- 1. The factors of $x^2 9$ is
 - a. (x-3)(x-3)
 - b. (x+3)(x+3)
 - c. (x+3)(x-3)
 - d. (x-3)(x+9)
- 2. A polynomial of degree _____ is called a linear polynomial.
 - a. 1
 - b. 2
 - c. 3
 - d. 0
- 3. Which of the following is a polynomial in one variable?
 - a. $x^2 + x^{-2}$ b. $\sqrt{2} - x^2 + 3x$
 - c. $\sqrt{2x} + 9$
 - d. $x^5 + y^8 + 9$
- 4. If p(x) = (x 1)(x + 1), then the value of p(2) + p(1) p(0) is
 - a. 2
 - b. 4
 - c. 1

- d. 3
- 5. If both x-2 and $x-rac{1}{2}$ are the factors of px^2+5x+r , then
 - a. none of these
 - b. 2p = r
 - c. p = r
 - d. p = 2r
- 6. Fill in the blanks:

The maximum number of terms in a polynomial of degree 10 is _____.

7. Fill in the blanks:

 $\sqrt{2}$ is a polynomial of degree _____.

- 8. Find p(0), p(1) and p(2) of the polynomial: $p(t)=2+t+2t^2-t^3$
- 9. Factorize: $x^4 + x^2 + 1$
- 10. If $x^2 1$ is a factor of $ax^3 + bx^2 + cx + d$, show that a + c = 0.
- 11. Check whether 7 + 3x is a factor of $3x^3 + 7x$.
- 12. Factorise: 84 $2r 2r^2$
- 13. Factorize the polynomial: $27 125a^3 135a + 225a^2$
- 14. Factorise: $4x^2 + 20x + 25$
- 15. The polynomial $3x^3 + ax^2 + 3x + 5$ and $4x^3 + x^2 2x + a$ leave remainder when divided by (x 2) respectively. If $R_1 R_2 = 9$, find the value of a.

Solution

1. (c) (x+3)(x-3)Explanation:

x² - 9

 $= x^2 - 3^2$

Using identity $a^2 - b^2 = (a + b)(a - b)$

$$= (x + 3)(x - 3)$$

2. (a) 1

Explanation: A polynomial of degree 1 is called a linear polynomial.

Its general form is ax+b

3. (b) $\sqrt{2} - x^2 + 3x$

Explanation:

 $\sqrt{2}-x^2+3x$ is a polynomial in one variable x and also the powers of each term is a whole number.

4. (b) 4

Explanation: Given: p(x) = (x - 1)(x + 1), then

$$p(2) + p(1) - p(0)$$

= $(2 - 1) (2 + 1) + (1 - 1) (1 + 1) - (0 - 1) (0 + 1)$
= $1 \times 3 + 0 \times 2 - (-1) \times 1$
= $3 + 0 + 1$
= 4

5. (c) p = r

Explanation:

If both x - 2 and $x - \frac{1}{2}$ are the factors of $f(x) = px^2 + 5x + r$, then f(2) = 0 $\Rightarrow p(2)^2 + 5(2) + r = 0$ $\Rightarrow 4p + 10 + r = 0$ $\Rightarrow 4p + r = -10$ (i) Also, $f(\frac{1}{2}) = 0$ $\Rightarrow p(\frac{1}{2})^2 + 5(\frac{1}{2}) + r = 0$ $\Rightarrow p(\frac{1}{2})^2 + 5(\frac{1}{2}) + r = 0$ $\Rightarrow p + 10 + 4r = 0$ $\Rightarrow p + 4r = -10$ (ii) From eq.(i) and eq.(ii), we get 4n + r = n + 4r

$$4p + r = p + 4n$$

=> $3p = 3r$
=> $p = r$

6. 11

7. 0

8. According to the question,

$$p(t) = 2 + t + 2t^2 - t^3$$

 $p(0) = 2 + (0) + 2(0)^2 - (0)^3 = 2$
 $p(1) = 2 + (1) + 2(1)^2 - (1)^3 = 2 + 1 + 2 - 1 = 4$

$$p(2) = 2 + (2) + 2(2)^2 - (2)^3 = 4 + 8 - 8 = 4$$

9. We have,

$$x^{4} + x^{2} + 1$$

= (x⁴ + 2x² + 1) - x²
= (x² + 1)² - x² = (x² + 1 - x)(x² + 1 + x) = (x² - x + 1)(x² + x + 1)

10. Since $x^2 - 1 = (x+1)(x-1)$ is a factor of $p(x) = ax^3 + bx^2 + cx + d$ $\therefore p(1) = p(-1) = 0$ $\Rightarrow a + b + c + d = -a + b - c + d = 0$ $\Rightarrow 2a + 2c = 0$ $\Rightarrow 2(a + c) = 0$ $\Rightarrow a + c = 0$

11. We know that if the polynomial 7 + 3x is a factor of $3x^3 + 7x$, then on dividing the polynomial $3x^3 + 7x$ by 7 + 3x, we must get the remainder as 0. We need to find the zero of the polynomial 7 + 3x

$$7+3x=0 \ \Rightarrow x=-rac{7}{3}$$

While applying the remainder theorem, we need to put the zero of the polynomial 7+3x in the polynomial $3x^3+7x$,to get

$$egin{aligned} p\left(x
ight) &= 3x^3 + 7x \ p\left(rac{-7}{3}
ight) &= 3\left(-rac{7}{3}
ight)^3 + 7\left(-rac{7}{3}
ight) \ &= 3\left(-rac{343}{27}
ight) - rac{49}{3} \ &= -rac{343}{9} - rac{49}{3} \ &= rac{-490}{9}. \end{aligned}$$

We conclude that on dividing the polynomial $3x^3 + 7x$ by 7 + 3x, we will get the remainder as $\frac{-490}{9}$ which is not 0. Therefore, we conclude that 7 + 3x is not a factor of $3x^3 + 7x$

12. In order to factorise 84 - $2r - 2r^2$, we have to find two numbers p and q such that p + q = -2 and pq = -168.

Clearly, (-14) + 12 = -2 and (-14) × 12 = -168.

So, we write the middle term - 2r as (-14r) + 12r.

$$\therefore 84 - 2r - 2r^{2} = -2r^{2} - 2r + 84$$
$$= -2r^{2} - 14r + 12r + 84$$
$$= -2r(r + 7) + 12(r + 7)$$
$$= (r + 7)(-2r + 12)$$
$$= -2(r + 7)(r - 6) = -2(r - 6)(r + 7)$$

13.
$$27 - 125a^3 - 135a + 225a^2$$

The expression $27 - 125a^3 - 135a + 225a^2$ can be written as
 $= (3)^3 - (5a)^3 - 3 \times 3 \times 3 \times 5a + 3 \times 3 \times 5a \times 5a$
 $= (3)^3 - (5a)^3 + 3 \times 3 \times 5a (3 - 5a)$.
Using identity $(x - y)^3 = x^3 - y^3 - 3xy (x - y)$
 $(3)^3 - (5a)^3 + 3 \times 3 \times 5a (3 - 5a)$, we get $(3 - 5a)^3$
Therefore, after factorizing the expression
 $27 - 125a^3 - 135a + 225a^2$, we get $(3 - 5a)^3$

14. We have,

$$4x^{2} + 20x + 25 = (2x)^{2} + 2(2x)(5) + (5)^{2}$$
$$= (2x + 5)^{2} [:: a^{2} + 2ab + b^{2} = (a + b)^{2}]$$
$$= (2x + 5)(2x + 5)$$

15. Let $f(x) = 3x^3 + ax^2 + 3x + 5$

and $g(x) = 4x^3 + x^2 - 2x + a$ Here, the zero of (x - 2) is x = 2 [$\therefore x - 2 = 0 \Rightarrow x = 2$] Where f(x) and g(x) are divided by (x - 2), then we get the remainders R_1 and R_2

$$\therefore f(2) = 3(2)^{3} + a(2)^{2} + 3(2) + 5$$

= 24 + 4a + 6 + 5 = 35 + 4a = R₁
and g(2) = 4(2)^{3} + (2)^{2} - 2(2) + a
= 32 + 4 - 4 + a = 32 + a = R₂
Also, R₁ - R₂ = 9
$$\therefore 35 + 4a - (32 + a) = 9$$
$$\Rightarrow 3 + 3a = 9 \Rightarrow 3a = 6 \Rightarrow a = 2$$