
20

C PREPROCESSOR

20.1 INTRODUCTION

We have already seen many features provided by C language. Yet

another unique feature of the C language is the preprocessor. The C

preprocessor provides several tools that are not available in other

high–level languages. The programmer can use these tools to make

his program more efficient in all respect.

20.2 OBJECTIVES

After going through this lesson you will be able to

l explain preprocessor working

l explain the # define Directive

l define constants

l explain macros

l write the various directions such as # undef, #include, #fdef,

#ifdef, #ifndef, # else, #if

20.3 HOW THE PREPROCESSOR WORKS

When you issue the command to compile a C program, the program

is run automatically through the preprocessor. The preprocessor is

310 :: Computer Applications

a program that modifies the C source program according to directives

supplied in the program. An original source program usually is stored

in a file. The preprocessor does not modify this program file, but

creates a new file that contains the processed version of the program.

This new file is then submitted to the compiler. Some compilers

enable the programmer to run only the preprocessor on the source

program and to view the results of the preprocessor stage. All

preprocessor directives begin with the number or sharp sign (#).

They must start in the first column, and no space is required between

the number sign and the directive. The directive is terminated not

by a semicolon, but by the end of the line on which it appears.

The C preprocessor is a collection of special statements called direc-

tives, that are executed at the beginning of the compilation process.

The #include and # define statements are preprocessor directives.

20.4 THE # DEFINE DIRECTIVE

The #define directive is used to define a symbol to the preprocessor

and assign it a value. The symbol is meaningful to the preprocessor

only in the lines of code following the definition. For example, if the

directive #define NULL 0 is included in the program, then in all

lines following the definition, the symbol NULL is replaced by the

symbol. If the symbol NULL is written in the program before the

definition is encountered, however, it is not replaced.

The # define directive is followed by one or more spaces or tabs and

the symbol to be defined. The syntax of a preprocessor symbol is the

same as that for a C variable or function name. It cannot be a C

keyword or a variable name used in the program; if it is so a syntax

error is detected by the compiler. For example, suppose a program

contains the directive

#define dumb 52

which in turn is followed by the declaration

int dumb;

This would be translated by the preprocessor into

int 52;

which would be rejected by the compiler. The preprocessor does

not check for normal C syntax, except for identifying quotation

marks. It merely substitutes symbols where it finds them. The sym-

C Preprocessor :: 311

bol being defined is followed by one or more spaces or tabs and a

value for the symbol. The value can be omitted, in which case the

symbol is defined but not given a value. If this symbol is used later

in the program, it is deleted without being replaced with anything.

If a # define directive does not fit on a single line, it can be contin-

ued on subsequent lines. All lines of the directives except the last

must end with a backslash(\) character. A directive can be split

only at a point where a space is legal.

20.5 CONSTANTS

A common use for defined symbols is the implementation of named

constants. The following are examples of constants in C:

23, ‘a’, “hello”

Any of these can be assigned to a defined preprocessor symbol:

#define INTEGER 23

#define CHARACTER ‘a’

A defined symbol can specify only a complete constant. For example,

if a program contains the definition

#define NULL 0

the number 120 cannot be represented by 12 NULL. A defined sym-

bol can be recognized only if it is delimited by white space, punc-

tuation or operators.

20.6 MACROS

When a constant is associated with a defined symbol, the characters

making up the constants are assigned , not the numeric value of the

constant. The definition

#define EOF-1

really assigns the string “-1” to EOF. The preprocessor replaces the

symbol EOF by the characters “-1” without any consideration of the

meaning of the two characters.

When a preprocessor symbol is defined as a segment of text, it is

more generally called a macro. Macros are very useful in making C

code more readable and compact. For example, some programmers

include the following definitions in all their programs:

312 :: Computer Applications

 # define and &&

define or ||

These definitions enable the programmer to write more readable

code, such as the following:

If (a<b or c>d and e<f)

A comment can be included at the end of a macro or constant defi-

nition:

define same 1 /* Nothing */

A comment can be inserted at any point in a C program where white

space is permitted without adverse effect to the program.

Macros also can be used as abbreviation for lengthy and frequently

used statements. The one restriction on macros is that, even though

their definitions can occupy more than one line, they cannot include

a newline. That is, when a macro is expanded all the resulting text

is placed on the same line.

The preprocessor permits macros to have arguments, just as func-

tions do; the difference is that the arguments are strings rather

than values. Consider the following definition.

#define Decrement(x) if (x>0)x - = 1

when this macro is expanded, the string passed to the argument x

replaces all occurrences of x in the symbol’s value. That is, the state-

ment

Decrement(a);

is expanded to

if(a>0) a- = 1;

and the statement

Decrement(b);

becomes

if (b>0) b - =1;

Notice that the macro definition itself does not include a semicolon.

When the macro is invoked later, it is followed by an explicitly speci-

fied semicolon:

C Preprocessor :: 313

Decrement(a);

The argument names used in a macro are local to the macro. Thus

there is no conflict between a macro’s formal parameter names and

identifiers used in the program itself. Any symbols used in the macro

definition which are not argument name or names of other macros

are left unchanged, and are assumed to be variable names or other

C symbols.

The argument supplied to a macro can be any series of characters.

The comma is the delimiter that separates arguments in a macro.

A macro can be defined in terms of another macro, as in the follow-

ing example of nested macros:

#defined control “%d\n”

#define printint(x) printf(control,x)

#define test(x) if (x>0) printint(x)

If a program contains the statements

Test(w);

Where w is an integer variable, the statement goes through the

following conversion steps:

i) if(w>0) printint(w);

ii) if (w>0) printf(CONTROL,w);

iii) if(w>0) printf (“%d\n,”w);

INTEXT QUESTIONS

1. What, in general terms, is the role played by the C preproces-

sor ?

2. Which symbol always precedes preprocessor directives ?

3. Where on the line must all preprocessor directives begin ?

4. Where can a preprocessor directive be written ?

5. Which symbol is used to separate the arguments of a macro ?

314 :: Computer Applications

20.7 USE OF DIRECTIVES: # undef, # include

(a) The # undef Directive:-

If a preprocessor symbol has already been defined, it must be unde-

fined before being redefined. This is accomplished by the #undef

directive, which specifies the name of the symbol to be undefined. It

is not necessary to perform the readefinition at the beginning of a

program. A symbol can be redefined in the middle of a program so

that it has one value in the first part and another value at the end.

A symbol need not be redefined after it is undefined.

(b) The #include Directive:-

Often a programmer accumulates a collection of useful constants

and macro definitions that are used in almost every program. It is

desirable to be able to store these definitions in a file that can be

inserted automatically into every program. This task is performed

by the #include directive.

A file is inserted at a point where the #include directive is encoun-

tered. Such files are called header files, and by convention their

names end with the character.h (as in stdio.h).

20.8 CONDITIONAL COMPILATION: #ifdef, #ifndef and #endif

Removing statements by hand would be quite tedious and could

also lead to error. For this reason, the preprocessor provides directives

for selectively removing section of code. This process is known as

conditional compilation.

#define RECORD–FILE

If the # ifdef directive tests whether a particular symbol has been

defined before the #ifdef is encountered. It does not matter what

value has been assigned to the symbol. In fact, a symbol can be

defined to the preprocessor without a value.

If the #ifdef directive is encountered after this definition it produce a

true result. If, however, the directive #undef RECORD–FILE is

encountered before the directive #ifdef RECORD–FILE then the

preprocessor considers the symbol RECORD–FILE to be undefined

and the #ifdef directive returns a false value.

C Preprocessor :: 315

If an #ifdef returns a true value, all the lines between the #ifdef and

the corresponding #endif directive are left in the program. If those

lines contains preprocessor directives, the directives are processed.

In this way, conditional compilation directives can be nested. If the

#ifdef evaluates as false, the associated lines are ignored, including

any preprocessor directives that are included.

The statements need not all be grouped in one place. The #ifdef and

#fendif directives can be used as many times as required. The pre-

processor also provides the directive #ifndef, which produces a true

result if a symbol is not defined. This makes it possible to use a

single symbol to switch between two versions.

Conditional compilation can be used to select preprocessor direc-

tives as well as C code. For example suppose a header file is included

in a program. and a certain preprocessor symbol (say, FLAG) may or

may not be defined in that header file. If the programmer wants

FLAG never to be defined, then the #include directive can be followed

by

#ifdef FLAG

#undef FLAG

#endif

This ensures that, even if the symbol is defined in the header file,

its definition is removed. It is not sufficient merely to work on

#undef FLAG

because if FLAG is not defined, the directive is erroneous. If FLAG

should always be defined, then we would write

#ifndef FLAG

#define FLAG

#endif

We could, of course, give FLAG a value. We cannot simply write

#define FLAG

since if FLAG is already defined, an error probably will result.

20.9 THE #ELSE DIRECTIVE

This directive functions in much the same way as the else clause of

an if statement.

316 :: Computer Applications

All lines between an #ifdef or an #ifndef directive and the corre-

sponding # else clause are included if the #ifdef or #ifndef is true.

Otherwise, the lines between the #else and the corresponding #endif

are included.

The # else directive and the lines that follow it can be omitted, but

never the #endif directive. No other text can be included on the

same line as the #else or #endif directive.

20.10 THE # IF DIRECTIVE

The #if directive tests an expression. This expression can be of any

form used in a C program, with virtually any operators, except that

it can include only integer constant values No variables, or function

calls are permitted, nor are floating point, character or string con-

stants.

The #if directive is true, if the expression evaluates to true (non–

zero). Any undefined preprocessor symbol used in the #if expression

is treated as if it has the value φ. Using a symbol that is defined with

no value does not work with all preprocessors, and an attempt to do

so might result in an error.

INTEXT QUESTIONS

6. What is the characteristics of the #else and the #endif directives?

7. How is the #ifndef directive used?

8. State the reason for using the #ifdef directive.

20.11 WHAT YOU HAVE LEARNT

In this lesson, you have learnt about preprocessors. The preprocessor

is a program which modifies the C source program according to

instructions provided. Remember that all preprocessor directives

begin with the symbol #. There are different preprocessor directives.

You also learnt about Macros. This lesson also discussed about

conditional compilation.

20.12 TERMINAL QUESTIONS

1. How can a #define directive be continued to a new line ?

2. Where can a preprocessor directive be split ?

C Preprocessor :: 317

3. What is a macro, and what is it used for ?

4. What can a macro argument consist of ?

5. What role is played by the #undef directive?

6. How is the # include directive used ?

7. What is conditional compilation ?

8. How does the #if directive operate ?

20.13 KEY TO INTEXT QUESTIONS

1. It provides for the implementation of macros and conditional

compilation.

2. The # sign.

3. The first column.

4. Anywhere in a program, so long as it starts in the first column

of a line and is not on the same line as another directive or C

statement.

5. The comma.

6. They only allow that text can be included on the lines they

occupy.

7. It passes lines of code to the compiler only if the specificed

preprocessor symbol is not defined.

8. The #ifdef directive is used in order to pass certain lines of code

of the compiter, only if the specified preprocessor symbol is

defined before the #ifdef directive is encounted.

