1. Protoplasm has nearly 90% water, but the human body has approximately 60–70% of water.

(1) **Functions**

(i) Water act as a best solvent.

(ii) Involve in so many metabolic process.

(iii) Act as temperature stabilizer.

(iv) Remove excess of body heat through sweating.

(v) It also act as dispersion medium ioniser, diffusion medium.

(2) Specific features

(i) Sources : Metabolic water, liquid food and drinking water.

(ii) Daily requirement : 5- 6 glasses (4-5 *litre*).

(f) Vitamins

(1) Historical review

(i) N. I. Lunin (1881) discovered vitamins.

(ii) The term 'vitamin' was first used by Funk in 1912.

(iii) Hopkins and Funk (1912) propounded a 'vitamin theory'.

(2) **Definition** : Vitamin are complex organic compounds needed daily in minute quantities and act as growth and metabolic regulatory substances.

(3) **Sources** : Vitamins can only be synthesized by green plants, hence animals depend for their vitamin requirement upon the plants. Human body manufactures vitamin D using ultraviolet rays of sunlight and can store A, D and B₁₂. The chemical compositions of vitamins are known and it is possible to synthesize them.

(4) **Importance** : The vitamins are not a sources of energy. They regulate the various metabolic processes. They mostly act as the constituents of coenzymes in the cells.

(5) Type : Vitamins are divided into two groups –

(i) **Fat soluble vitamin :** *A*, *D*, *E* and *K*.

(ii) Water soluble vitamin : *B* complex and *C*.

Fat soluble vitamins

Name of vitamins and chemical formula	Discover y	Sources	Daily requirem ent per day	Function s	Name of Deficiency Disease	Symptoms	Other Features
Vitamin	Mc-	Vegetabl	2 mg	Part of	Xerophthal	– Drying	Synthesized

A or Retinol or anti xero- phthalmic or anti infection vitamin $C_{20}H_{29}O$	Collumn and Davis (1913)	es butter liver oils egg yolk, mango and orange, carrot.	0.01	visual pigment, maintenan ce of epithelia and preventio n of keratini- zation of epitheliu m.	mia Night blindness or nyctalopia Keratomala cia. Dermatosis	of eyeball – Unable to see in dim light – Epitheli um keratini sed – Dry scaly skin	and stored in the liver. Destroyed by - strong light.
Vitamin D or Ergocalci ferol or sunshine vitamin or anti rachitic vitamin $C_{28}H_{44}O$	Steenbock and Hess 1924)	Cod liver oil, butter, fish, eggs, milk, brain, lung, and spleen.	0.01 mg	Facilitates absorptio n of calcium and phosphor us by intestine and their retention in body and deposition in bones.	Rickets in children Osteomalac ia in adults.	Deformitie s of bones like bowlegs pigeon chest Weak bones liable to easy fracture	Synthesized in the body on exposure of skin (7-hydroxy cholesterol) to light. Destroyed by – oral contracepti ves
Vitamin E or α Tocopher ol or anti sterility vitamin $C_{29}H_{50}O_2$	Evan and sore (1922)	Fresh green vegetable s, meat, yolk, vegetable oils, butter and cheese, peanuts	20 mg	Antioxida nt and some role in ETS.	Anaemia Sterility Muscular atrophy	Destructio n of RBC. In male causes sterility and in female abortion may occur of offspring. Effect not	Destroyed by UV – rays. It is also used for curing tumour and cancer

X 7*4			0.07			proved in man. Degenerati on of muscles	
Vitamin K or Phylloqui none or anti haemorrh agic vit- amin $C_{31}H_{46}O_2$	Dam and Droisy (1935)	Fresh green vegetable s. to matoes, liver, soyabean , cheese, egg.	0.07 – 0.14 mg	Synthesis of prothrom bin for normal clotting of blood.	Haemorrha ge	Reduced ability of blood to clot and also leads to haemorrha ges.	Vitamin K is synthesised by intestinal microbes present in the intestine. Destroyed by– prolonged use of antibiotics.

Water soluble vitamins

Name of Vitamins and Chemical Formula	Discover y	Sources	D.R.	Function	Name of Deficienc y Disease	Symptoms	Other Features
Vitamin	C. Funk	Branrice,	1-1.5 mg	Act as co-	Beri- beri	Loss of	Beri-beri
B_1 or	(1926)	whole		enzyme in	– or Dry	appetite and	disease was
Thiamine		wheat		cellular	beri - beri	weight,	discovered
or anti		flour,		respiration,	(man)	retarded	by Eijkman
neuritic		egg,		role in	Polyneurit	growth,	Destroyed
or		meat,		nutrition of	is or	muscular	by –
antiberibe		liver		nerve	(animals)	dystrophy.	cooking
ri		yeast etc.		cells.	wet beri -	Nerves to	
$C_{12}H_{16}N_{4}SO$				Essential	beri	become	
12 10 4				for	Cardiovas	extremely	
				carbohydra	cular	irritable.	

				te metabolis m, protein synthesis and control water balance in body.	atrophy	Heart enlargemen t	
Vitamin B_2 or G or yellow enzyme or Riboflavi n or Lactoflav in or ovaflavin or hepatofla vin $C_{17}H_{26}N_4O_6$	Warburg and Christain	Cheese, egg, yeast, meat, liver, cereals, green, vegetable.	1-2 mg	Required for cell growth. Form pair of coenzyme (FMN, FAD).	Cheilosis Glossitis Keratitis	Cracking of skin at corners of mouth Inflammati on of tongue Inflammati on of skin	Stored in liver, Excess of this is eliminated in urine. It is associated with the physiology of vision
Vitamin B_3 Yeast factor or pantothen ic acid or anti graying factor on chick antiderma titis factor $C_9H_{17}O_5N$	Williams (1933)	All foods, more in yeast, kidney, liver, egg, meat, milk, ground nut	5-10 mg	Part of co- enzyme A. needed for cell respiration, necessary for normal skin and nerves.	Burning feet syndrome, Nervous disorder	Nerve degeneratio n	It occurs in all types of plants and animal tissues. Its deficiency cause graying of hair
Vitamin B_5 or Niacin or Nicotinic	Goldberg er (1912)	Fresh meat, liver, fish, milk,	16-20 mg	It is an essential component of NAD	Pellagra, Dermatitis ,	Rough skin Inflammati on of skin	It is characterise d by 3D's <i>i.e.</i>

acid or pellagra preventin g factor $C_6H_5NO_2$		cereals, pulses, yeast etc.		and NADP thus form coenzymes , metabolis m of carbohydra tes, functionin g of gastrointes tinal tract and nervous system	Diarrhoea Dementia Death (4-D syndrome)	which becomes scaly and papillated Dehydratio n Neural deterioratio n which may lead to madness	dermatitis diarrhoea and dementia Destroyed by – cooking Pellagra preventing factor Goldberger also called Goldberger' s p-p factor It is also synthesized by colon bacteria
Vitamin B_6 Or pyrido- xine or Rat anti dermat- ities factor $C_8H_{11}O_3N$	Gyorgyi (1928)	Brewer's yeast, liver, egg, yolk, kidney, milk, and vegetable s.	2 mg	It is essential component of coenzyme pyridoxal phosphate. It promotes growth in rats used for curing tuberculosi s.	Anaemia Dermatitis , paralysis & death of rats. Mental disorder Dermatitis	Nausea, lack of RBC (blood) Disturbance of central nervous system Skin leisons	Term B_6 was coined by Gyorgy. Destroyed by – cooking and oral contraceptiv es
Vitamin H or B_7 or Biotin or coenzyme R or Avidin $C_{10}H_{16}N_2O_3S$	Bateman and Allison (1916)	Yeast, vegetable s and egg yolk	150-300 mg	It acts as coenzymes and essential for fat synthesis and energy production	Dermatitis	Scaly and itchy skin	It is synthesized by intestinal bacteria Destroyed by – prolonged use of

				•			antibiotics
Folic Acid or Vitamin M or folacin or Anti anaemic factor	Day (1935)	Green vegetable (spinach) Banana, orange and Liver.	0.4 mg	It forms coenzymes and play essential role in cell metabolis m, Necessary for erythropoi esis, required for DNA synthesis.	Megalobla stic anaemia. Sprue	Enlarged RBCs Ulceration of mouth	It is also synthesized by intestinal bacteria Destroyed by - cooking
Vitamin B_{12} or Cyanocob alamine or Animal protein factor (APF) or Intrinsic factor of castle $C_6H_{66}O_{14}$ $N_{14}PCo$	Rickets (1948)	Meat, egg, liver, fish, synthesiz ed by intestinal bacteria.	0.003 mg	Required for chromoso me duplication and formation of blood corpuscles.	Pernicious anaemia	Reduced formation of erythrocyte s in bone marrow	It is also known as anti pernicious factor Also synthesized by intestinal bacteria in human colon Destroyed by – excessive heat
Vitamin C or Ascorbic Acid $C_6H_6O_6$	Szent Gyorgyi (1928)	Citrus fruits such as lemon, mango, amla, plumes, guava.	40-60 mg	Functions as part of oxidation- reduction system. Helps in secretion of collagen	Scurvy.	Spongy and bleeding gums, fragile blood vessels and bones.	Required by primates, all other vertebrates and some other invertebrate s can

cement	synthesize
dentine.	vitamin C. It
Helps	is the
body to	earliest
develop	known
resistance	vitamin.
to	It is wound
diseases.	healing
Helps in	vitamin.
absorption	Destroyed
of Ca and	by –
Fe in the	Heating
intestine.	
Wound	
healing.	

Name	of Vitar	nin	Function				Symptoms of deficiency			у
Inositol	or	mouse	Stimulate	growth	of	mice.	Causes	reduced	growth	and
antialopecia	a factor		Spectacle-e	ye conditi	ion in	rat can	alopecia	(loss of ha	ir) in the	mice.
			be treated	keep a	limit	on the	Also	causes	hemor	rhagic
			cholesterol	level in	the bl	ood of	degenera	tion of the	adrenal g	land.
			man.							
Choline			It is an imp	ortant lip	otropic	c factor	Chronic	deficie	ency	causes
			which	prevent	ex	cessive	cirrhosis	in the liv	ver also	causes
			developmer	nt of fatty	liver.	It takes	haemorr	hagic chang	ges in kid	ney.
			part in	the fo	ormatic	on of				
			acetylcholir	ne whic	h ir	nvolved				
			conduction	of nerve in	mpulse	e.				
Vit.P or cita	rin		Control th	ne perme	eabilit	y and	Its defici	ency cause	s subcuta	ineous
			fragility of	the capi	llary	wall to	bleeding	due to b	oreak dov	wn of
			plasma prot	ein.			capillary	walls.		

(g) **Minerals elements :** They forms approximately 5% of body weight. They are essential to regulate the various metabolic activities of the animals. The various type of mineral are group into two categories as minor element. Examples – *Ca*, *S*, *P*, *Na* etc. and trace element examples – *Cu*, *Zn*, *Mn* etc. Some of these minerals are described as follows –

Chart of important minerals required in animal bodies

Mineral elements	Sources	Significance	Effects of deficiency
Minor elements (1) Calcium– <i>Ca</i>	Milk, Cereals, Cheese, Green Vegetables, Pods.	Required for formation of teeth and bones, blood clotting, functions of nerves and muscles.	Weak teeth and bones; retarded body growth.
(2) Phosphorus– P	Milk, Meat, Cereals.	Required for formation of teeth and bones and acid- base balance; component of ATP, DNA, RNA.	Weak teeth and bones; retarded body growth and physiology.
(3) Sulphur– <i>S</i>	Many proteins of food.	Component of many amino acids.	Disturbed protein metabolism
(4) Potassium– <i>K</i>	Meat, Milk, Cereals, Fruits and Vegetables.	Required for acid-base balance; water regulation and function of nerves.	Low blood pressure, weak muscles; risk of paralysis.
(5) Chlorine–Cl	Table Salt.	Required for acid-base balance; component of gastric juice.	Loss of appetite; muscle cramps.
(6) Sodium–Na	Table Salt.	Required for acid-base and water balances and nervous functions.	Low blood pressure, loss of appetite; muscle cramps.
(7) Magnesium– Mg	Cereals, Green Vegetables.	Cofactor of many enzymes of glycolysis and a number of other metabolic reactions dependent upon ATP.	Irregularities of metabolism, principally affecting nervous functions.
(8) Iron–Fe	Meat, Eggs, Pods, Cereals, Green Vegetables.	Componentofhaemoglobinandcytochromes.	Anaemia weakness and weak immunity.
(9) Iodine–I	Milk, Cheese, Seafood, Iodized salt.	Important component of thyroxin hormone and regulate metabolism of cell.	Goitre, cretinism.
Trace Elements (10) Fluorine– <i>F</i>	Drinking water, Tea, Seafood	Maintenance of bones and teeth.	Weak teeth, Larger amount causes mottling of teeth.
(11) Zinc–Zn	Cereals, Milk, Eggs, Meat, Seafood	Cofactor of digestive and many other enzymes.	Retarded growth, anaemia, rough skin, weak immunity and fertility.

(12) Copper– Cu	Meat, Dry fruits,	Cofactor of cytochrome	Anaemia, weak blood vessels
	Pods, Green	oxidase enzyme. Necessary	and connective tissue and
	Vegetables,	for iron metabolism and	damage to central nervous
	Seafood.	development of blood	system.
		vessels and connective	
		tissues.	
(13) Manganese–	Dry fruits, cereals,	Cofactor of some enzymes	Irregular growth of bones,
Mn	Tea, Fruits and	of urea synthesis and	cartilages and connective
	Green Vegetables.	transfer of phosphate	tissues.
		group.	
(14) Cobalt–Co	Milk, Cheese, Meat.	Important component of	Anaemia.
		vitamin _{B12}	
(15) Selenium–	Meat, Cereals, Sea	Cofactor of many enzymes;	Muscular pain; weakness of
Se	food.	assists vitamin E.	cardiac muscles.
(16) Chromium–	Yeast, Seafood,	Important for catabolic	Irregularities of catabolic
Cr	Meat, Some	metabolism.	metabolism and ATP
	vegetables.		production.
(17)	Cereals, Pods, Some	Cofactor of some enzymes.	Irregular excretion of
Molybdenum-	Vegetable		nitrogenous waste products.
Мо			

Important Tips

- Fructose is the sweetest sugar found in fruits but not in grapes.
- Glucose is most common sugar.
- Glycogen is also called as "animal starch".
- [©] Carbohydrates are the chief energy yielding substance.
- This Histidine is an essential amino acid for infants but not for adult.
- Cysteine and tyrosine are considered to be semiessential amino acids. Premature infants and adults who are ill require them.
- Proteins are the "body builders" as they are the chief constituents of the protoplasm. They form approximately 14% of dry body weight in human.
- Frog never drinks water.
- Camel can live without water for a considerable day, as it uses its metabolic water, which comes from of the oxidation of fats present in hump.
- Tinc is necessary to maintain plasma concentration of vitamin A.
- Tea/Coffee inhibit the absorption of iron from the diet. Prolonged consumption of tea/coffee after meal can lead to iron deficiency anemia.
- Vertebrates cannot digest keratin protein of hair, nails, fibroin protein of silk fibers etc, but certain insects can digest these proteins so damages silken and woolen garments.
- Typopsia Indigestion due to defective diet.

- Titamin C was the first vitamin to be produced during fermentation process using wild bacteria.
- The An alcoholic is always deficient of vitamin C.
- Transformer Excessive intake of vitamin A causes bone reabsorption and hypercalcemia.
- Some of the bacteria including Escherichia coli present in the large intestine or colon produce vitamin k, which is absorbed by the host and this is probably the main source of this vitamin for human.
- $\overset{\circ}{=}$ Vitamin B₁₇ is a recently discovered vitamin with anti–cancer property.
- The Most of the B-complex vitamins are coenzymes.
- Presently vitamin B₁₂ is produced directly during the course of fermentation by propioni bacteria and certain strains of Pseudomonas.
- Vitamins, which are synthesized by the intestinal flora are vitamin K. Thiamine, Riboflavin, Pantothenic acid, Niacin, Pyridoxin, Biotin and Folic acid.
- The overcooking, excessive alcohol, tobacco and coffee, certain medicine etc. destroys vitamin.
- The Effect of the reflex action due to the taste of food is the release of vagal impules.
- F Gama linolenic acid and arachidonic acids are essential fatty acid in mammals.
- The Glycine is simple amino acid.
- The Phenyl alanine amino acid is denoted by symbol F.
- Titamin nicotinamide functions as reducing agent.
- Titamin 'D' is a steroid vitamin.
- The overdosage of vitamin 'A' causes injury to lysosomes.
- Titamin 'C' is present in large amount in the body in adrenal cortex.
- \sim Vitamin B₆ is essential for transmission.
- Deficiency of vitamin H (biotin) cause rise of blood cholesterol.
- ☞ Frog tadpole is delayed in metamorphosis due to less amount of iodine in water.
- The most complex amino acid having double rings structure is tryptophan.
- The intestinal bacteria are able to synthesize both essential amino acids and vitamins in ruminants.
- Proteins which contain most of the essential amino acids are termed first class, while those do not, are called second class.
- Animal proteins are mostly first class and plant proteins are second class proteins.
- Whiptail disease is caused due to the deficiency of molybdenum.

Species	Water	Protein	Fat	Lactose					
Camel	87.2	3.7	4.2	4.1					
Cow	87.2	3.5	3.7	4.9					
Buffalo	78.6	5.9	10.4	4.3					
Goat	86.5	3.6	4.0	5.1					
Human	87.5	1.0	4.4	7.0					

Composition of milk

Name of food	Recommended amounts (gms. per day)			
	Adult man	Adult woman		
(1) Cereals (Wheat/Rice)	520	440		
(2) Pulses	50	45		
(3) Milk	200	150		
(4) Meat/Fish or Egg	30	30		
(5) Fats (Oil, Butter, Ghee)	45	25		
(6) Sugar/Molasses	35	20		
(7) Root and Tubers (Raddish, Potato, etc.)	60	50		
(8) Green leafy vegetables	40	100		
(9) Other vegetables	70	40		

Balanced diet for moderately active adult Indian

3.6 NUTRITIONAL IMBALANCES AND DISORDERS

(i) **Balanced diet :** The diet which contain the various nutrients in such proportions as can satisfy all the various needs of our body, is called a "balanced diet". The proportion of carbohydrates, proteins and fats into fulfill energy requirement is 4 : 1 : 1 *i.e.* 65% of energy is obtained from carbohydrates and 10–20% each from proteins and fats. This amount of energy is fulfilled by intake of 400–600 gm of carbohydrates, 80–100 gm of proteins and 50–60 gm of fats. The balanced diet must also contain sufficient amount of minerals and vitamins.

(ii) Metabolic rates

(a) **Basal metabolic rate :** Amount of energy required daily by a person to maintain its basal metabolism and is about 1600 k cal/day.

(b) **Routine metabolic rate :** Amount of energy required daily by a person to do his routine work. It is about 2800 k cal/day for males and 2300 k cal for female.

(c) Active metabolic rate : Amount of energy required daily by a person to maintain its high metabolic rate during heavy physical work and is about 6000 k cal/day for males and 4500 k cal for females. It has been scientifically determined that a child of 4–6 years approximately requires 1500, a child of 13–15 years requires 2500 and a youth of 16–18 year requires 3000 k cal of energy per day. The average metabolically available energy for each gram of carbohydrate is 4.0 k cal, for proteins is 4.0 k cal and for fats, it is 9.1 k cal.

(iii) **Nutritional disorders :** Every organism requires an adequate supply of nutrients in proper proportion in their diet for proper growth and development. There are two types of nutritional disorders

- (a) Under nutrition (malnutrition)
- (b) Over nutrition

(a) Diseases due to deficiency of nutrition (malnutrition)

Name of the Deficiency	Deficient Nutrient	Symptoms
Anaemia (microcytic)	Fe	Haemoglobin and number of erythrocytes gets reduced.
Megaloblastic anaemia	Folic acid and B_{12}	Presence of immature erythrocytes in blood.
Pernicious anaemia	Vitamin <i>B</i> ₁₂	Immature RBC without Hb. This may be fatal unless treated with vitamin B_{12} injection.
Xerophthalmia	Vitamin A	Thickened, keratinised, opaque ulcerated cornea. Prime cause of blindness in India, especially among children.
Night Blindness	Vitamin A	Less rhodopsin in rod cells of retina. So no vision in dim light.
Rickets (in children)	Vitamin <i>D</i>	Weak, soft, thin bones due to poor deposition of Ca and P. Bent long bones and painful swelling on wrist, elbow and knee joints.
Osteomalacia (adults)	Vitamin D	Weak bones of vertebral column, pelvis gets bent and deformed by body weight.
Sprue	Folacin	Ulceration of mouth, inflammation of bowel, indigestion, diarrhoea, weakness.
Pigeons breast	Vit. – D	Incomplete ossification at the end of limb bone, deformed ribs leading to pigeons breast.
Beri – beri	Vitamin <i>B</i> ¹ (Thiamine)	Reduces aerobic carbohydrate metabolism. So peripheral nerves inflammed causing pain, numbness and weakness of limb muscles. Paralysis. Fluid accumulation in tissues or oedema of hands and legs. Cardiac oedema.
Scurvy	Vitamin <i>C</i>	Fragile blood vessels because of defective collagen fibres in their walls. Bleeding gums, teeth fall, bones fragile. Wound healing delayed, vitamin C recommended in serious injury.
Bleeding disease (Hypoprothrombin	Vitamin <i>K</i>	Delayed blood clotting (s) so profuse bleeding.

anaemia)		
Marasmus	Protein / Malnutrition	Growth and replacement of tissue proteins imparted so emaciated body with their limbs and prominent ribs, dry, thin and wrinkled skin, Diarrhoea.
Kwashiorkor	Protein	Wasting muscles, thin limbs, Retarded growth of body and brain, Oedema, Diarrhoea.
Pellagra	Nicotinamide	Swollen lips, thick pigmented skin of hands and legs. Irritability.
Osteoporosis	Ca	Weakning of bones, tooth decay.
Goitre	I_2	Enlargement of thyroid gland.
Muscular cramps	NaCl	Pulling of muscles due to dehydration.
Dental cramps	Fluorine	Tooth decay.

Daily Dietary Requirements of Nutrients (Recommended by Indian Council of Medical Research)

	(Recommended by Indian Council of Medical Resource)											
Individual	Tot	Protei	Calciu	Iron	Vitam	Thia	Ribofla	Niacin	Folaci	Vitam	Vitam	Vitam
	al	n	m	(mgs	in A	min	vin	(<i>mgs</i> .)	n	in B_{12}	in C	in D
	kcal	(gms.)	(gms.)	.)	(µg.)	(mgs)	(<i>mgs</i> .)		(µg.)	(µg.)	(<i>mgs</i> .)	(IU)
(1) Man	280	55	0.4-	24	750	1.4	1.7	19	100	1	40	
Moderately	0		0.5									
active												
(2) Woman	220	45	0.4-	32	750	1.1	1.3	15	100	1	40	
(i)	0	59	0.5	40	750	1.3	1.5	17	300	1.5	40	
Moderately	270		1.0									
active	0	70		32	1150	1.4	1.6	19	150	1.5	80	
(ii)			1.0									
Pregnant	275											
(iii)	0											
Lactating												
(3) Boy	282	53	0.5-	25	750	1.4	1.7	19	100	1	40	200
(16-18	0		0.6									
years)												
(4) Girl	220	44	0.5-	35	750	1.1	1.3	15	100	1	40	200
(16-18	0		0.6									
years)												

(b) Diseases due to over nutrition

(1) Fluorosis : Caused due to excess of fluorides. It results in tooth and bone decay.

(2) **Obesity :** This is over-nutritional disorder. It is caused when "energy inputs exceeds energy output". It results in deposition of excess fat in the body.

(3) **Constipation :** Slow movement of faeces down the large intestine causes accumulation of dry and hard stool is colon. It is generally caused by irregular bowel habits.

(4) **Diarrhoea :** Rapid movement of faecal matter down the large intestine causes loose stools called diarrhoea. It may be also caused by viral or bacterial infections of intestinal tract, particularly of large intestine and by nervous tension.

(5) **Piles or haemmorhoids :** Enlargement of the anal veins. It may be either hereditary or may be caused due to rapid changes in the diet.

(6) **Hypercholesterolemia :** Caused due to excess of saturated fats like butter, ghee, hydrogenated vegetable oils and eggs etc. It results in increased level of cholesterol in blood, arteriosclerosis, coronary thrombosis, heart attack etc.

(7) Hypervitaminosis A : It results in loss of appetite, body hairs, painful swelling etc.

(8) Hypervitaminosis *D* : It results in deposition of calcium ion in the soft tissues of the body.

Differences between Kwasmorkor and Warasinus							
Kwashiorkor	Marasmus						
(1) It is caused by deficiency of protein in the	(1) It is caused by prolonged deficiency of						
diet.	proteins and calories in the diet.						
(2) It commonly affects babies between 1-3 years	(2) It affects infants under one year of age.						
of age.							
(3) Subcutaneous fat persists.	(3) Subcutaneous fat is used up, making ribs very						
	prominent.						
(4) Oedema affects legs and face.	(4) No oedema occurs						
(5) Skin and hair change colour.	(5) No change in skin and hair colour.						
(6) Body becomes under weight.	(6) Body becomes very under weight.						
(7) Appetite is reduced.	(7) Appetite is not effected.						
(8) Patient needs proteins to recoup.	(8) Patient needs proteins as well as						
	carbohydrates and fats to recover.						

Differences between Kwashiorkor and Marasmus

3.7 REGULATION OF FOOD INTAKE

(i) **Hunger :** Hunger is defined as the intrinsic (involuntary) desire or craving for food. Hunger is associated with a number of objective sensations. For instance, food deprival for many hours causes intense rhythmic hunger contractions in stomach, which even causes intense pain (hunger pangs) send sensory impulses to a "hunger or feeding centre", located in the lateral regions of hypothalamus.

When glucose levels fall in blood, hunger centre stimulated. Hunger centre transmits impulses to wall of stomach and wall of empty stomach start contraction or hunger pangs. After taking meal satiety centre which located in hypothalamus stimulates and feeding is stopped. During high fever person does not feel like taking meal because high temperature shuts off the appetite centre.

(ii) **Thirst :** Subconscious desire for water is called thirst. It is also induced by a hypothalamic "thirst centre". When amount of water decreases in body fluids (blood, lymph, tissue fluid, cerebrospinal fluid etc.) due to fever, exercise and sweating, copious urination, diarrhoea, etc. This induces the feeling of thirst. Presumably, a fall in glucose level in the blood also induces thirst.

(iii) Theory of regulation of food intake : They are following -

(a) **Neuronal theory :** According to this theory, two different type of centers are present in the hypothalamus which regulates hunger. These centre are appetite and satiety. Appetite centre is often used to imply a conscious desire for specific or selected type of food. Interoceptors of stomach wall, stimulated by the muscular contraction, send sensory impulses to the hunger centre located in the lateral region of hypothalamus. Satiety is the conscious sensation of food sufficiency leading to a voluntary cessation of eating. The centre is located in the ventromedian regions of hypothalamus.

(b) **Glucostatic theory :** When the blood glucose level decreases we feel hungry. It is also caused due to low level of amino acids and fatty acids, and when the level of these substances increases in blood, satiety centre stimulates.

(c) **Thermostatic theory :** Decrease in body temperature increases hunger due to increased metabolic rate. Conversely, an exposure to heat, or increases in body temperature reduces hunger due to decreased metabolic rate. These conditions are caused by interactions between hypothalmic temperature regulating and food intake–regulating system.

ASSIGNMENT

ALIMENTARY CANAL

Basic Level

Dus	isit Level									
1.	Dental formula of rabb	pit is								
	(a) $\frac{2,0,3,3}{1,0,2,3}$	(b) $\frac{1,0,2,3}{2,0,2,3}$	(c) $\frac{1,0,3,3}{2,2,0,3}$	(d) $\frac{2, 1, 2, 3}{2, 1, 2, 3}$						
2.	False teeth are best dev	veloped in								
	(a) Amphibia	(b) Cyclostomes	(c) Reptiles	(d) Birds						
3.	Which teeth in rabbit h	nave open pulp cavity								
	(a) Molar	(b) Premolar	(c) Incisor	(d) Canine						
4.	Teeth are absent in									
	(a) Fishes	(b) Reptiles	(c) Frogs	(d) Turtle						
5.	Ivory of teeth is									
	(a) Enamel	(b) Dentine	(c) Both	(d) None of these						
6.	In the gut of a mamma	l, haustra and taeniae are	the parts of							
	(a) Rectum	(b) Colon	(c) Caecum	(d) Ileum						
7.	Space between incisor	and cheek teeth in rabbit	is							
	(a) Diapause	(b) Diastema	(c) Dialysis	(d) Diapedesis						
8.	Taste buds are absent	in								
	(a) Foliate papillae	(b) Circumvallate papill	ae							
	(c)Fungiform papillae	(d) Filiform papillae								
9.	Which of the following	g is vestigial teeth found i	n human							
	(a) Incisors	(b) Premolars	(c) Diphyodont	(d) Wisdom tooth						
10.	Which of the following	g is the correct dental form	nula of man							
	(a) $\frac{2,1,3,2}{2,1,3,2}$	(b) $\frac{2,1,2,3}{2,1,2,3}$	(c) $\frac{2, 2, 2, 2}{2, 1, 3, 2}$	(d) $\frac{2,1,1,4}{2,1,2,3}$						
11.	Cells secreting dentine	e are called								
	(a) Osteoblasts	(b) Calcoblasts	(c) Chondriocytes	(d) Odontoblasts						
12.	The diastema is the too	othless gap (in the jaw of t	the rabbit)							
	(a) Between the right a	and left incisors	(b) Between the inciso	rs and premolars						
	(c) Between the premo	blars and molars	(d) Behind the molars							
13.	Pulp in case of tooth is	s covered by								
	(a) Root	(b) Crown	(c) Enamel	(d) Dentine						
1										

	14.	Pulp cavity of a tooth c	contains			
		(a) Food	(b) Blood	(c) Mass of capillaries	(d) Odontoblasts	
	15.	Bulk of the tooth in ma	ammals is made up of			
		(a) Dentine	(b) Enamel	(c) Pulp cavity	(d) Root	
	16.	In mammals the lower	jaw is made up of			
		(a) Dentaries	(b) Maxilla	(c) Premaxilla	(d) Palatine	
	17. The hardest substance of vertebrate body is					
		(a) Keratin	(b) Enamel	(c) Dentine	(d) Chondrin	
	18.	If the dental formula of	f Rabbit is 2033/1023. Wh	at does it show		
		(a) Total number of tee	eth in Rabbit is 15			
		(b) Number of total inc	visors in Rabbit is 3			
		(c) Diastema is present	between incisors and pre-	molars		
		(d) In the formula 2033	3 is for adult and 1023 is for	or young ones		
	19.	Tusk of an elephant is	an enormously enlarged			
		(a) Upper canine	(b) Lower incisor	(c) Upper incisor	(d) Lower canine	
	20.	Diastema is associated	with			
(a) Presence of certain teeth		(a) Presence of certain	teeth	(b) Absence of certain	(b) Absence of certain teeth	
	(c) Presence of tongue			(d) Absence of tongue		
21. The function of tongue is to						
	(a) Help in the act of swallowing		wallowing	(b) Help in mixing saliva with the food		
		(c) Help in speaking		(d) All of these		
	22.	Teeth in frog are				
		(a) Acrodont	(b) Homodont	(c) Polyphyodont	(d) All of these	
	23.	Thermo-regulation in d				
		(a) Skin	(b) Sweat glands	(c) Tongue	(d) Deposited fat	
	24.	Pulp cavity of teeth op				
		(a) Below the teeth	(b) In front of teeth	(c) Behind the teeth	(d) None of these	
	25.	Layer of cells that secr				
		(a) Osteoblast	(b) Ameloblast	(c) Odontoblast	(d) Dentoblast	
	26.	An animal without gall	bladder is			
		(a) Horse	(b) Cat	(c) Dog	(d) Human	
	27.	Intestinal villi are main	nly connected with			
		(a) Assimilation	(b) Absorption	(c) Secretion	(d) Ultra-filtration	

28.	Part of tongue that give	es feeling of sweetness is		
	(a) Tip	(b) Lateral edges	(c) Middle part	(d) Posterior part
29.	Number of canines in u	upper half jaw is		
	(a) 4	(b) 3	(c) 2	(d) 1
30.	Gall bladder is attached	d to liver in the region of		
	(a) Quadrate lobe	(b) Caudate lobe	(c) Right lobe proper	(d) Left lobe
31.	The stomach takes part	t in		
	(a) Breaking food meel	hanically	(b) Partially digesting t	he food
	(c) Disinfecting the foo	od	(d) All of these	
32.	Uvula can close the op	ening of		
	(a) Larynx	(b) Gullet	(c) Internal nares	(d) Eustachian tubes
33.	Which is a common pa	ssage in swallowing food	and breathing	
	(a) Larynx	(b) Pharynx	(c) Glottis	(d) Gullet
34.	Which of these terms is	s used for two different pa	rts applied with a slight	difference in its spelling,
r	not in pronunciation			
	(a) Ileum	(b) Intestine	(c) Cloaca	(d) Pelvis
35.	In ruminant stomach, th	he rumen is the		
	(a) Largest chamber			
		lulose fermenting microor		
	_		(d) All of these	
36.	-	to pass into duodenum by		
	(a) Pyloric valve	(b) Sphincter of Boyden	(c) Sphincter of Oddi	(d) Cardiac Sphincter
37.	Ileum is characterised			
	(a) Brunner's glands an		(b) Brunner's glands an	1
	(c) Club- shaped villi a	• •	(d) Peyer's patches and	l Brunner's glands
38.	-	absent in the animals belo		
20	(a) Apoda	(b) Cestoda	(c) Gastropoda	(d) Arachnida
39.	Vestibule is			
	(a) Part of pharynx		(b) Part of buccal cavit	-
10	(c) Space between jaw	and lips	(d) Part of tongue having	ng tonsiis
40.	Uvula is part of	(h) Soft poloto	(a) Hand palata	(d) Eniclottic
11	(a) Tongue	(b) Soft palate	(c) Hard palate	(d) Epiglottis
41.	Transverse rugae occur		(c) Tongua	(d) Stomach
	(a) Hard palate	(b) Soft palate	(c) Tongue	(d) Stomach
1				

4	12.	Frenulum is				
		(a) Adenoid present on pharyngeal wall				
		(b) Tonsil found on lateral walls of soft palate				
		(c) V-shaped sulcus dividing tongue into pharyngeal and oral parts				
		(d) Fold attaching tongue				
4	13.	Monophyodont teeth o	occur in			
		(a) Humans	(b) Frog	(c) Whale	(d) Rat	
4	4.	Teeth of most reptiles	and amphibians are			
		(a) Acrodont	(b) Thecodont	(c) Heterodont	(d) Diphyodont	
4	15.	Anus is absent in				
		(a) Unio	(b) Fasciola	(c) Periplaneta	(d) Pheretima	
4	16 .	The vermiform append	lix is situated at the junction	on of		
		(a) Large intestine and	small intestine	(b) Small intestine and duodenum		
		(c) Anus and rectum		(d) Stomach and duode	enum	
4	17.	Appendix in man is sit	uated in			
		(a) Left hypochondrium	m(b) Right hypochondriur	n (c) Left iliac fossa	(d) Right iliac fossa	
48. In vertebrates, lacteals are found in		are found in				
		(a) Ileum	(b) Ischium	(c) Oesophagus	(d) Ear	
4	19.	Peyer's patches are ass	sociated with the intestine	e intestine and vermiform appendix in mammals. These are		
		(a) Digestive	(b) Lymphoid	(c) Secretory	(d) Excretory	
5	50.	Longest oesophagus is	found in			
		(a) Swan	(b) Crocodile	(c) Snake	(d) Giraffe	
5	51.	In man the length of al	imentary canal is about			
		(a) 8 feet	(b) 16 feet	(c) 24 feet	(d) 32 feet	
5	52.	Hernia is a disease who	ere there is			
		(a) Descend of intestin	-	(b) Hardening in the m		
		(c) Weakening of thigh		(d) Weakening of intes	stine	
5	53.		ion in the alimentary canal			
		(a) Systole	(b) Diastole	(c) Peristalsis	(d) Metachronal	
5	54.	Vermiform appendix is	-			
		(a) Alimentary canal				
		(c) Vascular system	(d) Reproductive system	l		
5	55.	Narrower distal end of				
		(a) Cardiac	(b) Duodenum	(c) Pharynx	(d) Pylorus	
1						

56.	Brush bordered epithe	lium is found in		
	(a) Trachea	(b) Stomach	(c) Small intestine	(d) Fallopian tube
57.	Crypts of Lieberkuhn	are present throughout the		
	(a) Large intestine		(b) Gastric mucosa	
	(c) Submucosa of the	duodenum	(d) Small intestine	
58.	Lacteals are found in			
	(a) Liver	(b) Lungs	(c) Kidney	(d) Villus of intestine
59.	The outermost layer o	f an alimentary canal is kn	own as	
	(a) Mucosa	(b) Muscular layer	(c) Serosa	(d) Submucosa
60.	The main region of the	e alimentary canal in which	n digested food is absort	bed
	(a) The oesophagus		(b) The stomach	
	(c) The small intestine		(d) The caecum and ap	opendix
61.	Crypts of Lieberkuhn	contain one of the followir	ng part	
	(a) Kupffer cell	(b) Villi of ileum	(c) Mast cells	(d) Villi of stomach
62.	Pylorus is situated at t	he junction of		
	(a) Oesophagus and stomach		(b) Stomach and duodenum	
	(c) Duodenum and ile	um	(d) Ileum and rectum	
63.	Lacteals are central ly	mph vessels which are fou	nd in	
	(a) Liver	(b) Pancreas	(c) Villi	(d) Spleen
64.	The most important ce	entre for the formation of ly	ymph is	
	(a) Liver	(b) Pancreas	(c) Spleen	(d) Kidney
65.	Peyer's patches contain	in		
	(a) Mucus	(b) Sebum	(c) Lymphocytes	(d) Red blood cells
66.	Intestinal villi are mor	e numerous and larger in p	osterior part of small in	testine than in anterior
I	part because			
	(a) Digestion is faster	in posterior part	(b) Blood supply is po	or in posterior part
	(c) There is more dige	sted food in posterior part	(d) Blood supply is ric	h in posterior part
67.	Lymph tissues are pre	sent in which part of alime	ntary canal	
	(a) Buccopharyngeal	cavity (b)Sacculus rotundu	s (c) Ileum	(d) All of these
68.	A pair of small lymph	atuic tissue present at the s	ides of root tongue is ca	lled as
	(a) Thyroid	(b) Tonsils	(c) Epiglottis	(d) Adenoids
69.	Crypts of Lieberkuhn	are found in between the v	illi. They secrete	
	(a) Glucagon	(b) Succus entericus	(c) Insulin	(d) None of these

70.	Fundic part of stomach is					
	(a) Present in rabbit b	out absent in frog	(b) Absent in rabbit l	(b) Absent in rabbit but present in frog		
	(c) Absent in both rabbit and frog (d) Present in both rabbit and frog					
71.	The disease due to int	flammation of vermiform a	appendix of digestive s	ystem is known as		
	(a) Amoebic dysenter	ry (b) Intestinal cancer	(c) Appendicitis	(d) None of these		
72.	Removal of stomach causes					
	(a) Dumping syndron	ne (b) Turner's syndrome	(c) Emphysema	(d) None of these		
73.	Vermiform appendix	is a part of				
	(a) Intestine	(b) Stomach	(c) Liver	(d) Rectum		
74.	The inner surface of l	arge intestine is				
	(a) Lined by muscula	r tissue	(b) Provided by epith	nelial tissue		
	(c) Lined by both epithelial and muscular tissue		(d) Lined by all four	tissues		
75.	Epithelium that forms the inner lining of stomach wall					
	(a) Cuboidal	(b) Ciliated	(c) Squamous	(d) Columnar		
76.	Ileum is a part of					
	(a) Pelvic girdle	(b) Pectorial girdle	(c) Pancreas	(d) Small intestine		
77.	Crypt of Lieberkuhn	is example for				
	(a) Simple tubular gland		(b) Coiled tubular gla	and		
	(c) Compound alveolar gland		(d) Compound tubula	ar gland		
78.	Submucosa is thickest in					
	(a) Stomach	(b) Oesophagus	(c) Intestine	(d) Rectum		
79.	What are the functions of goblet cells					
	(a) Production of enzyme (b)Production of mucin					
	(c)Production of hormone (d)Production of <i>HCl</i>					
80.	Inner lining of gut, stomach and liver is composed of					
	(a) Simple squamous epithelium		(b) Simple columnar epithelium			
	(c) Simple cuboidal epithelium (d) Compound			elium		
81.	The intestine of human body is about 29 feet long, because					
	(a) It provides more area for food storage					
	(b) Bacteria contained	b) Bacteria contained in food may gradually be killed				
	(c) More length increases food digestion and absorption (d)None of these					
82.	Sacculus rotundus is a dilated part at posterior end of					
	(a) Ileum	(b) Ilium	(c) Oesophagus	(d) Colon		

Advance Level **83.** Pulp cavity of teeth is lined by (a) Odontoblast (b) Chondroblast (c) Osteoblast (d) Amyloblast Wisdom teeth in human is 84. (a) 3^{rd} molar and 4 in number (b) 3rd molar and 2 in number (c) 2^{nd} molar and 4 in number (d) 2^{nd} molar and 2 in number **85.** Carnassial teeth are modified for (a) Crushing (b) Grinding (c) Tearing (d) Cutting **86.** At the last end of tongue, there is an area sensitive to the.....taste (a) Sour (b) Bitter (c) Sweet (d) Salty **87.** Vomerine teeth are present in (a) Man (b) Reptiles (c) Frogs (d) Rabbits **88.** Dental formula is given to show (a) The structure of molars (b) Number and types of teeth in both jaws (c) Homodont condition (d) Diphyodont condition **89.** Monophyodont condition is found in (a) Sloths (b) Toothed whales (c) Sirenians (d) All of these **90.** Teeth are (a) Living structure (b) Dead structure (c) Partly dead and partly living structure (d) Exact nature is not known 91. How many teeth in man grows twice in life (a) 32 (b) 28 (c) 20 (d) 12 92. Argentaffin cells are found in (a) Pancreas (b) Internal ear (c) Gastric glands (d) Liver 93. Which of the following carries glucose from digestive tract to liver (a) Hepatic artery (b) Pulmonary vein (c) Hepatic portal vein (d) Renal portal system 94. In an empty contracted stomach the mucosa forms folds known as (b) Incisura angularis (d) None of these (a) Foveole (c) Rugae 95. The stomach of ruminants is mainly divided into four parts, but in camel which one part is missing (a) Abomasum (b) Omasum (c) Recticulum (d) Rumen

96.	The length of the a	limentary canal is more in he	rbivorous animals than t	he carnivorous because		
	(a) Herbivorous die	et contains more fat to digest				
	(b) Herbivorous die	et contains more proteins to d	igest	it		
(c) Herbivorous diet contains more carbohydrates particularly cellulose which takes more time						
digest						
(d) The absorption is more which requires more time97. Major utility of breaking up of food into small bits during chewing is						
				(b) To increase surface area of food		
			(d) To make food solu			
(c) To enjoy taste of food(d) To make food soluble98. In colon, constructions of its wall form a series of small packets called						
	(a) Haustra	(b) Crypts of Lieberkuh	-	(d) Taenia		
99.	Taste buds for bitte	er taste are found on tongue a				
	(a) Tip	(b) On basal surface	(c) Posterior side	(d) Lateral side		
		DIGESTIVE	<u>GLANDS</u>			
Basi	c Level					
100.	Kupffer cells of liv	er are				
	(a) Loose connectiv	ve tissue (b)Phagocytic cell	(c) Mast cell	(d) Fat cell		
101.	Bilirubin and bilive	erdin are found in				
	(a) Blood	(b)Bile	(c) Pancreatic juice	(d) Saliva		
102.	Deamination occur	rs in liver to				
	(a) Get rid of urea	from blood	(b) Synthesise amino a	(b) Synthesise amino acids		
	(c) Make use of ex		(d) Convert proteins to urea and uric acid			
103		cids and glycerols are absorbe				
103.	-		-			
104	(a) Lacteals	(b) Blood circulation	(c) Wall of the ileum	(d) None of these		
104.	In rabbit the colour	-				
	(a) Colourless due	to the presence of sodium and	d potassium taurocholate			
	(b) Green due to th	e accumulation of biliverdin				
	(c) Red due to the a	accumulation of haemoglobin	1			
	(d) Yellow due to t	he presence of bilirubin				
105.	A person like to ha	ve more oils. Which of the fo	ollowing juice will emuls	ify it		
I	(a) Bile	(b) Pancreatic juice	(c) Gastric juice	(d) Saliva		

106.	From the point of ontog	geny, liver is				
	(a) Ectodermal		(b) Endodermal			
	(c) Mesodermal		(d) Both ectodermal and	d endodermal		
107.	Bile is secreted by					
	(a) Pancreas	(b) Kidney	(c) Heart	(d) Liver		
108.	Liver in our body stores	S				
	(a) Vitamin A	(b) Vitamin D	(c) Vitamin B_{12}	(d) All of these		
109.	Ptyalin is					
	(a) Strongly acidic	(b) Slightly acidic	(c) Slightly neutral	(d) Strongly alkaline		
110.	Ptylin is an enzyme of					
	(a) Salivary juice	(b) Pancreatic juice	(c) Intestinal juice	(d) None of these		
111.	Parotid salivary gland are present					
	(a) Below the tongue		(b) Below the ear			
	(c) Below the eye orbit		(d) In the angle between two jaws			
112.	The number of salivary	glands in man is				
	(a) Two pairs	(b) Three pairs	(c) Four pairs	(d) Five pairs		
113.	The name of an enzyme	e produced by the salivary) Three pairs (c) Four pairs (d) Five pairs roduced by the salivary gland is			
	(a) Pepsin	(b) Rennin	(c) Ptyalin	(d) Pancreatic juice		
114.	Which one of the follow	wing is the matching set of	f gland and its secretion			
	(a) Pituitary gland – Th	yroxin	(b) Salivary gland – An	nylase		
	(c) Adrenal cortex – Va	asopressin	(d) Islets of Langerhans	s – Secretin		
115.	Saliva converts					
	(a) Proteins into amino	acids	(b) Glycogen into glucose			
	(c) Starch into maltose		(d) Fats into vitamins			
116.	The activator of intestin	nal juice is				
	(a) Succus entericus	(b) Secretin	(c) Enterocrinin	(d) Enterozymase		
117.	Surgical removal of gal	l bladder in human beings	s would lead to			
	(a) Impairment of the d	igestion of fat	(b) Increased acidity in	the intestine		
	(c) Jaundice		(d) None of these			
118.	Jaundice may be caused	d by retarded function of				
	(a) Lungs	(b) Kidneys	(c) Heart	(d) Liver		
1						

119.	9. "Chief cells" of "Zymogen cells" secrete the enzymes of the gastric juice, are found in the				
	(a) Isthmus of the gland	1	(b) Neck of the tubular	gland	
	(c) Base of the tubular	region	(d) All of these		
120.	Amylolytic enzymes are produced from				
	(a) Salivary glands and	liver	(b) Stomach and liver		
	(c) Stomach and pancre	eas	(d) Salivary glands and	pancreas	
121.	Fat digestion is facilata	ted by			
	(a) Bile juice	(b) Pancreatic juice	(c) Gastric juice	(d) None of these	
122.	If pancreas is removed,	the compound which rem	nain undigested is		
	(a) Carbohydrates	(b) Fats	(c) Proteins	(d) All of these	
123.	Liver sinusoids are line	d by			
	(a) Parenchymal cells	(b) Endothelial cells	(c) Kupffer cells	(d) Goblet cells	
124.	The duct of gall bladde	r in rabbit is known as			
	(a) Choleoductus duct	(b) Stenson's duct	(c) Cystic duct	(d) None of these	
125.	Action of bile can be be	est affected by			
	(a) Esterification	(b) Oxidation	(c) Emulsification	(d) None of these	
126.	Gall bladder is stimulat	ed by			
	(a) Secretin	(b) Cholecystokinin	(c) Enterogastrone	(d) Enterokinase	
127.	Kupffer cells are found	in			
	(a) Mouth	(b) Liver	(c) Kidney	(d) Stomach	
128.	Bile aids in digestion an	nd absorption because it co	ontains		
	(a) Lipase	(b) Bile pigments	(c) Bile salts	(d) All of these	
129.	pH of the pancreatic juit	ice is about			
	(a) 6.4	(b) 8.4	(c) 12.0	(d) 7.0	
130.	Trypsinogen is an inact	ive enzyme secreted by th	e pancreas. It is activate	d by	
	(a) Pepsin of stomach	(b) Chymotrypsin	(c) Bile	(d) Enterokinase	
131.	A good source of lipase	e is			
	(a) Saliva	(b) Gastric juice	(c) Bile	(d) Pancreatic juice	
132.	The trypsin enzyme is s	secreted by			
	(a) Stomach	(b) Duodenum	(c) Pancreas	(d) Liver	

133. In pancreas, pancreatic juice and hormones are secreted by						
	(a) Same cells		(b) Different cells			
	(c) Same cells at different	ent times	(d) None of these			
134.	The largest gland in the	e human body is				
	(a) Liver	(b) Brain	(c) Pancreas	(d) Thyroid		
135.	Islets of Langerhans pre-	oduce				
	(a) Insulin	(b) Rennin	(c) Ptyalin	(d) <i>HCl</i>		
136.	Deoxyribonuclease and	ribonuclease are secreted	by			
	(a) Liver	(b) Stomach	(c) Pancreas	(d) Kidney		
137.	How many kinds of cel	ls are found in islet of Lar	ngerhans			
	(a) 1	(b) 2	(c) 3	(d) 4		
138.	Islets of Langerhans are	e present in				
	(a) Pancreas	(b) Ileum	(c) Oesophagus	(d) Stomach		
139.	One of the digestive jui	ces that lacks enzymes bu	t aids digestion is			
	(a) Bile	(b) Succus entericus	(c) Chyle	(d) Chyme		
140.	Liver of rabbit is made	up of				
	(a) 4 lobes	(b) 6 lobes	(c) 5 lobes	(d) 7 lobes		
141.	Bile juice is a					
	(a) Secretory product	(b) Enzymatic product	(c) Excretory product	(d) All of he above		
142.	Which of the following	hormone stimulates the s	ecretion of gastric juice			
	(a) Secretin	(b) Gastron	(c) Cholecystokinin	(d) Gastrin		
143.	The enzymes responsib	le for the digestion of star	ch in food of man is pre	sent in		
	(a) The salivary and ga	stric secretions	(b) The salivary and pa	ncreatic secretions		
	(c) The gastric and pan	creatic secretions	(d) The gastric and duo	denal secretions		
144.	The amount of gastric j	uice secreted per day from	n man's stomach is abou	t		
	(a) 5000 ml to 10000 m	<i>el</i> (b) 2000 <i>ml</i> to 3000 <i>ml</i>	(c) 100 <i>ml</i> to 500 <i>ml</i>	(d) 10 <i>ml</i> to 15 <i>ml</i>		
145.	Zymogen cells and chie	ef cells secrete				
	(a) Hydrochloric acid	(b) Mucus	(c) Pepsin	(d) Trypsin		
1						

146.	6. Gastric juice contains					
	(a) Pepsin, rennin, lipase		(b)Pepsin, amylase, rennin			
	(c) Pepsin, amylase, try	psin	(d) Lipase, rennin, tryp	sin		
147.	The bile secreted by the	e liver cells passes into the	e gall bladder through			
	(a) Hepato-pancreatic d	luct (b)Cystic duct	(c) Hepatic duct	(d) Hepato-gall duct		
148.	The chief function of b	ile is to				
	(a) Digest fat by enzym	natic action	(b) Emulsify fats for d	igestion		
	(c) Eliminate waste pro	oducts	(d) Regulate digestion	of proteins		
149.	In man, the bile juice se	ecreted per day is				
	(a) 700 <i>ml</i>	(b) 800 <i>ml</i>	(c) 1000 <i>ml</i>	(d) 1500 <i>ml</i>		
150.	Bile salts are poured in	to the alimentary canal wh	here they are necessary f	or the absorption of		
	(a) Na^+ and Ca^{++}		(b) Fat soluble vitamin	S		
	(c) Amino acids and me	onosaccharides	(d) All the nutrients contained in chyme			
151.	Cholesterol is synthesis	sed in				
	(a) Pancreas	(b) Brunner's gland	(c) Spleen	(d) Liver		
152.	The first phase in the b	reakdown of glucose in ar	nimal cell is			
	(a) Glycolysis	(b) Electron transport sys	stem (c)Fermentation	(d) Krebs cycle		
153.	In which of the following	ng proteins are absent				
	(a) Pancreatic juice	(b) Saliva	(c) Bile	(d) Intestinal juice		
154.	Bile helps in					
	(a) Producing enzymes	(b) Esterification	(c) Both (a) and (b)	(d) None of these		
155.	Which word best descri	ibes the action of bile on f	fats			
	(a) Neutralises	(b) Digests	(c) Emulsifies	(d) Absorbs		
156.	The <i>pH</i> of amylase pres	sent in saliva is				
	(a) 6	(b) 6.8	(c) 7.2	(d) 8		
157.	Saliva is secerted from					
	(a) Submaxillary and su	ublingual glands	(b) Gastric gland			
	(c) Pancreas		(d) Gall bladder			
158.	Ptyalin is secreted by					
	(a) Salivary gland	(b) Gastric gland	(c) Digestive gland	(d) Brunner's gland		

159.	9. When gall bladder of a man is removed								
	(a) Fat digestion is not	possible		(b)Acidity continue	s in duodenum				
	(c) Effect of pancreatic	juice upon food is impair	ed	(d)All of these					
160.	Molar glands are prese	nt in							
	(a) Frog	(b) Cat	(c)	Rabbit	(d) Man				
161.	Salivary glands are abs	ent in							
	(a) Anopheles maculipe	enis (b)Musca domestica	(c)	Blatta orientalis	(d) Rana hexadactyla				
Adve	ance Level								
162.	162. Which one of the following statements about glycogen is correct								
	(a) It is a disaccharide stored in liver which can react with ammonia to form proteins								
	(b) It is synthesised in the liver and takes part in the formation of bile and lipase, besides being a source of energy								
	(c) It is a polysaccharide which is synthesised and stored in liver cells								
	(d) It is synthesised in blood and stored in liver and muscles to provide glucose in times of need								
163.	3. Liver does not synthesize								
	(a) Fibrinogen	(b) Albumin	(c)	Prothrombin	(d) Gamma globulin				
164.	Which of the following	g digestive juices have the	mir	imum <i>pH</i>					
	(a) Bile	(b) Saliva	(c)	Gastric juice	(d) Pancreatic juice				
165.	Synthesis of glycogen	from sugar in the liver is k	nov	vn as					
	(a) Glycogenesis	(b) Glycolysis	(c)	Glycogenolysis	(d) Glucolysis				
166.	Enzyme arginase is fou	ind in							
	(a) Mouth cavity	(b) Stomach	(c)	Intestine	(d) Liver				
167.	The liver of carnivorou	is is larger than the herbive	oroi	is because in carnivo	rous				
	(a) Their body is also b	pig							
	(b) The diet contains m	uch more proteins so liver	r ha	s to do more work					
	(c) The problem of pha	gocytosis by Kupffer cells	s are	e more					
	(d) None of these								
168.	-	g is not a human salivary g							
	(a) Parotid	(b) Submaxillary	(c)	Sublingual	(d) Infra-orbital				
169.	Spot the salivary gland								
	(a) Sublingual	(b) Adrenal	(c)	Brunner	(d) Lacrimal				

170.	When a piece of bread	is chewed it tastes sweet b	because			
((a) The sugar contents	are drawn out	(b) Saliva converts starch into maltose			
((c) It does not taste swe	eet	(d) The taste buds are s	timulated by chewing		
171.]	If liver becomes function	onless, percentage of whic	h will increase in blood			
((a) Uric acid	(b) Ammonia	(c) Urea	(d) Protein		
172. ′	The term 'humulin' is u	used for				
((a) Human insulin	(b) Isoenzyme	(c) Hydrolytic enzyme	(d) Powerful antibiotic		
173. (Cells of the pancreas is	not digested by their own	enzymes because			
((a) Enzymes are secrete	ed in inactive form	(b) Cells are not lined b	y mucous membrane		
((c) Enzymes are release	ed only when needed	(d) None of these			
1 74. `	Which one of the follow	wing does not produce any	v digestive enzyme			
((a) Intestinal mucosa	(b) Gastric mucosa	(c) Pancreas	(d) Liver		
175. (75. Glisson's capsule is found in					
((a) Pancreas	(b) Liver	(c) Gall bladder	(d) Intestine		
176.	'Secretin' is secreted fr	om an				
((a) Endocrine gland and	d acts on an endocrine gla	nd			
((b)Exocrine gland and a	acts on an exocrine gland				
((c) Endocrine gland and	d acts on an exocrine glan	d			
((d)Exocrine gland and a	acts on an endocrine gland	1			
177.]	If <i>pH</i> of a protein is 1.6	, which enzyme will dige	st it			
((a) Trypsin	(b) Pepsin	(c) Amylase	(d) Erepsin		
178.]	Pisiform cells loaded w	vith zymogen granules can	be seen in			
((a) Liver	(b) Pancreas	(c) Ovary	(d) Kidney		
179.]	Pancreatic juice contain	18				
((a) Trypsin, lipase and	maltase	(b) Pepsin, trypsin and maltase			
((c) Trypsin, chymotryp	sin, amylase and lipase	(d) Trypsin, pepsin and	amylase		
180.	Wharton's duct in man	is related with				
((a) Female genital orga	ns	(b)Brunner's glands			
	(c) Submandibular saliv		(d)Sublingual salivary	gland		
		35,000,000 gastric pits at				
((a) $200 / mm^2$	(b) $300 / mm^2$	(c) $1000 / mm^2$	(d) $100 / mm^2$		

182.	The toxic substance are	e detoxicated in the humar	n body by	
	(a) Lungs	(b) Kidneys	(c) Liver	(d) Stomach
183.	Cholecystokinin is a se	cretion of		
	(a) Stomach which stin	nulates pancreas to release	e the pancreatic juice	
	(b) Liver synthesised fr	com cholesterol and contro	ols secondary sexual char	racters
	(c) Duodenum and mal	xes the gall bladder to con	tract and release bile	
	(d) Goblet cell of ileum	and stimulates the secret	ion of succus entericus	
184.	Insulin, epinephrine, gl	ucagon collectively influe	ence	
	(a) Gluconeogenesis		(b) Glycerophosphate s	huttle
	(c) Glycolysis		(d) Glycogenolysis and	glycogenesis
185.	Which of the following	clotting factor is not form	ned by liver	
	(a) I	(b) II	(c) IV	(d) VIII
186.	The function of ductus	choledochus is to carry		
	(a) Bile	(b) Sperms	(c) Ova	(d) Urine
187.	Treatment with allaxon	destroys		
	(a) Sertoli cell	(b) Leydigs cells	(c) Ball of pancreatic is	slets (d)STH cells
188.	The contraction of gall	bladder is due to		
	(a) Gastrin	(b) Secretin	(c) Cholecystokinin	(d) Enterogastrone
189.	In gluconeogenesis			
	(a) Glucose is polymer	ized into glycogen	(b) Glycogen is broken	into glucose
	(c) Carbohydrates are s	synthesized from amino ac	cids / lipids	
	(d) Glucose is broken i			
190.		ring metabolism is render	-	
101	(a) Pancreas	(b) Stomach	(c) Liver	(d) All of these
191.		' stimulates secretion of		
102	(a) Pancreatic juice	(b) Bile juice	(c) Salivary juice	(d) Gastric juice
192.	(a) Pepsin	g enzyme is not secreted by (b) Trypsin	(c) Carboxy peptidase	(d) Dibonualansa
193		shows correct pairing for	• • •	(u) Ribbiluciease
1)5.	-	's duct; submaxillary $\rightarrow c$		al \rightarrow duct of Rivinus
		Rivinus; submaxillary $\rightarrow c$	_	
		Rivinus; submaxillary $\rightarrow V$	_	
		Stensen; submaxillary $\rightarrow V$	-	
			marion 5 duct, submigu	

		-			-		
			Column-I (glands)		Column-II (location)	
		А	Crypts of Lieberkuhn	p	Loop of duodenum		
		В	Pancreas	q	Stomach		
		С	Adrenal gland	r	Intestine		
		D	Gastric gland	S	Kidney		
							I
	(a) A = r, B =	p, C	= q, D $=$ s	(ł	(b)A = r, B = p, C = s, I	D = q	
	(c) $A = q, B =$	s, C	= r, D = p	(0	d)A = p, B = r, C = s, I	D = q	
195.	Number of liv	er lol	bes in man				
	(a) 4		(b) 5	(0	c) 6	(d) 7	
196.	Structure prese	ent in	n man but absent in frog is				
	(a) Salivary gl	ands	(b) Pancreas	(0	c) Adrenal glands	(d) T	hyroid gland
197.	Weight of hun	nan li	iver is				
	(a) 6.0 <i>kg</i>		(b) 5.0 <i>kg</i>	(0	c) 3.0 <i>kg</i>	(d) 1	.5 kg
198.	Enzyme lactas	se occ	curs in				
	(a) Saliva		(b) Pancreatic juice	(0	c) Intestinal juice	(d) S	tomach
199.	Insulin is secre	eted l	by				
	(a) α - cells of	pano	creas (b) β - cells of pancreas	s (c	c) γ - cells of pancreas	(d) A	cini of pancreas
200.	α -cells of panel	creas	secerte				
	(a) Insulin		(b) Glucagon	(0	c) Trypsinogen	(d) A	amylase
201.		f sali	va produced per day in huma	ans i	S		
	(a) 200 <i>ml</i>		(b) 500 <i>ml</i>	(0	c) 750-1000 ml	(d) 1.	.0-1.5 litres
202.		irubi	n in jaundice would be				
	(a) 20 <i>ml/l</i>	-	(b) 0.2 <i>mg/l</i>		c) $1.2 mg/l$	(d) 12	2 mg/l.
203.	•	of st	tomach are gastric glands loc				
	(a) Serosa		(b) Mucosa	((c) Submucosa	(d) M	Iuscularis mucosa

194. Match the names of glands listed under column-I with the location given under column-II, choose the answer which gives correct combination of the alphabets of the two columns

PHYSIOLOGY OF DIGESTION

		PHYSIOLOGY O	F DIGESTION				
Basi	ic Level						
204.	Mechanical stimulation	n of villi by the food prod	uces a hormone which is	known as			
	(a) Gastrin	(b) Progesterone	(c) Villikinin	(d) Pancreozymin			
205.	During digestion the ly	mphatics of the intestine	become filled with fat gl	obules which give white			
	colour to the lymph. T	his lymph is known as					
	(a) Chyle	(b) Haemoconia	(c) Fluid plasma	(d) Bilirubin			
206.	Some of the free fatty	acids and monoacyl glyce	rols aggregate in ileum t	o form the water soluble			
	substance for the absor	rption. This is known as					
	(a) Chyle	(b) Cargo	(c) Micelles	(d) Chilomicrons			
207.	Which of the following	g are reabsorbed in the ali	mentary canal as such				
	(a) Albumin of egg (b) Polysaccharides (c) Fat soluble vitamins (d) Proteins						
208.	Trypsin differs from pe	epsin in that					
	(a) It digest protein in alkaline medium while pepsin does so in acidic medium						
	(b) It digest protein in acidic medium while pepsin does so in alkaline medium						
	(c) Both (a) and(b)						
	(d) None of these						
09.	Some proteolytic enzy	mes are					
	(a) Trypsin, peptidase,	pepsin	(b) Amylopsin, steapsi	n, ptylin			
	(c) Amylase, lipase, zy	mase	(d) Urease, zymase, de	hydrogenase			
210.	The enzymes have pro loose bonds are separa	teinous and prosthetic gro ted. It is known as	ups connected by loose	bonds. Under activity the			
	(a) Diakinesis	(b) Histolysis	(c) Dialysis	(d) Synapsis			
	The simplest form of f limentary canal	ood elements carbohydrat	es, proteins, fats are pres	sent in which part of			
	(a) Stomach	(b) Ileum	(c) Duodenum	(d) Colon			
212.	Which of the following	g enzyme is not secreted b	y wall of alimentary can	al			
	(a) Sucrase	(b) Cellulase	(c) Lipase	(d) Invertase			
213.	Pepsin is secreted in th	e form of pepsinogen. It i	s activated by thein t	he stomach			
	(a) Gastrin	(b) Amylopsin	(c) <i>HCl</i>	(d) Rennin			
214.	Monosaccharides and	amino acids are absorbed	directly intoin the ile	um			
	(a) Lacteals	(b) Cisterna chyli	(c) Blood circulation	(d) Wall of the ileum			
215.	Digestion of carbohydr	rate is affected by					
	(a) Erepsin	(b) Steapsin	(c) Pepsin	(d) Amylopsin			
				·			

216.	The functional unit for	the absorption of digested	d food is				
	(a) Crypts of Lieberkuh	nn (b)Peyer's patches	(c) Villi	(d) Brunner's gland			
217.	The enzyme which is for	ound from protozoa to ma	mmalia is				
	(a) Amylase	(b) Trypsin	(c) Pepsin	(d) Lipase			
218.	3. Digestion of starch takes place in						
	(a) Stomach and duode	num	(b) Buccal cavity and c	luodenum			
	(c) Buccal cavity and o	esophagus	(d) Duodenum only				
219.	Amylase is an enzyme	for which the substrate is					
	(a) Starch (Polysacchar	rides)	(b) Proteins				
	(c) Fats		(d) Cane sugar				
220.	In rabbit, the digestion	of cellulose takes place ir	1				
	(a) Colon	(b) Ileum	(c) Caecum	(d) Rectum			
221.	The major digestion in	stomach of man is of					
	(a) Proteins	(b) Carbohydrates	(c) Fats	(d) All of these			
222.	Which one is not match	ning with the others					
	(a) Ptyalin	(b) Glucagon	(c) Secretin	(d) Gastrin			
223.	The enzyme pepsin of	gastric juice gets activated	l in				
	(a) Neutral medium	(b) Alkaline medium	(c) Acidic medium	(d) None of these			
224.	A test tube contains wa	ter of boiled rice. Which	enzyme will digest it				
	(a) Maltase	(b) Lipase	(c) Invertase	(d) Amylase			
225.	In intestine, <i>pH</i> value is						
	(a) 7.6	(b) 6.0 - 7.0	(c) 8.5-9.0	(d) 2.5-4.5			
226.	In man cellulose is dige						
	(a) The caecum	(b) The colon	(c) The appendix	(d) Not digested at all			
227.	C	cretion is brought about by	-				
	(a) Cholecystokinin	(b) Pancreozymin	(c) Gastrin	(d) Enterogastron			
228.		n oesophagus to stomach					
	(a) Pressure of breathin	ng	(b) Movement of diaph	C			
	(c) Peristalsis		(d) Lubrication of food	by mucous			
229.	*	in the process of digestic					
	(a) Fats into amino acio		(b) Polypeptides into a				
	(c) Polysaccharides inte	o disaccharides	(d) Disaccharides into	monosaccharides			

	(a) Liver	ted into glycogen in liver (b) Liver and muscles		(d) Spleen and muscles				
231.	. The end product of fat		*	-				
	(a) Amino acid	(b) Starch	(c) Fatty acid	(d) Glucose				
232.	Which one of the follo	owing is the matching pair	of digestive enzyme and	d substrate]				
	(a) Rennin-Protein	(b) Amylase-Lactose	(c) Trypsin-Starch	(d) Invertase-Maltose				
233.	One of the following i	s needed for the conversion	on of trypsinogen into try	ypsin				
	(a) <i>HCl</i>	(b) Enterokinase	(c) Lipase	(d) Zymase				
234.	. Milk protein is acted u	pon by a gastric enzyme						
	(a) Casein	(b) Rennin	(c) Pepsin	(d) Caseinogen				
235.	35. Enzymes are found in all living cells. Their main function is							
	(a) To help in the dige	stion of food	(b) To allow chemical	reaction to food				
	(c) To speed up the br	eakdown of substance	(d) To accelerate the r	ate of chemical reactions				
236.	The main function of t	the colon (large intestine)	of mammals is to					
	(a) Temporarily store	of excretory products	(b) Absorb water from	(b) Absorb water from undigested food				
	(c) Absorb digested for	ood	(d) Digest cellulose	(d) Digest cellulose				
237.	Digestion is the break	ing down of large food me	olecules into smaller one	s. The main purpose of				
t	his is to							
	(a) Make the food solu							
	· · ·	e enzymes to be used up						
	•	erent types of molecules f						
20		of food along the gut easier		1				
.38.		ut walls of stomach do no						
	(a) Covered by thick la	-	(b) Covered by a layer					
20	(c) Not affected by <i>H</i> (<i>I</i> by digestion of proteins	(d) Secreting certain e					
237.	(a) Lacteals	by digestion of proteins	(b) Rectum	nie unougn				
		n the villi		l capillaries in villi				
	(c) Blood capillaries in the villi (d) Lacteals and blood capillaries in villi							
240.	The three secretions th	nat mix with food in the si	240. The three secretions that mix with food in the small intestine are					
240.				ancreatic juice				
240.	(a) Saliva, gastric juice	e and bile (b)Gastric juice, bile and p	C C				
	(a) Saliva, gastric juice)Gastric juice, bile and p	C C				

242.	The function of oxyntic	c cells is to				
	(a) Secrete bile juice			(b) Secrete proteolytic enzymes		
	(c) Secrete <i>HCl</i> in storr	nach		(d) Secrete lipolytic enz	zymes	
243.	Below freezing point d	igestive enzymes are				
	(a) Inactivated	(b) Activated		(c) Destroyed	(d) Unaffected	
244.	Which will not breakdo	own the peptide bond	of pr	otein		
	(a) Ptyalin	(b) Trypsin		(c) Chymotrypsin	(d) Peptidase	
245.	All enzymes are chemi	cally speaking				
	(a) Carbohydrates	(b) Proteins		(c) Lipoproteins	(d) Lipids	
246.	End products of protein					
	(a) Mixture of amino ad	-		(c) Peptides	(d) 25 amino acids	
247.	Intestinal villi are main					
	(a) Assimilation	(b) Secretion		(c) Ultrafilteration	(d) Absorption	
248.	Lipase changes					
	(a) Proteins into peptor	nes (b)Starch in suga	ar	(c) Fats into fatty acids	(d) None of these	
249.	One gram of fat produc	es				
	(a) 4.1 <i>k.calories</i> of chemical energy			(b) 9.6 <i>k.calories</i> of che	emical energy	
	(c) 7.0 <i>k.calories</i> of che	emical energy	(d) 5.0 <i>k.calories</i> of chemical energy		emical energy	
250.	Mammals may drink w	ater and also get it fro	om			
	(a) Breakdown of glyco	ogen into glucose	(b)S	ecretion of saliva		
	(c) Oxidation of glucos	e	(d)C	Conversion of oxyhaemo	globin into haemoglobin	
251.	End product of nucleic	acid is				
	(a) Amino acid	(b) Uric acid		(c) Purines	(d) Blood	
252.	Bolus of food undergoi	ng digestion in acidic	e med	lium in stomach is called	l	
	(a) Acidified bolus	(b) Bile bolus		(c) Chyle	(d) Chyme	
253.	Which is same as prope	epsin				
	(a) Trypsinogen	(b) Peptones		(c) Starch	(d) Fat	
254.	Function of caecum is t	to				
	(a) Absorb water	(b) Secrete enzymes		(c) Digest cellulose	(d) None of these	
255.	Which one of the follow	wing animals can dige	est m	ilk by the presence of re	nnin in its stomach	
	(a) A calf	(b) A cow		(c) Any mammal	(d) A man	
256.	Which of the following	converts insoluble for	ood s	tuff into soluble state		
	(a) Vitamins	(b) Hormones		(c) Juices	(d) Enzymes	

	257.	Digestion of both starch	h and protein is done by				
		(a) Gastric juice	(b) Gastric lipase	(c) Pancreatic juice	(d) Ptyalin		
	258.	The enzyme added to the	ne starch solution may hav	ve been			
		(a) Maltase	(b) Invertase	(c) Lipase	(d) Amylase		
	259.	Trypsin is related with	digestion of				
		(a) Carbohydrates	(b) Proteins	(c) Fat	(d) None of these		
	260.	Pepsinogen is secreted	by				
		(a) Chief cells	(b) Parietal cells	(c) Gastric glands	(d) Intestinal cells		
	261.	Saccus entericus is the	name given to				
		(a) Junction between ile	eum and large intestine	(b) Intestinal juice			
		(c) Swelling in the gut		(d) Appendix			
	262.	Digestion is					
		(a) Absorption of water	<u>c</u>				
		(b) Absorption of food					
		(c) Conversion of non-o	diffusable food particle in	diffusable food particle			
		(d) None of these					
	263.	Pepsin acts on					
		(a) Fats	(b) Proteins	(c) Carbohydrates	(d) Glucose		
	264.	Lacteals are associated	with				
		(a) Secretion of lactic a	cid (b)Absorption of fats	(c) Production of milk	(d) None of these		
	265.	Which of these is not an	n enzyme of digestive syst	tem			
		(a) Enterokinase	(b) Amylase	(c) Trypsin	(d) Enterogastrone		
	266.	Emulsification of fats is					
		(a) Bile pigments	(b) Bile salts	(c) Pancreatic juice	(d) <i>HCl</i>		
	267.	•	e in human digestion mov				
			nt (b)Gravitational pull		l (d) None of these		
	268.		retes the hormone secretir				
	• < 0	(a) Ileum	(b) Stomach	(c) Duodenum	(d) Oesophagus		
	269.	Enterokinase helps in th					
	• .	(a) Caseinogen into cas		Proteins into polypeptie	des (c) Pepsinoge		
		pepsin	(d) Trypsinogen into tryp	DS1N			
	270.	In rabbit proteins are di					
	271		(b) Tripsin and steapsin	(c) Steapsin and pepsin	(u) All the these		
	<i>4</i> /1.	Carbohydrates are dige	-		(d) Store - 1		
		(a) Buccal cavity	(b) Pharynx	(c) Duodenum	(d) Stomach		
- 1							

272.	In human beings digest	ion starts in			
	(a) Buccal cavity	(b) Stomach	(c) Small intestine	(d) Pharynx	
273.	In ileum which of the fe	ollowing is absorbed			
	(a) Vitamin <i>K</i>	(b) Bile salts	(c) Glucose	(d) Fat	
274.	Which of the following	is not a proteolytic enzyn	ne		
	(a) Pepsin	(b) Trypsin	(c) Erepsin	(d) All of these	
275.	Emulsified fat is digeste	ed by			
	(a) Lipase	(b) Lipase and hydrolase	(c) Bile salts	(d) Bile pigments	
276.	The site of protein dige	stion is			
	(a) Gullet	(b) Stomach	(c) Small intestine	(d) Oral cavity	
277.	The pH of succus enter	icus is			
	(a) 7.8	(b) 6.6	(c) 5.6	(d) 2.0	
278.	Digestion of protein tak	tes place in			
	(a) Duodenum and stomach (b) Stomach and oesophagus				
	(c) Small and large inte	estine	(d) Intestine and rectum		
279.	79. The process by which digested food of the alimentary canal passes through its mucous memb				
	into circulatory system	is called as			
	(a) Absorption	(b) Assimilation	(c) Hydrolysis	(d) Defecation	
280.	Pepsin is produced by				
	(a) Salivary glands	(b) Stomach	(c) Duodenum	(d) Small intestine	
281.	In mammals, the digest	ion of starch starts from			
	(a) Mouth	(b) Stomach	(c) Oesophagus	(d) Duodenum	
282.	Which one of the follow	wing enzymes initiates pro	otein digestion		
	(a) Aminopeptidase	(b) Carboxypeptidase	(c) Trypsin	(d) Pepsin	
283.	Muscular contraction of	f alimentary canal is know	/n as		
	(a) Absorption	(b) Digestion	(c) Peristalsis	(d) Circulation	
284.	Starch is converted to n	naltose by the action of			
	(a) Invertase	(b) Amylase	(c) Sucrase	(d) Maltase	
285.	Water is largely absorb				
	(a) Stomach	(b) Oesophagus	(c) Small intestine	(d) Colon	
286.	<i>HCl</i> is secreted by				
	(a) Zymogen cells	(b) Oxyntic cells	(c) Kupffer cells	(d) Mucous cells	
1					

287.	Rennin acts on milk pro	oteins and converts			
	(a) Caseinogen into casein		(b) Casein into paraca	sein	
	(c) Caseinogen into par	racasein	(d) Paracasein into cas	seinogen	
288.	A rabbit eats a lot of gr	am. Then its digestion st	arts in		
	(a) Mouth	(b) Stomach	(c) Duodenum	(d) Ileum	
289.	Enzyme rennin is secre	ted by			
	(a) Cells of stomach	(b)Cells of inte	estine		
	(c) The cortical cells of	kidney (d)The cells of	juxtaglomerular appara	tus of kidney	
290.	90. A principal gastrointestinal hormone is				
	(a) Prolactin	(b) Cholin esterase	(c) Secretin	(d) Acetyl CoA	
91.	Identify the correct set	which shows the name o	f the enzymes from whe	re it is secreted and	
S	ubstrate upon which it a	cts			
	(a) Pepsin-stomach wa	ll-casein	(b) Ptyalin-intestine-n	naltose	
	(c) Chymotrypsin-saliv	ary gland-lactose	(d) Ptyalin-pancreas-l	ipid	
292. Which is correct about the bile of rabbit					
	(a) It is synthesized by	gall bladder and also stor	red there		
	(b) It is an enzyme whi	ch emulsify the fats			
	(c) It contain bile salts	and bile pigments	(d) Bilirubin present i	n it decomposed fats	
93.	What is cholecystokini	n			
	(a) Enzyme		(b) Bile pigment		
	(c) Gastro-intestinal ho	rmone	(d) Lipid		
94.	Lactase is found in				
	(a) Saliva	(b) Bile	(c) Pancreatic juice	(d) Intestinal juice	
95.	Hydrolysis of lipid yiel	ds			
	(a) Fats	_	(b) Fatty acids and glycerol		
	(c)Mannose and glycer		(d) Maltose and fatty acid		
296.	Secretin hormone is sec	-	/ \ - •		
	(a) Liver	(b) Pancreas	(c) Intestine	(d) Brunner's glands	
297.	Brunner's glands are pr				
	(a) Ileum	(b) Duodenum	(c) Stomach	(d) Oesophagus	
298.	-	oteins exceeds synthesis	-		
	•	hy (b)Body become we	ак		
	(c)No change takes place (d)None of these				

299.	Enzyme maltase in hur	nan gut acts on food at a <i>p</i>	oH of		
	(a) More than seven to	change starch into maltos	e		
	(b) Less than seven to a	change starch into glucose			
	(c) More than seven to	change maltose into gluco	ose		
	(d)Less than seven to c	hange maltose into glucos	e		
300.	The enzyme which coa	gulates milk is called			
	(a) Pepsin	(b) Trypsin	(c) Lactase	(d) Rennin	
301.	What is the function of	enterogastrone			
	(a) It stimulates the sec	retion of digestive juices	in the stomach		
	(b) It inhibits the secret	tion of gastric juice			
	(c) It regulates the flow	v of bile			
	(d) It stimulates the flow of pancreatic juice				
302.	Enterokinase is in				
	(a) Bile juice	(b) Intestinal juice	(c) Pancreatic juice	(d) Pancreatic hormone	
303.	3. Starch is broken down by				
	(a) Trypsin	(b) Amylase	(c) Pepsin	(d) Casein	
304.	Trypsin converts				
	(a) Fats into fatty acids		(b) Starch and glycoger	n into maltose	
	(c) Proteins into peptor	nes	(d) Sucrose in to glucose and fructose		
305.	Which one of the follow	wing will not take place w	hen glucose is taken as f	food	
	(a) Ingestion	(b) Digestion	(c) Absorption	(d) Assimilation	
306.	Fats, carbohydrates and	d proteins are completely of	digested in		
	(a) Small intestine	(b) Large intestine	(c) Stomach	(d) Liver	
307.	The absorbed food mat	erial is converted into pro	toplasm by the process of	of	
	(a) Absorption	(b) Assimilation	(c) Defecation	(d) Digestion	
308.	Fats are absorbed in the	e intestine			
	(a) As such		(b) After hydrolysis		
	(c) After digestion		(d) None of these		
309.	Function of <i>HCl</i> in stor	mach is to			
	(a) Kill micro-organisms of food (b) Facilitate absorption of food				
	(c) Dissolve enzymes		(d) None of these		
310.	C	sion of large molecules in			
	(a) Better taste	(b) More saliva	(c) Enzymatic action	(d) None of these	
1					

311.	The end product of fat	digestion is			
	(a) Amino acids	(b) Starch	(c) Fatty acids	(d) Glucose	
312.	The end product of carl	bohydrate metabolism is			
	(a) CO_2 and H_2O	(b) NH_3 and CO_2	(c) NH_3 and H_2O	(d) <i>co</i> ₂	
313.	Pepsin is an example of	f			
	(a) Hormone	(b) Vitamin	(c) Enzyme	(d) Nutrient	
314.	Gastric enzyme pepsin	reacts only in acidic medi	um within a limited <i>pH</i> of	concentration. It varies	
	(a) 1.20 to 1.80	(b) 1.00 to 1.50	(c) 2.00 to 2.50	(d) 1.50 to 2.60	
315.	Stomach in vertebrates	is the main site for digesti	ion of		
	(a) Proteins	(b) Carbohydrates	(c) Fats	(d) Nucleic acids	
316.	Trypsin is a digestive e	nzyme which occurs in ma	ammals and digests		
	(a) Starch in buccal cav	vity in an alkaline medium	(b) Protein in stomach i	in an acidic medium	
	(c) Protein in duodenum in an acidic medium (d) Protein in duodenum in an alkaline medium				
317.	17. Green colour of bile is due to				
_	(a) Biliverdin	(b) Bilirubin	(c) Sodium taurocholat	e(d) Sodium	
	glycocholate				
318.	-	all intestine would occur v	-		
	(a) Rennin	(b) Erypsin	(c) Trypsin	(d) Chymotrypsin	
319.	Digestion of carbohydr				
	(a) Buccal cavity	(b) Stomach	(c) Intestine	(d) All of these	
320.		not corrode lining of alim	nentary canal as		
	(a) They are secreted in				
	(b) Lining layer of alim	entary canal does not cont	tain protein		
	•	ot capable of digesting fat			
	(d) None of these				
321.	In small intestine, activ	e absorption occurs in cas	e of		
	(a) Glucose	(b) Amino acids	(c) <i>Na</i> ⁺	(d) All of these	
322.	Hydrolytic enzyme whi	ich acts at low pH is			
	(a) α -amylase	(b) Protease	(c) Hydrolases	(d) Peroxidases	
323.	Weak peristaltic waves	pass along stomach wall e	every		
	(a) 20 seconds	(b) 30 seconds	(c) 15 seconds	(d) 10 seconds	
324.	Optimum <i>pH</i> for enzym	ne trypsin is			
	(a) 5.9	(b) 4.6	(c) 8.5	(d) 7.0	
325.	Vitamin <i>D</i> is synthesise				
	(a) LDL cholesterol	(b) HDL cholesterol	(c) Triglycerides	(d) Cellulose	
1					

326.	Bile acids are				
	(a) Steroids	(b) Carbohydrates	(c) Modified proteins	(d) Vitamins	
327.	In case of taking food r	ich in lime juice, the actio	n of ptyalin on starch is		
	(a) Enhanced	(b) Reduced	(c) Unaffected	(d) Stopped	
328.	Fat absorbed from gut i	s transported in blood as			
	(a) Micelles	(b) Liposomes	(c) Chemomicrons	(d) Chylomicrons	
329.	Bile secreted by liver p	asses into gall bladder thro	ough		
	(a) Hepatopancreatic du	uct (b)Hepatic duct	(c) Cystic duct	(d) Hepato-gall duct	
330.	In ruminants bacterial a	action occurs in			
	(a) Reticulum	(b) Omasum	(c) Abomasum	(d) Rumen	
331.	Which is a specific gas	tric hormone			
	(a) Secretin	(b) Serotinin	(c) Amphetamine	(d) None of these	
332.	Most of the fat digestio	n occurs in			
	(a) Rectum	(b) Stomach	(c) Duodenum	(d) Small intestine	
333.	33. What will happen if bile duct gets choked				
	(a) Faeces become dry (b) Acidic chyme wi		(b) Acidic chyme will r	not be neutralised	
	(c) There will be little digestion in intestine (d) Little absorption of fat will occur				
334.	Liver produces				
	(a) Bile	(b) Cholesterol	(c) Iron	(d) All of these	
335.	A digestive enzyme fur	nctional only in infants is			
	(a) Lactase	(b) Gastric lipase	(c) Intestinal lipase	(d) Chymotrypsin	
336.	Gall bladder is stimulat	ed to pour bile by			
	(a) Secretin	(b) Enterogastrone	(c) Enterokinase	(d) Cholecystokinin	
337.	Aminopeptidase, a dige	estive enzyme produces			
	(a) Dipeptides	(b) Smaller peptides	(c) Peptones	(d) Amino acids	
338.	Which of the following	are reabsorbed in the alin	nentary canal as such		
	(a) Albumen of egg	(b) Polysaccharides	(c) Proteins	(d) Fat soluble vitamins	
339.	Which one leaves huma	an stomach at the earliest			
	(a) Fat	(b) Protein	(c) Carbohydrate	(d) Beer	
340.	Where is protein digest	ion accomplished			
	(a) Stomach	(b) Ileum	(c) Rectum	(d) Duodenum	
341.	Lactase hydrolyses lact	ose into			
	(a) Glucose	(b) Glucose and galactose	e(c) Fructose	(d) Manose	
342.	Intrinsic factor is produ	iced in			
	(a) Liver	(b) Pancreas	(c) Duodenum	(d) Stomach	
1					

343.	Intrinsic factor is require	red for			
	(a) Production of gastri	ic juice	(b) Absorption of B_{12}		
	(c) Peristalsis		(d) Feeling of hunger		
Adva	ance Level				
344.	The enzyme invertase h	nydrolyses			
	(a) Sucrose into glucose and fructose		(b) Cellulose into starch	h	
	(c) Glucose into sucrose (d) Starch into sucrose				
345.	Milk protein is curdled	into calcium paracaseinat	te by		
	(a) Maltase	(b) Rennin	(c) Trypsin	(d) Lactase	
346.	Which of the following	g belongs to the class of pe	epsin and trypsin		
	(a) Rennin	(b) Sucrose	(c) Thyroxin	(d) Secretin	
347.	Meals which are rich in	n fat are not digested in the	e intestine in absence of		
	(a) Pepsin	(b) Enterokinase	(c) Insulin	(d) Steapsin	
	348. Digestion of which component of the food is likely to be most adversely affected if the pH of				
S	tomach is made neutral				
	(a) Sucrose	(b) Starch	(c) Protein	(d) Fat	
349.	Trypsin acts in a mediu				
	(a) Neutral	(b) Highly alkaline	(c) Acidic	(d) Slightly alkaline	
350.		ntestine are the site of pro			
	(a) <i>B</i> -lymphocyte	(b) <i>T</i> -lymphocyte	(c) Lymphoid nodules	_	
351.	C C	fructose all have the same mucosal cells takes place		position and their	
	(a) At the same rate		(b) Glucose is absorbed most rapidly		
	(c) Fructose is absorbed	d most rapidly	(d) Galactose is absorbed most rapidly		
352.	Which cells secrete gas	stric enzymes in stomach			
	(a) Chief cells	(b) Alpha cells	(c) Islets of Langerhans	s (d) Beta cells	
353.	Fatty acid and glycerol	are first taken up from ali	imentary canal by		
	(a) Villi	(b) Blood capillaries	(c) Hepatic portal vein	(d) Lymph vessels	
354.	The epithelial cells lini	ng the stomach of vertebra	ates is protected from da	mage by <i>HCl</i> because	
	(a) <i>HCl</i> is too dilute				
	(b) The epithelial cells	are resistant to the action	of <i>HCl</i>		
	(c) <i>HCl</i> is neutralised b	y alkaline gastric juice			
	(d) The epithelial cells	are covered with a mucou	s secretion		

355.	5. When fat is in the stomach the secretion of gastrin is inhibited. This inhibition is due to				
	(a) Presence of fat	(b) Non-stimulation of va	agus		
	(c)Slow digestion of f	at (d)Release of enterogastr	on		
356.	The colour of the faec	es is due to the			
	(a) Urochrome	(b) Stercobilin	(c) Bilverdin	(d) Bacteria	
357.	Acid secretion in stor	nach is stimulated by			
	(a) Gastrin	(b) Histamine	(c) Vagal discharge	(d) All of these	
358.	A 1, 4 glycosidic bond	ds are broken when			
	(a) Lipid is digested b	y lipase	(b) Protein is digested b	oy pepsin	
	(c) Starch is digested	by amylase	(d) None of these		
359.	9. The exact sequence of events during digestion of protein is				
	(a) Proteins \rightarrow peptones \rightarrow acid metaproteins and peptides				
	(b) Proteins \rightarrow proteoses and peptones \rightarrow peptides \rightarrow amino acids				
	(c) Proteins \rightarrow acid metaproteins \rightarrow proteoses \rightarrow amino acids \rightarrow peptides				
	(d) Proteins \rightarrow primar	y proteins \rightarrow peptides \rightarrow as	mino acids		
360.	60. In people addicted to alcohol, the liver gets damaged because it				
	(a) Has to detoxify the alcohol (b) Store excess of glycogen				
	(c) Stimulated to secre	ete bile	(d) Accumulates excess of fats		
361.	The enzyme erepsin h	elps the breakdown of pept	ones into amino acids in	the	
	(a) Stomach	(b) Ileum	(c) Large intestine	(d) Pancreas	
362.	The hormones affecting	ng carbohydrate metabolisn	n are		
	(a) Somatotrophin		(b) Adreno-corticotrophin		
	(c) Thyroid stimulatin	g hormone	(d) All of these		
363.	Match the following				
	'A'	'B'			
	A. Amylase	1. Break down of sucrose			
	B. Pepsin	2. Break down of lipid			
	C. Lipase	3. Break down of protein			
	D. Sucrase	4. Break down of starches			
	E. Mouth	5. Digestion of proteins			
	F. Stomach	6. Egestion			
	G. Intestine	7. Ingestion			
	H. Anus	8. Digestion and absorption	n		

	The correct pairing sequence is					
	(a) 4, 5, 2, 1, 3, 7, 6, 8 (b)	4, 3, 2, 1, 7, 5, 8, 6	(c) 5, 4, 1, 2, 7, 3, 8, 6	(d) None of these		
364.	In rabbit peristalsis is					
	(a) The act of swallowing	(b)An involuntary mu	scular contraction and re	elaxation		
	(c) Mode of nutrition	(d)The secretion of di	gestive juices			
365.	In human body excess of an	nino acids are stored in	n			
	(a) Liver (b)	Kidney	(c) Spleen	(d) None of these		
366.	At what time the sugar is ma	aximum in the blood of	of man			
	(a) In the late evening		(b) In the early morning	5		
	(c) Midway between a meal	l	(d) Soon after a meal			
367.	67. Cathepsin is a type of					
	(a) Proteolytic enzyme working at $pH 3.0 - 5.0$ (b) Amylase that works in acidic medium					
	(c) Lipase that works in acid	t works in acidic medium (d) Secretion of liver that helps in haemostasi				
368.	68. For the enzyme action					
	(a) Value of <i>Km</i> is low (b) Value of <i>Ki</i> is low (c) Value of <i>Km</i> is high (d) Value of <i>Ki</i> is high					
369.	69. Which one of the following is the correct match of digestive enzyme and substrate					
	(a) Lactose-Renin (b)	Starch-Maltose	(c) Fat-Steapsin	(d) Casein-Trypsin		
370.	Which of the following is a	gastro-intestinal enzy	me			
	(a) Cholinestrase (b)	Enterokinase	(c) Secretin	(d) Prolactin		
371.	Glucagon secreted by the al	pha-cells of the islets	of Langerhans does this	function		
	(a) Glucagon converts gluco	ose into glycogen and	increases the concentrat	ion of blood sugar		
	(b) Glucagon converts glyco	ogen into glucose and	increases the concentrat	ion of blood sugar		
	(c) Glucagon converts gluco	ose into glycogen				
	(d) None of these					
372.	Which one of the following	is the correct pairing	of the site of action and	the subtrate of rennin		
	(a) Stomach – Casein		(b) Stomach – Fat			
	(c) Small intestine – Protein	l	(d) Mouth – Starch			
373.	Which of the following set i	is the end product of c	arbohydrate digestion			
	(a) Galactose, glucose and f	ructose	(b) Galactose, glucose a	and maltose		
	(c) Lactose, maltose and suc	crose	(d) Glucose, maltose an	d fructose		
374.	Angiotensin-Rennin system	is for				
	(a) Glucose metabolism		(b) Urea conversion inte	o ammonia		
	(c) Sodium potassium retent	tion	(d) Glycoprotein synthe	esis		

375.	Cholecystokinin and du	ocrinin are secreted by			
	(a) Intestine	(b) Pancreas	(c) Adrenal cortex	(d) Thyroid gland	
376.	Glucose and amino acid	ds are absorbed in the inte	stine by		
	(a) Active transport	(b) Passive transport	(c) Selective absorption	n (d) Osmosis	
377.	Chylomicrons are				
	(a) Undigested proteins	3	(b) Undigested carbohy	drates	
	(c) Fat droplets coated	with glycerol and protein	(d) Fat droplets coated	with phospholipids	
378.	Which of the following	sugars is absorbed from t	he small intestine by fac	ilitated diffusion	
	(a) Fructose	(b) Glucose	(c) Sucrose	(d) Lactose	
379.	Which of the following	hormones induce secretion	on of succus entericus		
	(a) Insulin		(b) Secretin and cholecystokinin		
	(c) Glucagon		(d) Secretin		
	380. Which one of the following is a matching pair of a certain body feature and its value/count in a				
n	normal human adult				
	(a) Urea 5-10 <i>mg</i> /100 <i>ml</i> of blood				
	(b) Blood sugar 80 - 10	0 mg/100 ml			
	(c) Total blood volume				
		ethod 9-15 mm per hour ir	males and 20-34 mm pe	er hour in females	
381.	Digestion process in hu				
	(a) Extracellular	(b) Intracellular	(c) Intercellular	(d) Both (a) and (c)	
382.	-	ind in which of the following			
	(a) Submucosa of stom		(b)Mucosa of ileum		
	(c) Submucosa of duod		(d) Mucosa of oesopha		
383.		the conversion of solid sub at wall, they are then incor	-	•	
	(a) Combination	(b) Assimilation	(c) Absorption	(d) Defaecation	
384.	The pungent odour of f	aeces is due to presence of	f		
	(a) Indole	(b) Skatole	(c) Various gases	(d) All of these	
385.	Ammonia is formed du	ring digestion in			
	(a) Liver	(b) Small intestine	(c) Buccal cavity	(d) Stomach	

386.	In grazing cattles the	major portion of food, cel	lulose is	
	(a) Passed out undige	sted	(b) Digested by anim	nal itself
	(c) Utilised directly a	s such	(d) Digested by integ	stinal bacteria
387.	Which of the following	ng statement is correct		
	(a) Through secretin i	s an enzyme, it is not invo	olved in digestion	
	(b) Secretin is an enzy	yme and so it helps digest	ion	
	(c) Secretin is a horm	one but it plays a role in c	ligestion	
	(d) Secretin is a horm	one and hence it does not	play any role in digesti	on
388.	Nuhn's glands are rela	ated to		
	(a) Tongue	(b) Ear	(c) Nose	(d) Hair
389.	Boa's point is associate	ted with		
	(a) Liver cirrhosis	(b) Tuberculosis	(c) Nephritis	(d) Gastric ulcer
390.	Valves of Kerckring	occur in		
	(a) Between right aur	icle and right ventricle	(b) Left auricle and left ventricle	
	(c) Stomach and duodenum		(d) Intestine	
		NUTRITIVE RE	EQUIREMENT	
Basi	ic Level			
391.	There is national erad	ication programme for a c	lisease caused by the de	eficiency of an element
	(a) Iodine	(b) Boron	(c) Copper	(d) Chlorine
392.	Folic acid and pantoth	nenic acid are vitamins be	longing to group	
	(a) <i>K</i>	(b) <i>A</i>	(c) <i>B</i> -complex	(d) Both (a) and (b)
393.	Mineral deposition in	bones and teeth is mediat	ed through vitamin	
	(a) <i>A</i>	(b) <i>D</i>	(c) <i>E</i>	(d) <i>C</i>
394.	Which mineral deficie	ency is supplemented on a	a large scale in India	
	(a) Potassium	(b) Iron	(c) Iodine	(d) Sodium
395.	A steroid vitamin is			
	(a) <i>A</i>	(b) <i>B</i>	(c) <i>C</i>	(d) <i>D</i>
396.	Which one of the vita	mins can be synthesised b	by gut bacteria	
	(a) <i>K</i>	(b) B_2	(c) <i>D</i>	(d) <i>C</i>
397.	Contraction of muscle	e and conduction of nerve	require	
	(a) Na^+ and K^+	(b) κ^+ and Mg^{2+}	(c) Ca^{2+}	(d) Ca^{2+} and K^+
398.	Vitamin A is produced	d from carotene in		
	(a) Blood	(b) Skin	(c) Stomach	(d) Liver

399.	Water soluble vitamins	are			
	(a) <i>C</i> and <i>D</i>	(b) A and C	(c) <i>B</i> and <i>C</i>	(d) A and D	
400.	Exposure to sun is requ	ired for synthesis of vitam	nin D in		
	(a) Adipose tissue	(b) Liver	(c) Gall bladder	(d) Skin	
401.	Fat soluble vitamins are	2			
	(a) A , D and E	(b) <i>B</i> , <i>C</i> and <i>D</i>	(c) <i>B</i> , <i>D</i> and <i>E</i>	(d) A , B and C	
402.	Ascorbic acid is				
	(a) Vitamin	(b) Hormone	(c) Enzyme	(d) Amino acid	
403.	Normal absorption of c	alcium and phosphate is c	ontrolled by vitamin		
	(a) <i>A</i>	(b) <i>D</i>	(c) B_1	(d) B_2	
404.	Thiamine (B_1) deficience	y leads to			
	(a) Beri-beri	(b) Scurvy	(c) Night blindness	(d) Pellagra	
405.	Vitamin destroyed on h	eating is			
	(a) <i>A</i>	(b) <i>B</i>	(c) <i>C</i>	(d) <i>D</i>	
406.	406. Vitamin containing cobalt is				
	(a) <i>A</i>	(b) B_1	(c) B_{6}	(d) B_{12}	
407.	Vitamin B_{12} takes part	in			
	(a) Increase in blood pr	essure	(b) Decrease in blood pressure		
	(c) Activating bone ma	rrow	(d) Increase in surface area of RBC		
408.	Lipase hydrolyses				
	(a) Ester bond	(b) Glycosidic bond	(c) Peptide bond	(d) Hydrogen bond	
409.	Calcium occurs in				
	(a) Neuron		(b) Bones and teeth		
	(c) Cells of respiratory	system	(d) 3% of mineral conte	ent	
410.	Tocopherol is vitamin				
	(a) <i>E</i>	(b) <i>D</i>	(c) <i>C</i>	(d) <i>A</i>	
411.	Cod liver oil is source of	of			
	(a) Vitamin <i>B</i>	(b) Vitamin C	(c) Vitamin A	(d) Iodine	
412.	Vitamin D is produced	in human body by			
	(a) Muscles	(b) Nerves	(c) Skin	(d) None of these	

413.	Vitamin often act as				
	(a) Holoenzymes	(b) Coenzymes	(c) Apoenzymes	(d) Cofactors	
414.	A vitamin devoid of co	enzyme activity is			
	(a) Biotin	(b) Riboflavin	(c) Tocopherol	(d) Folic acid	
415.	Castle's intrinsic factor	is connected with internal	l absorption of		
	(a) Pyridoxine	(b) Riboflavin	(c) Thiamine	(d) Cobalamine	
416.	A nucleotide connected	l with coenzyme formation	n is		
	(a) Nicotinamide	(b) Purine	(c) Pyrimidine	(d) None of these	
417.	Which set is similar				
	(a) Sebum-Sweat		(b) Corpus luteum-Gra	afian follicles	
	(c) Vitamin B_7 -Biotin		(d) Bundle of His-Pace Maker		
418. What is also called vitamin G					
	(a) Riboflavin	(b) Thiamine	(c) Pantothenic acid	(d) Niacin	
419.	19. Loss of appetite, gastrointestinal disorders and muscular weakness are deficiency symptoms of				
	(a) Vitamin <i>B</i>	(b) Vitamin A	(c) Vitamin <i>E</i>	(d) Vitamin C	
420.	Ascorbic acid is				
	(a) Amine	(b) Vitamin C	(c) Amide	(d) Cyanocobalamine	
421.	A fat soluble vitamin g	roup is			
	(a) B_6 , E and K	(b) <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> and <i>E</i>	(c) <i>A</i> , <i>D</i> , <i>E</i> and <i>K</i>	(d) <i>C</i> , <i>D</i> , <i>E</i> and <i>K</i>	
422.	A vital ingredient of for	od which does not provide	e energy and is required	in minute quantity	
i	s 2000]				
	(a) Carbohydrate	(b) Protein	(c) Vitamin	(d) Fat	
423.		o offset deficiency of rhoc	•		
	(a) Papaya and Mango		(b) Orange and Amla		
	(c) Water melon and St	-	(d) All of these		
424.	-	evelopment of erythrocyte			
	(a) <i>D</i>	(b) B_{12}	(c) <i>E</i>	(d) <i>K</i>	
425.	Which of the vitamins i	is essential for normal visi	ion		
	(a) Folic acid	(b) Biotin	(c) Riboflavin	(d) Niacin	
426.		wing is the best source for			
	(a) Apple	(b) Carrot	(c) Honey	(d) Peanuts	

427.	The most important sou	arce for calcium and phosp	phorus is		
	(a) Meat	(b) Egg	(c) Cheese	(d) Milk	
428.	Vitamin needed for blo	od coagulation is			
	(a) <i>E</i>	(b) <i>D</i>	(c) <i>K</i>	(d) <i>C</i>	
429.	Daily requirement of ca	arbohydrate by an adult is			
	(a) 500 <i>gm</i> .	(b) 50 <i>gm</i> .	(c) 150 <i>gm</i> .	(d) 250 <i>gm</i> .	
430.	The term vitamin was i	ntroduced by			
	(a) Pasteur	(b) Funk	(c) Priestley	(d) Lister	
431.	Which is not a source of	of vit. A			
	(a) Carrot	(b) Yeast	(c) Mango	(d) Apple	
432.	Which one does not bel	long to vit. <i>B</i> group			
	(a) Riboflavin	(b) Nicotinic acid	(c) Tocopherol	(d) Cyanocobalamine	
433.	Which is not the function	on of vitamins			
	(a) Metabolism	(b) Digestion	(c) Growth	(d) None of these	
434.	34. Hydrolysis of lipids produces				
	(a) Glycerine and glyce	erol	(b) Fatty acids and trihydric alcohol		
	(c) Glycine		(d) All of these		
435.	The smallest structural	units of proteins are called	1		
	(a) Amino acids	(b) Peptides	(c) Proteoses	(d) Peptones	
436.		ent of the food, in the abs			
	(a) Carbohydrates	(b) Mineral salts	(c) Proteins	(d) Vitamins	
437.	-	nydrates one should take			
120	(a) Meat	(b) Rice	(c) Carrots	(d) Ground nuts	
438.	Digestion of protein is a (a) Proteins are not abs	•	(b) Proteins are large m	ologulos	
	(c) Proteins have comp		(d) Proteins are made u		
439.	-	is regarded as main cellul		p or animo acids	
	(a) Glucose	(b) Fructose	(c) Protein	(d) Fat	
440.		physiological dissimilariti	. ,	· · ·	
	s due to different		V I	,	
	(a) Carbohydrates	(b) Lipids	(c) Proteins	(d) All of these	
441.	An average person not	doing hard work requires	energy per day about		
	(a) 750 <i>kcal</i>	(b) 2800 <i>kcal</i>	(c) 2000 <i>kcal</i>	(d) 1000 kcal	

442.	Role of carbohydrates i	s to function as		
	(a) Catalyst	(b) Source of energy	(c) Enzyme	(d) Building material
443.	In vertebrate's body ma	inly the food is stored in t	he form of	
	(a) Fat	(b) Fat and glycogen	(c) Glycogen	(d) Proteins
444.	The casein contained in	n milk is a		
	(a) Bacterium	(b) Carbohydrate	(c) Fat	(d) Protein
445.	Non-protein part of an	enzyme is called		
	(a) Cofactor	(b) Coenzyme	(c) Apoenzyme	(d) All of these
446.	Which group contains b	piocatalysts		
	(a) Peptidase, amylase, rennin (b) Myosin, oxytocin, adrenalin			
	(c) Rhodopsin, pepsin,	steapsin	(d) Glucose, amino acio	ls, fatty acids
447.	Which is a disaccharide	e		
	(a) Galactose	(b) Fructose	(c) Maltose	(d) Dextrin
448.	The fundamental requir	rement of food is for		
	(a) Growth	(b) Hunger	(c) Repair	(d) Metabolism
449.	Whether a nation can pr	roduce sportsman who co	uld compete successfully	in olympics, is decided
b	У			
	(a) Right diet	(b) Body size	(c) Long life	(d) Health
450.	Milk protein is			
	(a) Rennin	(b) Casein	(c) Galactose	(d) Glycine
451.	What is the common be	etween amino acids, fatty a	acids and glycerol	
	(a) These are all rich so			
	(b) These are the builde	ers of protoplasm		
	-	roducts of digestion of two	o categories of food cons	stituents
	(d) These can be stored			
452.	A man is said to be star	ving when		
	(a) He begins to store re	eserve food	(b) Food that he eats m	eet the energy loss
	(c) Food that he eats do	besn't meet the energy loss	(d) None of these	
453.	Reserve fuel is			
	(a) Starch	(b) Insulin	(c) Glycogen	(d) All of these
454.	Which of the following	can be called 'animal star	ch'	
	(a) Hemicellulose	(b) Glucose	(c) Glycogen	(d) Chitin

455. Balanced diet includes (a) Proteins and vitamins (b) Carbohydrates, fats and proteins (c) Carbohydrates, fats, proteins and vitamins (d) Carbohydrates, fats, proteins, minerals, vitamins and water **456.** Amino acids not synthesized in the body are called (a) Non-essential (b) Active (c) Essential (d) Inactive **457.** Obesity can be reduced by reducing the calories intake from (b) Fats and carbohydrates (d) Vitamins (a) Minerals (c)Proteins **458.** How many calories are required for a hard labourer male (b) 3000 (a) 1500 (c) 4000 (d) 4500 **459.** During prolonged fasting (a) The first to be used up are carbohydrates, next fat is withdrawn and proteins are metabolised at the last (b) The first to be used up are the fats, next carbohydrates are withdrawn from stored glycogen in the liver and muscles and proteins are withdrawn at the last (c) First lipids are used up, then proteins and finally carbohydrate (d) None of these **460.** The water soluble materials pass through the proteins called (b) Glycocalyx (c) Extrinsic proteins (a) Glycoprotein (d) Channel proteins **461.** A triglyceride molecule has (a) Three fattyacids with one glycerol molecule (b) Three fattyacids with two glycerol molecule (c) Two fattyacids with two glycerol molecules (d) One fattyacid with one glycerol molecule **462.** Balanced diet should have approximately (a) 1/5 protein, 3/5 fat and 1/5 carbohydrate (b) 3/5 protein, 1/5 fat and 1/5 carbohydrate (c) 1/5 protein, 1/5 fat and 3/5 carbohydrate (d) 1/2 protein, 1/4 fat and 3/5 carbohydrate **463.** A pound of butter contains more usable energy than a pound of sugar for a human because (a) Sugar contains much more water than butter (b) A fat molecule has more carbon-hydrogen bonds than a sugar molecule (c) The butter is an animal product, where as the sugar is a plant product (d) There is much more waste in digestion and absorption of sugar than of butter **464.** A non-essential amino acid is (a) Lysine (b) Methionine (c) Alanine (d) Isoleucine

465.	Starch and cellulose are	e compounds of many unit	ts of		
	(a) Amino acids	(b) Glycerol	(c) Simple sugars	(d) Fatty acids	
466.	The anhydro bond of p	roteins are called			
	(a) Glycosidic	(b) Peptide	(c) Ester	(d) Diester	
467.	Which one of the follow	wing set is a polysaccharic	le group		
	(a) Glucose, fructose, la	actose	(b) Starch, glycogen, ce	ellulose	
	(c) Sucrose, maltose, g	lucose	(d) Galactose, starch, st	ucrose	
468.	Unsaturated fatty acids	have			
	(a) Palmitic acid		(b) Stearic acid		
	(c) Oleic acid		(d) One or more double	bonds	
469.	59. The delicious food generally makes mouth watery. It is due to				
	(a) Hormonal response	(b) Neural response	(c) Olfactory response	(d) Optic response	
470.	Which of the following	s is a reducing sugar			
	(a) Sucrose	(b) Galactose	(c) Gluconic acid	(d) β -methyl	
gala	ctoside				
471.	What is common amon	g amylase, rennin and try	psin		
	(a) These all are proteins (b) These all are proteolytic enzymes		ytic enzymes		
	(c) These are produced	in stomach	(d)These act at a pH low	wer than 7	
472.	Lactose is composed of	f			
	(a) Glucose + fructose	(b) Glucose + glucose	(c) Glucose + galactose	e (d) Fructose + galactose	
473.	Vitamin B_{12} is absorbed	d primarily in the			
	(a) Stomach	(b) Duodenum	(c) Jejunum	(d) Ileum	
474.	Earliest known vitamin	i is			
	(a) Thiamine	(b) Ascorbic acid	(c) Calciferol	(d) Retinol	
475.	Vitamin A and D are st	ored in			
	(a) Bone	(b) Spleen	(c) Liver	(d) All of these	
476.	Beauty vitamin is				
	(a) Vitamin <i>K</i>	(b) Vitamin <i>C</i>	(c) Vitamin A	(d) Vitamin E	
477.	Yeast is a good source	of			
	(a) Vitamin D	(b) Riboflavin	(c) Ascorbic acid	(d) Niacin	
478.	Symbiotic bacteria pres	sent in the intestine of mos	st primates which synthe	size certain vitamins are]	
	(a) Entamoeba histolyt	ica (b)Entamoeba coli	(c) Entamoeba gingival	lis (d)None of these	

479.	What will be happened	if all bacteria of intestine	died			
	(a) Total reabsorption of	of nutrient takes place in th	he body (b)Digestive s	ystem work very fast		
	(c) Synthesis of vitamin	n B complex and K stops	(d)Irregular be	ehaviour of man		
480.	0. Which of the following vitamin is a steroid synthesized from cholesterol					
	(a) Vitamin A	(b) Vitamin <i>B</i>	(c) Vitamin <i>C</i>	(d) Vitamin D		
481.	Biotin and pantothenic	acid belong to the categor	ry of			
	(a) Amino acids	(b) Pyrimidines	(c) Vitamin <i>B</i> group	(d) Steroids		
482.	Essential amino acids a	re				
	(a) Alanine and tyrosine (b)Glycine and cysteine					
	(c)Leucine and isoleucine (d)Serine and proline					
483.	The yellow colour of co	ow's milk is due to				
	(a) Carotene (b)) Xanthophyll	(c) Riboflavin	(d) Ascorbic acid		
484.	Vitamins were discover					
	(a) Funk	(b) Lunin	(c) Drummond	(d) Buchner		
485.	Which of the following	is a non-essential amino	acid			
	(a) Tyrosine	(b) Tryptophan	(c) Valine	(d) Leucine		
486.	Prolonged thiamine def	iciency in diet leads to				
	(a) Loss to muscle tone	and damage to nerves	(b) Pellagra			
	(c) Haemorrhage		(d) Anaemia			
487.	Recent anticancer vitan	nin is				
	(a) Vit. <i>Q</i>	(b) Vit. B_{12}	(c) Vit. B_5	(d) Vit. B_{17}		
488.	Vitamins synthesized b	y intestinal bacteria and a	bsorbed in significant qu	antities include		
	(a) Folic acid	(b) Vit. B_{12}	(c) Riboflavin	(d) Thiamine		
489.	Simplest amino acid is					
	(a) Tryptophan	(b) Histidine	(c) Glycine	(d) Phenyl alanine		
490.	_	cid having ring structure i				
	(a) Glycine	(b) Tryptophan	(c) Tryosine	(d) Leucine		
491.		wing amino acids is consid	-			
402	(a) Arginine	(b) Lysine	(c) Leucine	(d) Valine		
492.	-	vitamins possess virucida				
102	(a) Vit. A	(b) Vit. D	(c) Vit. <i>C</i>	(d) Vit. <i>E</i>		
493.		eted in urine by humans is $(b) C$	(c) <i>K</i>	$(\mathbf{d})\mathbf{F}$		
	(a) <i>A</i>	(b) <i>C</i>	(\mathbf{U}) N	(d) <i>E</i>		

494.	Which of the following	is not a reducing sugar			
	(a) Sucrose	(b) Maltose	(c) Lactose	(d) Fructose	
495.	Which should not be ea	ten too much during hot n	nonths		
	(a) Proteins	(b) Fats	(c) Vitamins	(d) Mineral salts	
496.	Number of essential an	nino acids in man is			
	(a) 20	(b) 18	(c) 12	(d) 8	
497.	Sucrose is found in				
	(a) Milk	(b) Honey	(c) Orange	(d) Sugarcane	
498.	Certain B vitamins act a	as			
	(a) Enzymes	(b) Co-enzymes	(c) Digestive substance	(d) Hormones	
499.	During prolonged starv	ation, body derives nutritie	on from storage of		
I	(a) Spleen	(b) Lungs	(c) Subcutaneous fat	(d) Liver and lungs	
500.	In whose milk percenta	ge of lactose is highest			
	(a) Human mother	(b) Cow	(c) She buffalo	(d) She goat	
501.	Vitamins are				
	(a) Inorganic substance	s and cannot be synthesize	ed by animals		
	(b) Inorganic substance	s and can be synthesized b	by animals		
	(c) Organic substances	which cannot mostly be sy	ynthesized by animals		
	(d) Organic substances	which can mostly be synth	nesized by animals		
502.	Which vitamin does no	•			
	(a) Folic acid	(b) Riboflavin	(c) Biotin	(d) Tocopherol	
Adva	ince Level				
503.	03. Given below are assertion and reason. Point out if both are true with reason being correct explanation (A), both true but reason is not correct explanation (B), assertion is true but reason wrong (C) and both are wrong (D).				
	Assertion : Wounds he	al slowly due to vitamin C	C deficiency.		
	Reason : Vitamin <i>C</i> is	essential for collagen form	nation		
	(a) <i>Ar</i>	(b) <i>B</i>	(c) <i>C</i>	(d) <i>D</i>	
504.	Which one is associated	d with vitamin D			
I	(a) Tocopherol	(b) Ergosterol	(c) Cholesterol	(d) Both (b) and (c)	
505.	Vitamin <i>D</i> is synthesise	ed in skin by the action of	sunlight on		
	(a) Cholesterol	(b) 7-hydroxy cholesterol	l (c) Cephalo-cholesterol	(d) All of these	

506.	Which is not available	from plants		
	(a) Riboflavin	(b) Vitamin B_{12}	(c) Niacin	(d) Vitamin <i>C</i>
507.	Main cation of extracel	lular fluid is		
	(a) Iron	(b) Potassium	(c) Calcium	(d) Sodium
508.	Which one is rich in M	agnesium		
	(a) Milk	(b) Meat	(c) Soyabean	(d) Apple
509.	Cyanocobalamine is rec	quired for the formation of	2	
	(a) RBC	(b) WBC	(c) Lymph	(d) Platelets
510.	Vitamin nicotinamide c	can be synthesised in our b	ody from	
	(a) Tyrosine	(b) Tryptophan	(c) Valine	(d) Phenylalanine
511.	Which one is essential	for DNA replication and c	ell division	
	(a) Vit. <i>E</i>	(b) Folic acid	(c) Vit. <i>K</i>	(d) Vit. <i>D</i>
512.	Which one is a nitroger	nous polysaccharide		
	(a) Chitin	(b) Cellulose	(c) Glycogen	(d) Starch
513.	Enzymes which acts sin	milarly are called as		
	(a) Isoenzymes	(b) Cofactor	(c) Coenzymes	(d) All of these
514.	Disaccharide which giv	ves two molecules of gluco	ose is	
	(a) Lactose	(b) Sucrose	(c) Maltose	(d) Galactose
	Enzymes, vitamins and ecause all of them	hormones can be classifie	ed into a single category	of biological chemicals,
	(a) Are proteins	(b)Enhanc	e the oxidative metaboli	sm
	(c) Aid the regulating n	nechanism (d)Are syr	nthesised within the body	y of an organism
516.	The essential mineral for	or the formation of body p	rotein is	
	(a) Sodium	(b) Iron	(c) Sulphur	(d) Potassium
517.	The amount of energy l	liberated by oxidation in be	ody is termed	
	(a) Basal metabolic rate	e (b) Caloric value	(c) Physiological fuel v	alue(d)Metabolic rate
518.	Deficiency of copper ca	auses		
	(a) Pellagra		(b) Anaemia and damag	ges to CNS
	(c) Influenza		(d) Xerophthalmia	

519. Which of the following is related with vitamin B_2

520. Consider the following statements :

Assertion (*A*): Polypeptidase acts on the peptide linkages of proteins and breaks them into smaller molecules. Water molecules are necessary for this reaction.

Reason (R): All digestive enzymes belong to hydrolase class.

Now select your answer from the answer code given below:

(a) Both (A) and (R) are true and (R) is the correct explanation of (A)

(b) Both (A) and (R) are true but (R) is not the correct explanation of (A)

(c) (A) is true but (R) is wrong

(d) (A) and (R) both are wrong

521. Deficiency of folic acid and vitamin B_{12} leads to

(a) Xeropthalmia (b) Megaloblastic anaemia

(c)Sickle cell anaemia (d) Microcytic anaemia

522. Castle's intrinsic factor is connected with internal absorption of

(a) Pyridoxine	(b) Riboflavin	(c) Thiamine	(d) Cobalamine
----------------	----------------	--------------	----------------

523. A nucleotide connected with coenzyme formation is

(a) Nicotinamide (b) Purine (c) Pyrimidine (d) None of these

524. An amino acid has the following structure $H_2 \stackrel{1}{\stackrel{N}{\sim}} - \stackrel{H^2}{\stackrel{C}{\sim}} - coo \stackrel{3}{\stackrel{H^2}{\stackrel{R^4}{\sim}}}$

Which two group combine to form the peptide linkage

	(a) 1-3	(b) 2-3	(c) 1-4	(d) 1-2		
525.	5. Which amino acid is denoted by symbol <i>F</i>					
	(a) Phenyl alanine	(b) Proline	(c) Tryptophan	(d) Methionine		
526.	Which amino acid is de	noted by symbol <i>K</i>				
	(a) Threonine	(b) Lysine	(c) Tyrosine	(d) Phenyl alanine		
527.	27. Which amino acid is denoted by symbol <i>W</i>					
	(a) Methionine	(b) Glycine	(c) Tryptophan	(d) Tyrosine		

NUTRITIVE INBALANCE OF DISORDER

Basic Level

528.	A person suffering from	n bleeding gums should ta	ke		
	(a) Citrus juice	(b) Carrots	(c) Milk	(d) Milk and eggs	
529.	Scurvy due to vitamin	C deficiency, is characteri	sed by		
	(a) Intestinal disorder	(b)Nervous disorder			
	(c) Haemorrhage in gui	ms (d)Malfunctioning in	kidneys		
530.	Nyctalopia is caused by	y deficiency of vitamin			
	(a) <i>E</i>	(b) <i>A</i>	(c) <i>D</i>	(d) B_{12}	
531.	Pellagra is caused due	to the deficiency of			
	(a) Ascorbic acid/Vit.	$C(b)$ Nicotinic acid/Vit. B_5	(c) Pantothenic acid	(d) Folic acid	
532.	Night blindness is caus	ed by			
	(a) Genetic disturbance	e (b) Excessive drinking	(c) Vitamin A deficient	cy (d) Excess	
secr	etion of adrenals				
533.	533. Continued consumption of diet rich in butter, red meat and eggs over long period may lead to				
	(a) Vitamin A toxicity		(b) Kidney stones		
	(c) Hypercholesterolemia		(d) Urine laden with ketone bodies		
534.	34. Excessive bleeding from an injury is due to deficiency of				
	(a) Vitamin A	(b) Vitamin <i>B</i>	(c) Vitamin <i>K</i>	(d) Vitamin <i>E</i>	
535.	Deficiency of vitamin	C/Ascorbic acid causes			
	(a) Rickets	(b) Beri-Beri	(c) Scurvy	(d) Night blindness	
536.	Prolonged deficiency o	f nicotinic acid produces			
	(a) Osteomalacia	(b) Xerophthalmia	(c) Pellagra	(d) Anaemia	
537.	Which pairing is not co				
		(b) Vitamin <i>K</i> –Sterility		Č,	
	•	g pair is characterised by s	wollen lips, thick pigme	nted skin of hands and	
1	egs, irritability				
	(a) Thiamine–Beri-Ber		(b) Protein–Kwashiork	or	
	(c) Nicotinamide–Pella	•	(d) Iodine–Goitre		
539.	Deficiency of vitamin <i>I</i>	-			
	(a) Scurvy	(b) Beri-beri	(c) Slow clotting of blo	ood (d) Impotence	
540.	Deficiency of calcium				
	(a) Rickets	(b) Scurvy	(c) Gigantism	(d) Addison's disease	

541.	Haemorrhoids are					
	(a) Small pouches of co	olon	(b)Enlarged rectal vein	S		
	(c)Outgrowths of anal of	canal	(d) Longitudinal folds of	of rectum		
542.	Following are vitamins	in column I and deficience	ey diseases in column II			
	(i) <i>K</i> (A) Beri-beri					
	(ii) D (B) Haemorrha	agic disease of new born				
	(iii) B_1 (C) Night blindness					
	(iv) A (D) Rickets					
	What is correct matchin	ng				
		(iii) - (D), (iv) - (A)				
		(iii) - (A), (iv) - (C)				
543.	A dental disease charac	cterised by mottling of teet	th due to ingredient in dr	inking water, namely		
	(a) Fluorine	(b) Chlorine	(c) Boron	(d) Mercury		
544.	Antiscurvy vitamin is					
	(a) <i>A</i>	(b) B_{12}	(c) <i>C</i>	(d) <i>D</i>		
545.	Bow-shaped legs in chi	ldren are due to deficiency	y of vitamin			
	(a) <i>D</i>	(b) <i>A</i>	(c) <i>B</i>	(d) <i>C</i>		
546.	Which disease does not	t occur in infants younger	than six months			
	(a) Kwashiorkor	(b) Kwashiorkor and mar	rasmus			
	(c) Marasmus	(d) Jaundice				
547.	Which one is the correct	et match				
	(a) Calcium-beriberi	(b) Na–Addison's disease	e (c) Iron–haemophilia	(d) <i>P</i> -bone fragility		
548.	Which is mismatched					
	(a) Vitamin <i>K</i> –Beri ber	i	(b) Vitamin <i>C</i> –Scurvy			
	(c) Vitamin A–Xeropht	halmia	(d) Vitamin <i>D</i> –Rickets			
549.	Beri-beri is caused by t	he deficiency of vitamin				
	(a) B_1	(b) B_2	(c) B_6	(d) B_{12}		
550.		d by the deficiency of vita	-			
	(a) <i>B</i> complex	(b) <i>C</i>	(c) <i>D</i>	(d) <i>K</i>		
551		caused by the deficiency of	. ,	(*/ **		
551.	(a) B_1 /Thiamine	(b) B_{12} /Cobalamine	(c) <i>C</i> /Ascorbic acid	(d) D/Calciferol		
550						
552.	Wound healing is enha	-				
	(a) <i>A</i>	(b) <i>B</i>	(c) <i>C</i>	(d) <i>D</i>		
1						

553.	Xeropthalmia in child	ren and night blindness in	adults is caused by the	deficiency of
	(a) Vitamin A	(b) Vitamin <i>B</i>	(c) Vitamin <i>C</i>	(d) Vitamin <i>K</i>
554.	Keratomalacia is defic	iency symptom of		
	(a) Vitamin A	(b) Protein energy maln	utrition	
	(c) Phylloquinone	(d) Nicotinamide		
555.	Antipellagra vitamin is	S		
	(a) Pantothenic acid	(b) Tocopherol	(c) Retinol	(d) Nicotinamide
556.	Blood cholesterol may	rise due to deficiency of	vitamin	
	(a) Folic acid	(b) Cobalamine	(c) Biotin	(d) Pyridoxine
557.	Marasmus is due to de	ficiency of		
	(a) Vitamin pyridoxine		(b) Vitamin D/Calcium	m/Phosphorus
	(c) Food		(d) Fat	
558.	Marasmus differs from	n Kwashiorkor in		
	(a) Absence of oedema	a (b) Match stick legs	(c) Protruded belly	(d) Anaemia
559.	Marasmus is caused by	y deficiency of		
	(a) Carbohydrates	(b) Proteins	(c) Vitamins	(d) Fats
560.	Gaucher's disease is re			
	(a) Abnormal fat meta		(b) Vitamin deficienc	-
	(c) Disturbed carbohy		(d) Abnormal protein	metabolism
561.	Which one is unrelated	1		
	(a) <i>Ca</i> -muscle contract	ction (b) <i>I</i> -thyroid		
	(c) Co-energy liberation	on (d) <i>Cl</i> -nerve conduct	tion	
562.	Rickets is due to defic	iency of vitamin		
	(a) <i>D</i>	(b) <i>C</i>	(c) <i>B</i>	(d) A
563.	Anaemia is mainly due	e to deficiency of		
	(a) <i>Ca</i>	(b) <i>Fe</i>	(c) <i>Na</i>	(d) <i>Mg</i>
564.	Which one is a correct	match		
	(a) Iron–Ricket	(b) Vitamin A–Scurvy	(c) Iodine–Goitre	(d) Calcium–Anaemia
565.	Mark the deficiency di	isease		
	(a) Leukemia	(b) Addison's disease	(c) Scurvy	(d) Acromegaly
			-	- •

Advance Level

566. Mental retardation in children suffering from galactosemia can be avoided by

(a) Giving them more milk (b) Giving them milk free diet

(d) Giving them more proteinous diet

- (c) Giving them milk fortified with vitamins
- 567. Lathyrism due to consumption of khesri dal is characterised by
 - (a) Skeletal deformation and thinning of collagen fibres
 - (b) Skeletal abnormalities, diabetes mellitus and reproductive failure
 - (c) Retarded growth, precocious puberty and renal dysfunction
 - (d) Cardiovascular abnormalities, mental retardation and delayed puberty
- 568. Assertion (A): Thiamine deficiency results in beri-beri causing paralysisReason (R): People eating raw fish may also suffer from paralysis due to the deficiency of vitamin B₁; cooked fish has no such effect
 - (a) (A) is true but (R) is wrong
 - (b) (A) is wrong (R) is true
 - (c) Both (A) and (R) are true and (R) is the correct explanation of (A)
 - (d) Both (A) and (R) are true but (R) is not the correct explanation of (A)
- 569. In scurvy, post-transcriptional modification of proteins fails to result in the formation of
 - (a) Lipoproteins (b) Tryptophan (c) Hydroxyproline (d) Histidine
- **570.** Assertion (*A*) : Minerals are not biologically active substances
 - **Reason** (\mathbf{R}) : Some individuals suffer from anaemia due to the deficiency of iron
 - (a) (A) is true but (R) is wrong
 - (b) (A) is wrong (R) is true
 - (c) Both (A) and (R) are true and (R) is the correct explanation of (A)
 - (d) Both (A) and (R) are true but (R) is not the correct explanation of (A)
- 571. Protein deficiency in children is called
 - (a) Obesity (b) Marasmus (c) Diabetes (d) Kwashiorkor

MODES AND TYPE OF NUTRITION

Basic Level

572.	• The animals that can eat various plants and animal materials are called					
	(a) Cannibal	(b) Carnivorous	(c) Omnivorous	(d) Herbivorous		
573.	3. The method of intake of food in case of ciliate <i>Paramaecium</i> is					
	(a) Holozoic	(b) Saprozoic	(c) Saprophytic	(d) Parasitic		

574.	Holophytic nutrition is	found in		
	(a) Amoeba	(b) Giardia	(c) Entamoeba	(d) Euglena
575.	The process of sucking	of fluid from the cell surf	face is called as	
	(a) Diffusion	(b) Phagocytosis	(c) Pinocytosis	(d) Osmosis
576.	One who gets food and	other things on the cost o	f other is called	
	(a) Parasite	(b) Commensal	(c) Saprophyte	(d) Insectivorous
577.	Mode of nutrition in an	noeba is		
	(a) Saprozoic	(b) Holophytic	(c) Coprozoic	(d) Holozoic
578.	Organisms, which obta	in energy by oxidation of	reduced inorganic comp	ounds, are
	(a) Phototrophs	(b) Saprozoic	(c) Copro-heterotrophs	(d) Chemo-autotrophs
	Some of the animals ea	t their feaces to digest the	cellulose contents again	, such animals are
K	(a) Omnivourous	(b) Copropherous	(a) Microphagous	(d) Macrophagous
580	One of the following is	(b) Coprophagous	(c) Microphagous	(u) Macrophagous
500.	(a) Paramecium	(b) Unio	(c) Whale	(d) All of these
A dy	ance Level		(c) whate	(u) An of these
	Maximum number of e	nzymes are found in		
	(a) Herbivorous	(b) Carnivorous	(c) Omnivorous	(d) None of these
582.	Which one is detritus for		(0) 0 1111 (010 00	
0021	(a) Parrot	(b) Sheep	(c) Unio	(d) Dung beetle
583	Pseudorumination is	(b) bheep		(u) Dung beette
505.	(a) False digestion	(b) Eating the faeces	(c) Coprophagy	(d) (b) and (c) both
584.	E.coli in human colon	· · · · · · ·		
	(a) Parasite	(b) Commensal	(c) Saprophyte	(d) Mutualism
585.	Cannibals feed on	(-)		(2)
	(a) Carcases	(b) Blood		
	(c) Carnivores	(d) Members of own spe	cies	
586	Detrivores are	(, memoers of own spo		
500.	(a) Parasites		(b) Blood sucking	
		matter	C C	,
	(c) Feeding on organic		(d) Feeding on carrions)

REGULATION OF FOOD INTAKE

Basi	c Level											
587.	Release of gastro-intest	ase of gastro-intestinal secretion and movement after ingestion of food is brought about byympathetic nervous system(b) Parasympathetic nervous system										
	(a) Sympathetic nervou	is system	(b) Parasympathetic ner	rvous system								
	(c) Central nervous sys	tem	(d) Thyroid membrane									
588.	The centre which regul	ate the amount of food we	e eat or Appetite centre is located in									
	(a) Stomach	(b) Brain	(c) Cerebrum	(d) Hypothalamus								
589.	Effect of reflex action of	due to the taste of food is t	the release of									
	(a) Vagal impulse	(b) Appetite juice	(c) Alkaline mucus	(d) Spasms of stomach								
590.	Hunger is lost in fever											
	(a) Due to increased bo	ody temperature	(b) Due to medicines taken by patient									
	(c) As the hunger centr	e is excited	(d) None of these									
591.	Wall of oesophagus is	made of										
	(a) Voluntary muscles	(b) Involuntary muscles	(c) Both of these	(d) None of these								
Adve	ance Level											
592.	Excessive stimulation of	of vagus nerve in humans	may lead to									
	(a) Hoarse voice		(b) Peptic ulcers									
	(c) Efficient digestion of	of proteins										
	(d) Irregular contraction	ns of diaphragm										
593.	Feeling of thirst is due	to										
	(a) Fever	(b) Exercise	(c) Fall in glucose level (d) All of these									
594.	Which of the following	controls the peristaltic m	ovement of the intestine									
	(a) Sacral plexus	(b) Brachial plexus	(c) Discoidal plexus	(d) Auerbach's plexus								

ANSWER

ASSIGNMENT (BASIC & ADVANCE LEVEL)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a	b	С	d	b	b	b	d	d	b	d	b	d	с	a	a	b	с	с	b
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
d	d	с	a	b	a	b	a	d	с	d	с	b	a	d	b	с	b	с	b
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
a	d	с	a	b	a	d	a	b	d	d	a	с	a	d	с	d	d	с	с
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
b	b	С	с	С	с	с	b	b	a	С	a	a	b	d	d	a	b	b	b
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
с	a	a	a	с	b	с	b	d	с	с	с	с	с	b	с	b	a	с	b
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
b	c	a	b	a	b	d	d	b	a	b	b	с	b	с	с	a	d	с	d
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
a	d	С	с	с	b	b	С	b	d	d	С	b	a	a	С	С	a	a	с
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
a	d	b	b	с	a	b	b	a	b	d	a	с	d	с	b	a	a	d	b
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
d	c	d	С	a	d	b	d	a	b	b	a	a	d	b	С	b	b	С	с
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
b	с	с	d	с	a	с	с	с	с	a	a	d	b	a	a	d	с	b	b
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
d	d	b	с	a	с	С	a	a	С	b	b	С	С	d	с	b	b	a	с
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
а	a	с	d	а	d	d	с	b	b	с	а	b	а	d	b	с	а	с	с
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
a	с	a	a	b	a	d	с	b	с	b	d	a	с	с	d	с	d	b	a
261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
b	с	b	b	d	b	a	с	d	a	с	a	d	d	a	b	a	a	a	b
281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
a	d	с	b	d	b	b	b	a	с	a	с	с	d	b	d	b	b	с	d

301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320
b	b	b	с	b	а	b	d	a	С	С	a	С	d	a	d	a	a	d	a
321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	
d	b	a	с	a	a	b	d	b	d	a	d	d	d	b	d	b	d	d	
340	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359
b	b	d	b	a	b	a	d	с	b	а	d	а	d	d	d	b	d	с	b
360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379
d	b	d	b	b	d	d	a	b	с	b	b	a	a	С	a	а	с	a	b
380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399
b	d	С	b	d	а	d	с	а	d	d	a	с	b	С	d	а	d	d	с
400	401	402	403	404	405	406	40 7	408	409	410	411	412	413	414	415	416	417	418	419
d	a	a	b	a	с	d	с	a	b	a	с	с	b	с	d	a	с	a	a
420	421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439
b	С	С	d	b	С	b	d	С	a	b	b	С	b	b	a	С	b	a	a
440	441	442	443	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459
с	b	b	b	d	b	a	С	a	a	b	С	С	С	С	d	С	b	С	a
460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479
d	a	С	b	с	С	b	b	d	b	b	a	С	a	b	С	d	b	d	с
480	481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499
d	с	С	с	b	a	a	d	а	с	b	a	с	b	a	b	d	d	b	с
500	501	502	503	504	505	506	507	508	509	510	511	512	513	514	515	516	517	518	519
a	С	d	b	d	b	b	d	a	a	b	b	a	a	С	С	С	С	b	a
520	521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539
a	b	d	a	a	a	b	с	a	с	b	b	с	с	с	с	с	b	с	d
540	541	542	543		545	546	547	548	549	550 h	551	552	553	554	555	556	557	558	559 h
a	b	c	a	c	a	a	d	a	a	b	b	с	a	a	d	c	с	a	b
560	561	562	563		565	566	567	568	569	570 b	571	572	573	574	575	576	577	578	579
a	d	a	b	c	c	b	a	a	c	b	d	С	a	d	С	а	d	d	b
580	581	582	583		585	586	587	588	589	590	591	592	593	594					
d	С	С	d	d	d	С	b	d	а	а	С	b	d	d					