Polynomials

Polynomial: Let x be a variable, n be a positive integer and a_1, a_2, \ldots, a_n be constants (real numbers).

Then

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ is called a **polynomial** in variable x.

In the polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$

 $a_n x^n$, $a_{n-1} x^{n-1}$, ..., $a_1 x$ and a_0 are known as the terms of the polynomial and a_n , a_{n-1} , ..., a_1 , a_0 are their coefficients.

Ex: f(x) = 2x + 3 is a polynomial in variable x.

 $g(y) = 2y^2 - 7y + 4$ is a polynomial in variable y.

Note: The expressions like $2x^2 - 3\sqrt{x} + 5$, $\frac{1}{x^2 - 2x + 5}$, $2x^3 - \frac{3}{x} + 4$ are not polynomials. Degree of a Polynomial: The exponent of the highest degree term in a polynomial is known as its degree.

In other words, the highest power of x in a polynomial f(x) is called the degree of the polynomial f(x).

Ex: $f(x) = 5x^3 - 4x^2 + 3x - 4$ is a polynomial in the variable x of degree '3'.

Constant Polynomial: A polynomial of degree zero is called a Constant Polynomial.

Ex: f(x) = 7, p(t) = 1

Linear Polynomial: A polynomial of degree 1 is called a linear polynomial.

Ex:
$$p(x) = 4x - 3$$
; $f(t) = \sqrt{3}t + 5$

Quadratic Polynomial: Polynomial of degree 2 is called Quadratic Polynomial.

Ex:
$$f(x) = 2x^2 + 3x - \frac{1}{2}$$

 $g(x) = ax^2 + bx + c$, $a \neq 0$

Note: A quadratic polynomial may be a monomial or a binomial or trinomial.

Ex:
$$f(x) = \frac{2}{3}x^2$$
 is a monomial, $g(x) = 5x^2 - 3$ is a binomial and $h(x) = 3x^2 - 2x + 5$

is a trinomial.

Cubic Polynomial: A polynomial of degree 3 is called a cubic polynomial.

Ex:
$$f(x) = \frac{2}{3}x^3 - \frac{1}{7}x^2 + \frac{4}{5}x + \frac{1}{4}$$

Polynomial of nth Degree: $f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \ldots + a_1 x + a_0$ is a polynomial of nth degree, where $a_n, a_{n-1}, \ldots a_1, a_0$ are real coefficients and $a_n \neq 0$.

Value of a Polynomial: The value of a polynomial P(x) at x = k, where k is a real number, is denoted by P(k) and is obtained by putting k for x in the polynomial.

Ex: Value of the polynomial $f(x) = x^2 - 2x - 3$ at x = 2 is $f(2) = 2^2 - 2(2) - 3 = -3$.

Zeroes of a Polynomial: A real number k is said to be a zero of the polynomial f(x) if f(k) = 0

Ex: Zeroes of a polynomial $f(x) = x^2 - x - 6$ are -2 and 3,

Because $f(-2) = (-2)^2 - (-2) - 6 = 0$ and $f(3) = 3^2 - 3 - 6 = 0$

Zero of the linear polynomial ax + b, $a \neq 0$ is $\frac{-b}{a}$

Graph of a Linear Polynomial:

- i) Graph of a linear polynomial ax + b, $a \neq 0$ is a straight line.
- ii) A linear polynomial ax + b, $a \neq 0$ has exactly one zero, namely X co-ordinate of the point where the graph of y = ax + b intersects the X-axis.
- iii) The line represented by y = ax + b crosses the X-axis at exactly one point, namely $\left(-\frac{b}{a}, 0\right)$.

Graph of a Quadratic Polynomial:

For any quadratic polynomial $ax^2 + bx + c$, $a \neq 0$, the graph of the corresponding equation $y = ax^2 + bx + c$ either opens upwards like \cup or opens downwards like \cap . This depends on whether a > 0 or a < 0. The shape of these curves are called **parabolas**.

The zeroes of a quadratic polynomial $ax^2 + bx + c$, $a \neq 0$ are precisely the X-coordinates of the points where the parabola representing $y = ax^2 + bx + c$ intersects the X-axis.

- A quadratic polynomial can have at most 2 zeroes.
- A cubic polynomial can have at most '3' zeroes.
- A constant polynomial has no zeroes.
- A polynomial f(x) of degree n, the graph of y = f(x) interacts the X-axis at most

Therefore, a polynomial f(x) of degree n has at most 'n' zeroes.

Relationship between Zeroes and Coefficients of a Polynomial:

- i) The zero of the linear polynomial ax + b, $a \neq 0$ is $-\frac{b}{a}$.
- ii) If α , β are the zeroes of the quadratic polynomial $ax^2 + bx + c$, $a \neq 0$ then

Sum of the zeroes =
$$\alpha + \beta = -\frac{b}{a} = \frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$$

Product of the zeroes =
$$\alpha\beta = \frac{c}{a} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$$

iii) If α , β , γ are the zeroes of the cubic polynomial $ax^3 + bx^2 + cx + d$, $a \neq 0$ then

$$\alpha + \beta + \gamma = -\frac{b}{a} = \frac{-(\text{Coefficient of } x^2)}{\text{Coefficient of } x^3}$$

$$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a} = \frac{\text{Coefficient of } x}{\text{Coefficient of } x^3}$$

$$\alpha.\beta.\gamma = -\frac{d}{a} = \frac{-(\cos \tan t \text{ term})}{\operatorname{coefficient of } x^3}$$

• A quadratic polynomial with zeroes α and β is given by

 $k\{x^2 - (\alpha + \beta) x + \alpha\beta\}$, where $k \neq 0$ is real.

• A cubic polynomial with zeroes α , β and γ is given by

$$k\{x^3 - (\alpha + \beta + \gamma) x^2 + (\alpha\beta + \beta\gamma + \alpha\gamma) x - \alpha\beta\gamma\}$$
 where $k \neq 0$ is real.

Division Algorithm for Polynomials: Let p(x) and g(x) be any two polynomials where $g(x) \neq 0$. Then on dividing p(x) by g(x), we can find two polynomials q(x) and r(x) such that

 $p(x) = g(x) \times q(x) + r(x)$, where either r(x) = 0

Or degree of r(x) < degree of g(x).

This result is known as "Division Algorithm for polynomials".

- **Note:** i) If r(x) = 0, then g(x) will be a factor of p(x).
 - ii) If a real number k is a zero of the polynomial p(x), then (x k) will be a factor of p(x).
 - iii) If q(x) is linear polynomial then r(x) = Constant
 - iv) If p(x) is divided by (x a), then the remainder is p(a).
 - v) If degree of q(x) = 1, then degree of p(x) = 1 + degree of g(x).

Essay Question (5 marks)

(1) Draw the graph of y = 2x - 5 and find the point of intersection on x - axis. Is the X - Coordinates of these points also the zero the polynomial.
 (Visualization and Representation)

Solution: Y = 2x - 5

The following table lists the values of y corresponding to different values of x .

X	-2	-1	0	1	2	3	4
Y	-9	-7	-5	-3	-1	1	3

The points (-2, -9), (-1, -7), (0, -5), (1, -3), (2, -1), (3, 1) and (4, 3) are plotted on the graph paper on a suitable scale. A line is drawn passing through these points to obtain the graph of the given linear equation.

The graph cuts the x- axis at p(

This is also the zero of the liner equation

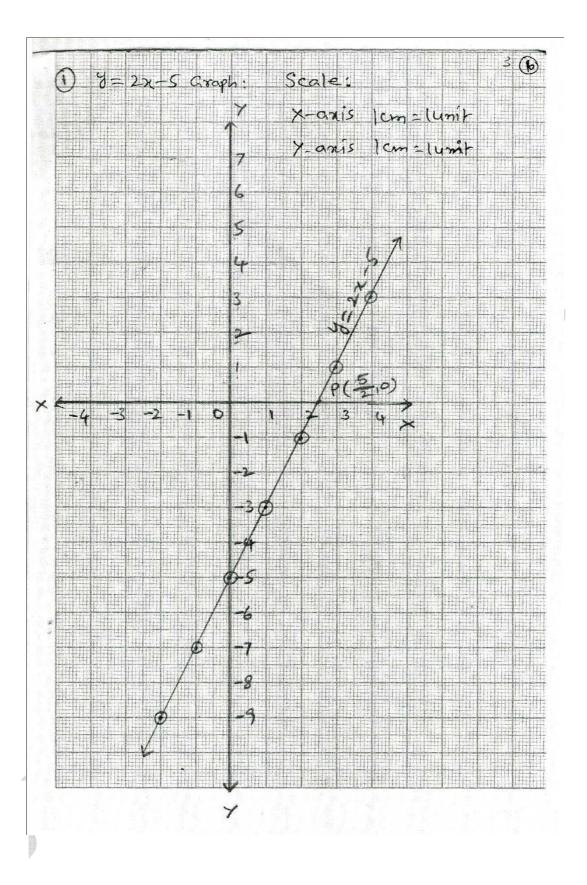
$$Y = 2x - 5$$

Because To find the zero of y = 2x - 5,

 $2x-5=0 \Rightarrow 2x=5 \Rightarrow X=\frac{5}{2}$

 \therefore The zero of the liner equation is $\frac{5}{2}$

Model Question: Draw the graph of y = 2x+3.



(2) Draw the graph of the polynomial $f(x) = x^2-2x-8$ and find zeroes. Verify the zeroes of the polynomial.

Solution: Let $y = x^2 - 2x - 8$

The following table given the values of y for various values of x.

X	-3	-2	-1	0	1	2	3	4	5
$\mathbf{Y} = \mathbf{x}^2 - 2\mathbf{x} - 8$	7	0	-5	-8	-9	-8	-5	0	7
(x , y)	(-3,7)	(-2,0)	(-1,-5)	(0,-8)	(1, -9)	(2, -8)	(3, -5)	(4, 0)	(5, 7)

The Points (-3, 7), (-2, 0), (-1, -5), (0, -8), (1, -9), (2, -8), (3, -5), (4, 0) and (5, 7) are plotted on the graph paper on the suitable scale and drawn a smooth free hand curve passing through these points.

The curve thus obtained represents the graph of the polynomial $y = x^2-2x-8$. This is called a parabola.

The curve cuts the x - axis at (-2, 0) and (4, 0).

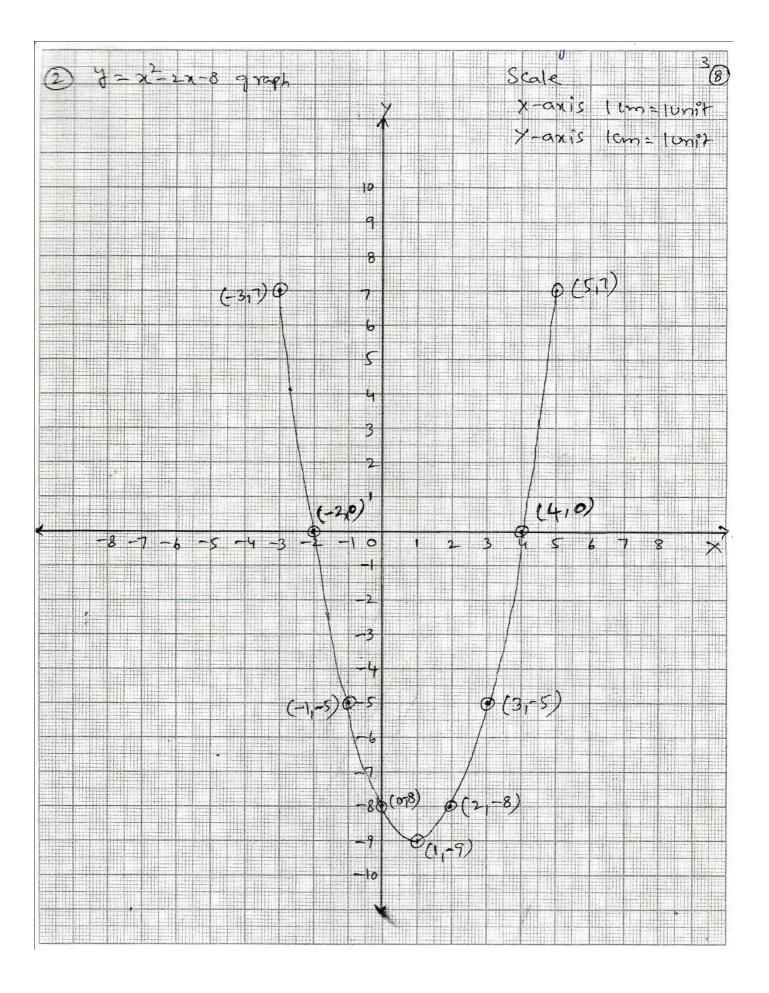
The x – coordinates of these points are zeroes of the polynomial $y = x^2-2x-8$. Thus -2 and 4 are the zeroes.

Verification: To find zeroes of x^2 -2x-8

$$x^{2}-2x-8 \Rightarrow x^{2}-4x+2x-8 = 0$$

 $x(x-4)+2(x-4) = 0$
 $(x-4)(x+2) = 0$

x - 4 = 0 or $x + 2 = 0 \Rightarrow x = 4$ or -2 are the zeroes.



(3) Draw the graph of $f(x) = 3-2x-x^2$ and find zeroes .Find zeroes. Verify the zeroes of the polynomial.

Solution: Let $y = 3-2x-x^2$

The following table given of values of y for various values of x.

X	-4	-3	-2	-1	0	1	2	3
Y=3-2x-x ²	-5	0	3	4	3	0	-5	-12
(x ,y)	(-4,-5)	(-3,0)	(-2,3)	(-1,4)	(0,3)	(1,0)	(2,-5)	(3,-12)

The points (-4,5), (-3,0), (-2,3), (-1,4), (0,3), (1,0), (2,-5) and (3,-12) are plotted on the graph paper on a suitable scale and drawn a smooth free hand curve passing through these points.

The curve thus obtained represent s the graph of the polynomial $y = 3-2x-x^2$. This called parabola opening downward.

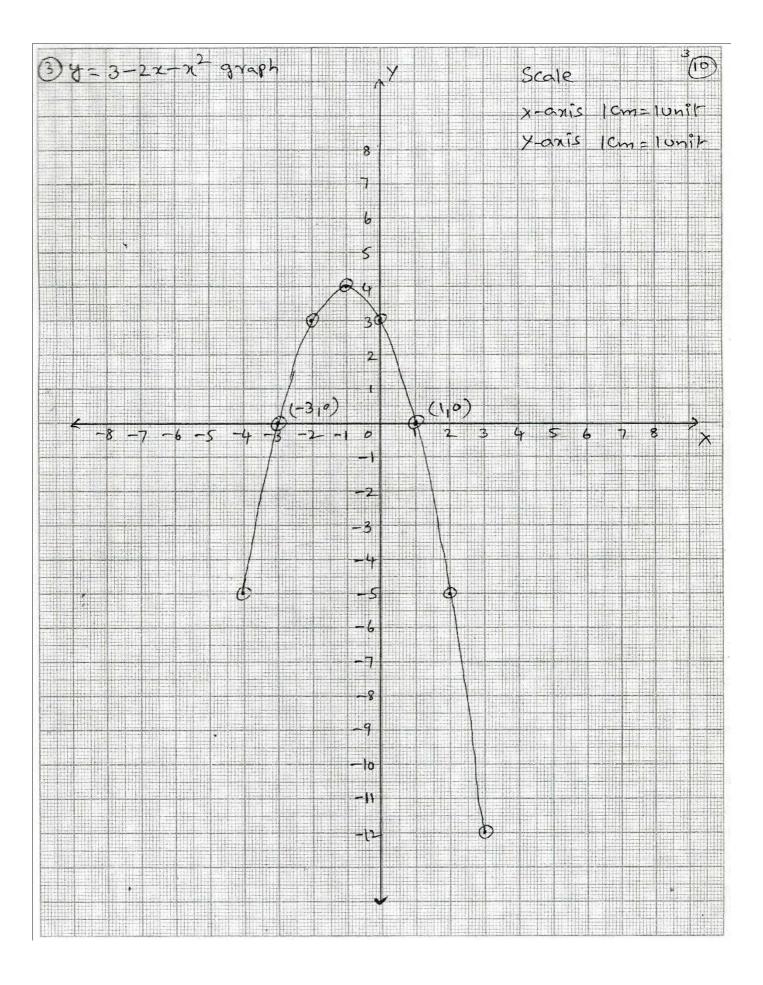
The curve cuts the x- axis at (-3, 0) and (1,0).

The x – coordinates of these points are zeroes of the polynomial. Thus the zeroes are -3, 1

Verification:

To find zeroes of $y = 3 \cdot 2x \cdot x^2$, $3 \cdot 2x \cdot x^2 = -x^2 \cdot 2x + 3 = 0$ $-x^2 \cdot 3x + x + 3 = 0$ -x(x+3) + 1(x+3) = 0(x+3)(1-x) = 0

x+3 = 0 or $1-x = 0 \implies x = -3$ or 1 are the zeroes.



(4) Draw the graph of y =x²-6x+9 and find zeroes verify the zeroes of the polynomial.

Solution: Let $y = x^2 - 6x + 9$

The following table gives the values of y for various values of x

X	-2	-1	0	1	2	3	4	5	6
$y = x^2 - 6x + 9$	25	16	9	4	1	0	1	4	9
(x , y)	(-2,25)	(-1,16)	(0,9)	(1,4)	(2,1)	(3,0)	(4,1)	(5,4)	(6,9)

The point (-2,25), (-1,16), (0,9), (1,4), (2,1), (3,0), (4,1), (5,4) and (6,9) are plotted on the graph paper on a suitable scale and drawn a smooth free hand curve passing through these points.

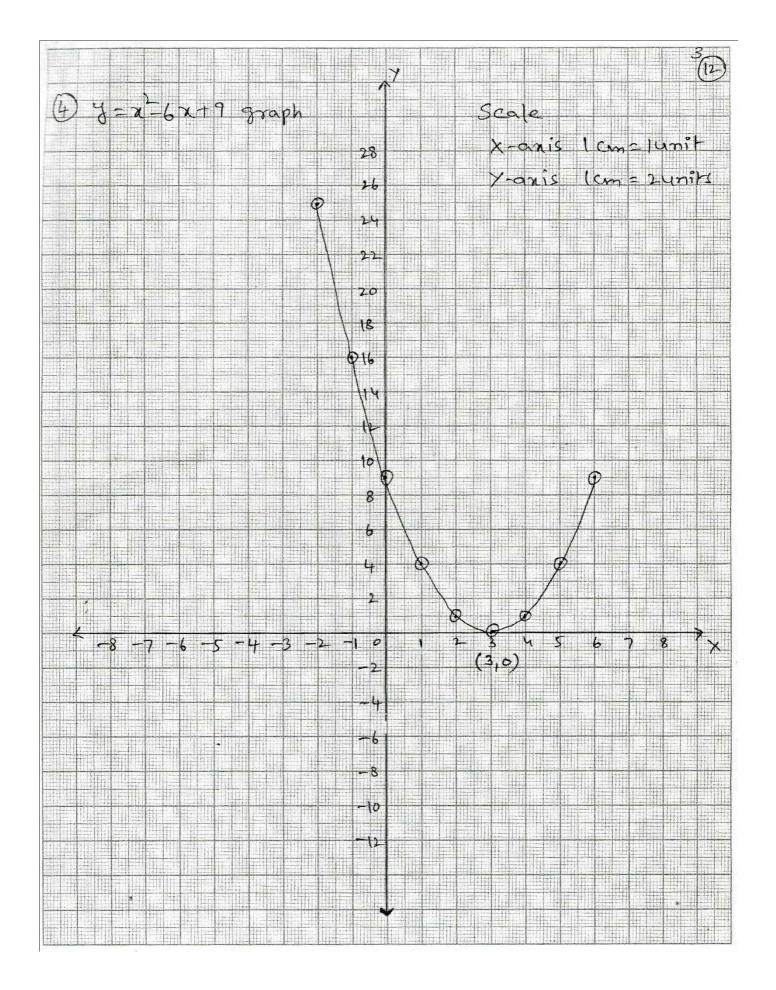
The curve thus obtained represents the graph of the polynomial $y = x^2-6x+9$.

The curve touches x-axis at one point (3,0) .The x- coordinate of this point is the zero of the polynomial $y = x^2-6x+9$. Thus the zero is 3.

Verification:

To find zeros of x^2-6x+9

$$x^{2}-6x+9 = 0 \implies (x-3)^{2} = 0$$
$$x - 3 = 0 \text{ or } x - 3 = 0$$
$$x = 3 \text{ is the zero.}$$



(5) Draw the graph of the polynomial $y = x^2-4x+5$ and find zeroes . Verify the

zeroes of the polynomial.

Solution: $y = x^2 - 4x + 5$

The following table gives the values of y for various values of x.

Χ	-3	-2	-1	0	1	2	3	4
							-	
$\mathbf{y} = \mathbf{x}^2 \cdot \mathbf{4x} + 5$	26	17	10	5	2	1	2	5
(x , y)	(-3,26)	(-2,17)	(-1,10)	(0,5)	(1,2)	(2,1)	(3,2)	(4,5)
					W A. WINNER			

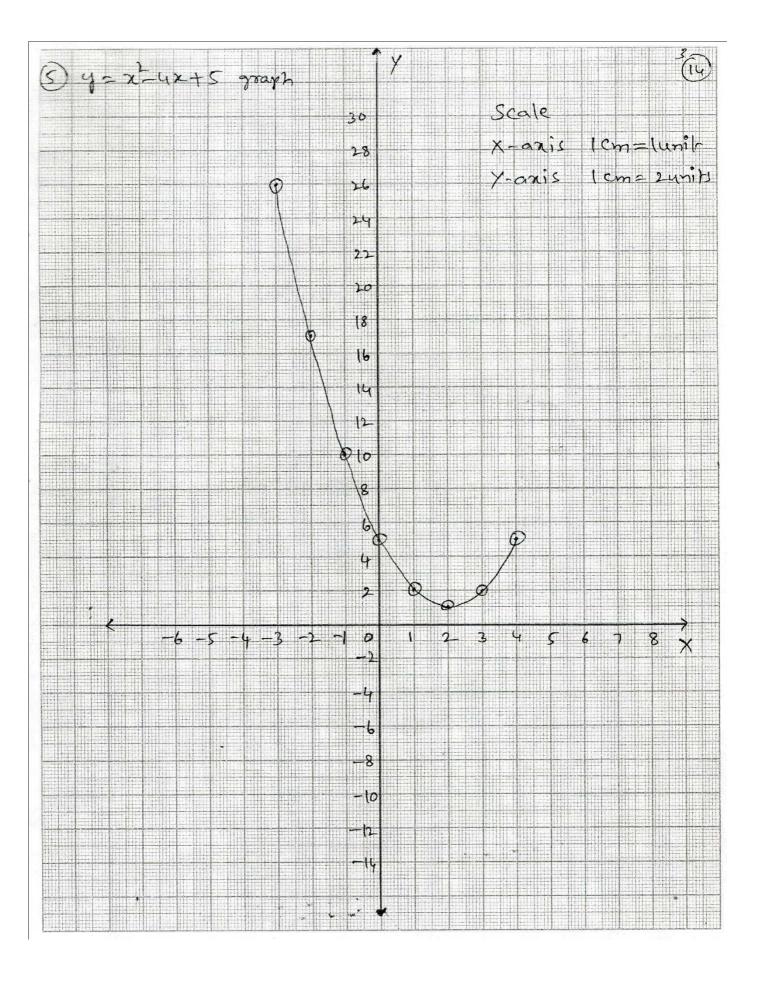
A

The point (-3,26), (-2,17), (-1,10), (0,5), (1,2), (2,1), (3,2) and (4,5) are plotted on the graph paper on a suitable scale and drawn a smooth free hand curve passing through these points.

The curve thus obtained represents the graph of the polynomial $y = x^2-4x+5$

The curve does not intersect the x-axis.

: There are no zeroes of the polynomial $y = x^2 - 4x + 5$



(6) Draw the graph of the polynomial $f(x) = x^3-4x$ and find zeroes. Verify the

zeros Of the polynomial.

Solution: Let $y = x^3 - 4x$

The following table gives the values of y for various of x.

X	-3	-2	-1	0	1	2	3
$\mathbf{y} = \mathbf{x}^3 - 4\mathbf{x}$	-15	0	3	0	-3	0	15
(x , y)	(-3, -15)	(-2,0)	(-1,3)	(0,0)	(1,-3)	(2,0)	(3,15)

The points (-3,15), (-2,0), (-1,3), (0,0), (1,-3), (2,0) and (3,15) are plotted on the graph paper on a suitable scale and drawn a smooth free hand curve passing through these points.

The curve thus obtained represents the graph of the polynomial $y = x^3-4x$.

The curve touches x-axis at (-2,0), (0,0), (2,0) .The x- coordinate of this points are the zero of the polynomial $y = x^3-4x$. Thus -2, 0, 2, are the zeroes of the polynomial.

Verification:

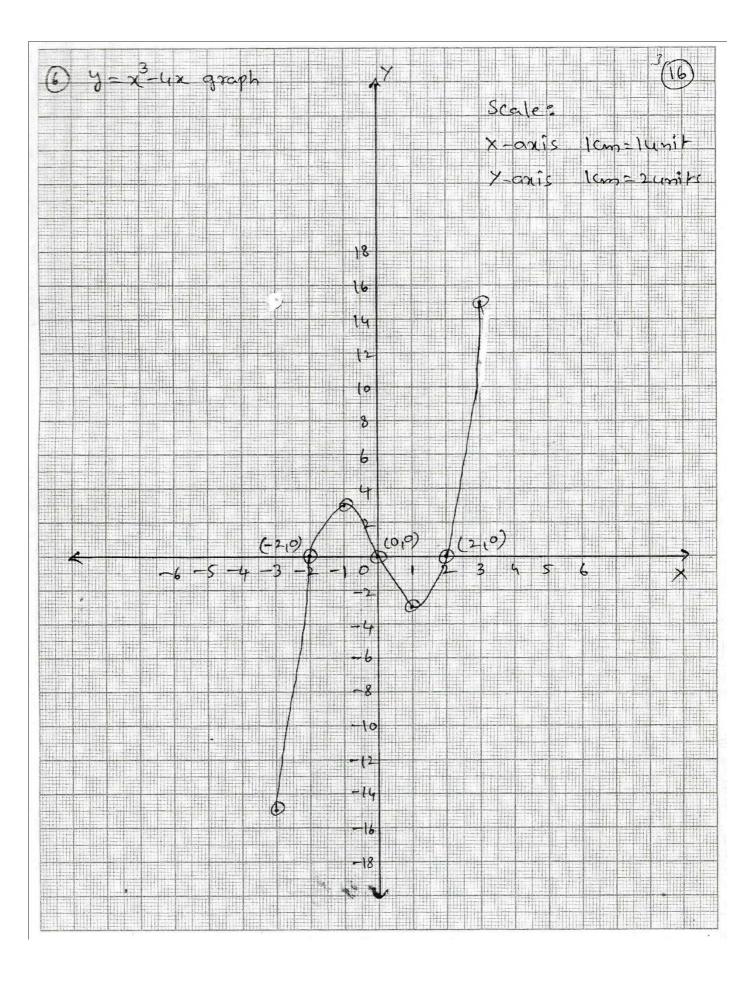
To find zeroes of x^3-4x

$$x^{3}-4x = 0 \implies x(x^{2}-4) = 0$$

$$\implies x(x-2)(x+2) = 0$$

$$\implies x = 0 \text{ or } x - 2 = 0 \text{ or } x + 2 = 0$$

$$\implies x = 0 \text{ or } 2 \text{ or } -2 \text{ are the zeroes.}$$



Essay Questions

(1) Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

(I).
$$x^2-2x-8$$
 (ii). $6x^2-3-7x$

Solution: (I) Given polynomial x^2-2x-8 = $x^2-4x+2x-8$ = x(x-4)+2(x-4)= (x-4)(x+2)For zeroes of the polynomial, the value of $x^2-2x-8 = 0$

$$(x-4) (x+2) = 0$$

 $x-4 = 0 \text{ or } x+2 = 0$
 $x = 4 \text{ or } x = -2$

: The zeroes of x^2 -2x-8 are -2 and 4.

We observe that

Sum of the zeroes = -2+4 = 2 = -(-2)

-(coefficient of x)coefficient of x^2

Product of the zeroes = $(-2)\times 4 = -8 = \frac{8}{1} = \frac{\cos \tan t \text{ term}}{\operatorname{coefficient of } x}$

(ii). Given polynomial $6x^2-3-7x$

$$= 6x^{2}-7x-3$$
$$= 6x^{2}-9x+2x-3$$
$$= 3x(2x-3)+1(2x-3)$$
$$= (2x-3)(3x+1)$$

For zeroes of the polynomial, the value of $6x^2-3-7x = 0$ are

$$(2x-3)(3x+1) = 0$$

 $2x-3=0$ or $3x+1=0$
 $x = \frac{3}{2}$ or $x = \frac{1}{3}$

$$\therefore$$
 The zeroes of $6x^2-3-7x = 0$ are and $\frac{1}{3}$

We observe that

Sum of the zeroes =
$$\frac{3}{2} + (-\frac{1}{3}) = \frac{9-2}{6} = \frac{7}{6}$$

= $\frac{-(-7)}{6} = \frac{-(\text{coefficient of } x)}{\text{coefficient of } x^2}$

Product of the zeroes $=(\frac{3}{2})(-\frac{1}{3}) = -\frac{1}{2} = -\frac{3}{6} = \frac{\text{constant term}}{\text{coefficient of } x^2}$

(2) Verify that 1, -1 and -3 are the zeroes of the cubic polynomial x^3+3x^2-x-3 and

verify the relationship between zeroes and the coefficients.

Solution: Comparing the given polynomial with ax^3+bx^2+cx+d ,

We get a = 1, b = 3, c = -1, d = -3Let $p(x) = x^3 + 3x^2 - x - 3$ $P(1) = 1^3 + 3(1)^2 - 1 - 3 = 1 + 3 - 1 + 3 = 0$

 \therefore P(1) = 0 \Rightarrow 1 is a zero of the polynomial p(x)

$$P(-1) = (-1)^3 + 3(-1)^2 + (-1) - 3 = -1 + 3 + 1 - 3 = 0$$

 \therefore p(-1) = 0 \Rightarrow -1 is a zero of the polynomial p(x)

$$p(-3) = (-3)^3 + 3(-3)^2 - (-3) = -27 + 27 + 3 - 3 = 0$$

 $\therefore P(-3) = 0 \implies '-3 \text{ 'is a zero of the polynomial } p(x)$ $\therefore 1, -1, \text{ and } -3 \text{ are the zeroes of } x^3 + 3x^2 - x - 3.$

So, we take
$$\alpha = 1$$
, $\beta = -1$ $\gamma = -3$
 $\alpha + \beta + \gamma = 1 + (-1) + (-3) = -3 = \frac{-3}{1} = \frac{-b}{a} = \frac{-(\text{coefficient of } x^2)}{\text{coefficient of } x^3}$

$$\alpha\beta + \beta\gamma + \gamma\alpha = (1)(-1) + (-1)(-3) + (3)(1) = -1 + 3 - 3 = -1$$

$$=\frac{-1}{1}=\frac{c}{a}=\frac{\text{Coefficient of } x}{\text{Coefficient of } x^{3}}$$

$$\alpha\beta\gamma = (1)(-1)(-3) = \frac{-(-3)}{1} = \frac{-(\cos\tan t \text{ term})}{\text{coefficient of } x^3}$$

(3) If the zeroes of the polynomial x^2+px+q are double in value to the zeroes of

$2x^2$ -5x-3, find the values of 'p' and 'q'.

Solution: Given polynomial $2x^2-5x-3$

To find the zeroes of the polynomial, we take

$$2x^{2}-5x-3 = 0$$

$$2x^{2}-6x+x-3 = 0$$

$$2x(x-3) + 1(x-3) = 0$$

$$(x-3) (2x+1) = 0$$

$$\Rightarrow x-3 = 0 \quad \text{or} \quad 2x+1 = 0$$

$$\Rightarrow x-3 = 0 \quad \text{or} \quad 2x+1 = 0$$

$$\Rightarrow x = 3 \quad \text{or} \quad x = -\frac{1}{2}$$

 \therefore zeroes of the polynomial x²+px+q are double in the value to the zeroes of 2x²-5x-3

i.e. . 2(3) and 2 (
$$-\frac{1}{2}$$
)
 \Rightarrow 6 and -1

 \therefore The zeroes of $2x^2$ -5x-3 are 3, $\frac{1}{2}$

Sum of the zeroes = 6+(-1) = 5

$$\Rightarrow \quad \frac{-p}{1} = 5 \qquad (\because \text{ sum of the zeroes} = \frac{-(\text{coefficient of } x)}{\text{coefficient of } x^2} = \frac{-p}{1}$$

p = -5

Product of the zeros = (6)(-1) = -6

 $\frac{q}{1} = -6$ (:: Product of the zeroes $=\frac{constant term}{coefficient of x^2} = \frac{q}{1}$

 \therefore The values of p and q are -5, -6

(4). If α and β are the zeroes of the polynomial $6y^2-7y+2$, find a quadratic polynomial whose zeroes are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$

Solution: The given polynomial is

$$6y^2 - 7y + 2$$

Comparing with ay^2+by+c , we get a=6, b=-7, c=2

and, a product of zeroes = $\alpha\beta = \frac{c}{a} = \frac{2}{6} = \frac{1}{3}$

$$\alpha\beta = \frac{1}{3} \dots > (2)$$

For a quadratic polynomial whose zeroes are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$

Sum of zeroes =
$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{\frac{7}{6}}{\frac{1}{3}}$$
 (:: Form (1)&(2))

$$=\frac{7}{2}$$

Product of zeroes $= \frac{1}{\alpha} \cdot \frac{1}{\beta} = \frac{1}{\alpha\beta} = \frac{1}{(\frac{1}{3})}$ (:: From(2))

:. The required quadratic polynomial is

K{x² -
$$(\frac{1}{\alpha} + \frac{1}{\beta})x + (\frac{1}{\alpha} \cdot \frac{1}{\beta})$$
}, where k is real.

$$K(x^2 - \frac{7}{2}x + 3)$$
, Kisreal.

(5) If α and β are the zeroes of a quadratic polynomial such that $\alpha + \beta = 24$ and $\alpha - \beta = 8$, find quadratic polynomial having α and β as its zeroes. Verify the relationship between the zeroes and the coefficient of the polynomial.

Solution: α and β are the zeroes of a quadratic polynomial.

$$\alpha + \beta = 24$$
>(1)
 $\alpha - \beta = 8$ >(2)

Adding (1) + (2) we get $2\alpha = 32 \implies \alpha = 16$

Subtraction (1) & (2) we get $2\beta = 16 \implies \beta = 8$

The quadratic polynomial having α and β as its zeroes is $k\{x^2-(\alpha+\beta)x+\alpha\beta\}$, where k is real.

$$\Rightarrow K\{x^2 - (16+8)x + (16)(8)\}, k \text{ is a real}$$
$$\Rightarrow K\{x^2 - 24x + 128\}, k \text{ is a real}$$
$$\Rightarrow K x^2 - 24kx + 128k, k \text{ is real}$$

Comparing with ax^2+bx+c , we get a = k, b = -24k, c = 128k

Sum of the zeroes $= -\frac{b}{a} = \frac{24k}{k} = 24 = \alpha + \beta$

Product of the zeroes =
$$\frac{c}{a} = \frac{128k}{k} = 128 = \alpha\beta$$

Hence, the relationship between the zeroes and the coefficients is verified.

(6) Find a cubic polynomial with the sum, sum of product of its zeroes taken two at a time , and product of its zeroes as 2, -7, -14 respectively.

Solution: Let α , β and γ are zeroes of the cubic polynomial

Given
$$\alpha + \beta + \gamma = 2$$

 $\alpha\beta + \beta\gamma + \gamma\alpha = -7$
 $\alpha\beta\gamma = -14$

Cubic polynomial whose zeroes are α , β and γ is

$$\Rightarrow x^{3} - (\alpha + \beta + \gamma)x^{2} + (\alpha\beta + \beta\gamma + \gamma\alpha)x - \alpha\beta\gamma$$
$$\Rightarrow x^{3} - 2x^{2} + (-7)x - (-14)$$
$$\Rightarrow x^{3} - 2x^{2} - 7x + 14$$

: Required cubic polynomial is $x^3-2x^2-7x+14$

Divide x^4-3x^2+4x+5 , by x^2+1-x , and verify the division algorithm. (7)

Dividend **Solution:**

$$= x^{4} - 3x^{2} + 4x + 5$$

= x⁴ + 0x³ - 3x² + 4x + 5

Divisor = $x^2 - x + 1$

First term quotient

 x^4 x^2

 $\frac{\mathbf{x}}{\mathbf{x}} = \mathbf{x}$

Х

 $x^{2}-x+1$) $x^{4}+0x^{3}-3x^{2}+4x+5$ ($x^{2}+x-3$ $x^4 - x^3 + x^2$ (-) (+) (-)

$$(1)^{-} (2)^{-} x^{3} - 4x^{2} + 4x$$

$$x^{3} - x^{2} + x$$

$$(-)^{-} (+)^{-} (-)^{-} - 3x^{2} + 3x + 5$$

$$- 3x^{2} + 3x - 3$$

$$(+)^{-} (-)^{-} (+)^{-}$$

third term of quotient

sec ond term of quotient

$$=\frac{-3x^2}{x}=-3$$

We stop here since degree of the remainder is less than the degree of $(x^2 + x - 3)$ the divisor.

8

So, quotient $= x^2 + x - 3$, remainder = 8

Verification:

(Divisor x Quotient)+ Remainder
=
$$(x^2-x+1)(x^2+x-3)+8$$

= $x^4+x^3-3x^2-x^3-x^2+3x+x^2+x-3+8$
= $x^4 - 3x^2+4x+5$ = dividend

- \therefore Dividend = (Divisor × quotient) + Remainder
 - : The division algorithm is verified.

(8) Obtain all other zeroes of $3x^4+6x^3-2x^2-10x-5$, if two of its zeroes $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$ are

Solution: Since, two zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$

Therefore,

$$(x - \sqrt{\frac{5}{3}}) (x + \sqrt{\frac{5}{3}}) = x^2 - \frac{5}{3}$$
 is a factor of the given polynomial,

Now, we apply the division algorithm to the given polynomial and $x^2 - \frac{5}{2}$

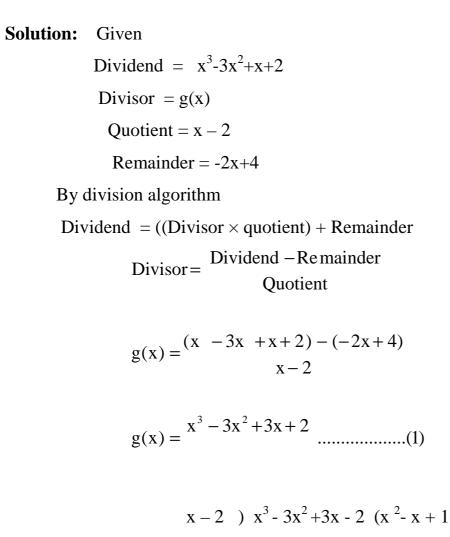
 $x^{2} - \frac{5}{3}) 3x^{4} + 6x^{3} - 2x^{2} - 10x - 5 (3x^{2} + 6x + 3)$ $3x^{4} + 0x^{3} - 5x^{2}$ (-) (+) $6x^{3} + 3x^{2} - 10x$ (-) (+) $3x^{2} - 5$ $3x^{2} - 5$ (-) (+) 0

So, $3x^4 + 6x^3 - 2x^2 - 10x - 5 = (x^2 - \frac{5}{3}) (3x^2 + 6x + 3)$ Now $3x^2 + 6x + 3 = 3(x^2 + 2x + 1) = 3(x + 1)^2$

So, its zeros are -1, and -1

 \therefore The other zeroes of the given fourth degree polynomial are -1 and -1.

(9) On division x³-3x²+x+2 by a polynomial g(x), the quotient and remainder were x- 2 and -2x+4, respectively. Find g(x).



From equation (1)

$$g(x) = \frac{x^3 - 3x^2 + 3x - 2}{x - 2} = x^2 - x + 1$$

(10) Check by division whether $x^2 - 2$ is a factor of $x^4 + x^3 + x^2 - 2x - 3$

Solution:

Dividend =
$$x^4 + x^3 + x^2 - 2x - 3$$

Divisor = $x^2 - 2$

$$\begin{array}{c} x^{2}-2 \) \ x^{4}+x^{3}+x^{2}-2x -3 \ (x^{2}+x+3) \\ x^{4}-2x^{2} \\ \hline (-) \ (+) \\ x^{3}+3x^{2}-2x \\ x^{3} \ -2x \\ \hline (-) \ (+) \\ 3x^{2}-3 \\ 3x^{2}-6 \\ (-) \ (+) \\ 3\end{array}$$

Since, remainder = 3 ($\neq 0$)

 \therefore x²-2 is a not a factor of x⁴ + x³ + x² - 2x - 3

Short Answer Question

(1) If $P(t) = t^3 - 1$, find the value of P(1), P(-1), P(0), P(2), p(-2)

Solution:
$$P(t) = t^{3} - 1$$

 $P(1) = 1^{3} - 1 = 1 - 1 = 0$
 $P(-1) = (-1)^{3} - 1 = -1 - 1 = -2$
 $P(0) = 0^{3} - 1 = -1$
 $P(2) = 2^{3} - 1 = 8 - 1 = 7$
 $P(-2) = (-2)^{3} - 1 = -8 - 1 = -9$

(2) Check whether 3 and -2 are the zeros of the polynomial P(x) when $p(x) = x^2-x-6$

Solution: Given $p(x) = x^2 - x - 6$ $P(x) = 3^2 - 3 - 6 = 9 - 3 - 6 = 0$ $P(x) = (-2)^2 - (-2) - 6$ = 4 + 2 - 6 = 0Since p(3) = 0, P(-2) = 03 and -2 are zeroes of $p(x) = x^2 - x - 6$

(3) Find the number of zeroes of the given polynomials. And also find their values

(i). P(x) = 2x+1 (ii) $q(x) = y^2 - 1$ (iii) $r(z) = z^3$

Solution:

(i). P(x) = 2x+1 is a linear polynomial. It has only one zero.

To find zeroes.

Let p(x) = 02x + 1 = 0

$$\therefore x = -\frac{1}{2}$$

The zero of the given polynomial is $-\frac{1}{2}$

(ii) $q(y) = y^2 - 1$ is a quadratic polynomial. It has at most two zeroes.

To find zeroes , Let
$$q(y) = 0$$

 $y^2 - 1 = 0$
 $(y+1)(y-1) = 0$
 $y = -1$ or $y = 1$ — —

 \therefore The zeroes of the polynomial are -1 and 1

(iii) $r(z) = z^3$ is a cubic polynomial .It has at most there zeroes .

Let
$$r(z) = 0$$

 $z^3 = 0$
 $z = 0$

 \therefore The zero of the polynomial is '0'.

(4). Find the quadratic polynomial , with the zeroes $3 \text{ and } -\sqrt{3}$ Solution: Given

The zeroes of polynomial $\alpha = 3$, $\beta = /3$ $\alpha + \beta = -\sqrt{3} + \sqrt{3} = 0$

$$\alpha\beta = (-\sqrt{3})(\sqrt{3}) = -3$$

The quadratic polynomial with zeroes α and β is given by

K{x² - (
$$\alpha$$
 + β)x + α β }, K(\neq 0) is real
K(x² - 0x-3} k (\neq 0) is real

 $K(x^2 - 3)$ K ($\neq 0$) is real.

(5) If the Sum and product of the zeroes of the polynomial $ax^2 - 5x + c$ is equal to 10 each, find the values of 'a' and 'c'.

Solution: Given polynomial $ax^2 - 5x + c$ Let the zeroes of the polynomial are α , β Given $\alpha + \beta = 10$ (1) And $\alpha \beta = 10$ (2)

We know that

$$\alpha + \beta = -\frac{b}{a} = \frac{-(-5)}{a} = \frac{5}{a} = 10$$
 (from (1))

$$a = \frac{5}{10} = \frac{1}{2}$$

$$\alpha\beta = \frac{c}{a} \quad \dots > 10 = \frac{c}{2}$$

$$C = 5$$

$$\therefore$$
 a = $\frac{1}{2}$, c = 5

(6) If the Sum of the zeroes of the polynomial $P(x) = (a+1) x^2 + (2a+3)x+(3a+4)$, then find the product of its zeroes.

Solution: Given polynomial $P(x) = (a+1) x^2 + (2a+3)x + (3a+4)$ Compare with ax^2+bx+c ,

we get
$$a = a+1$$

 $b = 2a+3$
 $c = 3a+4$

$$\alpha + \beta = -\frac{b}{a}$$

$$-1 = \frac{-(2a+3)}{a+1}$$

$$\Rightarrow -a - 1 = -2a - 3$$

$$\Rightarrow -a + 2a = -3 + 1$$

$$\Rightarrow a = -2$$

Product of the zeroes $= \alpha \beta = \frac{c}{a} = \frac{3a+4}{a+1}$

$$=\frac{3(-2)+4}{-2+1}=\frac{-2}{-1}=2$$

(7) On dividing the polynomial $2x^3+4x^2+5x+7$ by a polynomial g(x), the quotient and the remainder were 2x and 7 – 5x respectively. Find g(x)

Solution: Given Dividend = $2x^3+4x^2+5x+7$ Divisor = g(x)Quotient = 2xRemainder = 7-5xBy division algorithm Dividend = (divisor × quotient) + remainder

Divisor = <u>dividend – remainder</u> quotient

$$g(x) = \frac{(2x^{3} + 4x^{2} + 5x + 7) - (7 - 5x)}{2x}$$
$$= \frac{2x^{3} + 4x^{2} + 5x + 7 - 7 + 5x}{2x}$$
$$= \frac{2x^{3} + 4x^{2} + 10x}{2x}$$
$$= \frac{2x(x^{2} + 2x + 5)}{2x}$$
$$g(x) = x^{2} + 2x + 5$$

(8) If $p(x) = x^{3}-2x^{2}+kx+5$ is divided by (x - 2), the remainder is 11. Find K.

Solution:

$$\begin{array}{c} x-2 \) \ x^{3} - 2x^{2} + kx + 5 \ (x^{2} + k) \\ x^{3} - 2x^{2} \\ (-) \ (+) \\ kx + 5 \\ kx - 2k \\ (-) \ (+) \\ 2k + 5 \end{array}$$

Remainder = 2k+5 = 11 (given)

$$k = \frac{11-5}{2} = 3$$

Very Short Answer Questions

(1) Write a quadratic and cubic polynomials in variable x in the general form. Solution:

The general form of the a quadratic polynomial is ax^2+bx+c , $a \neq 0$ The general form of a cubic polynomial is ax^3+bx^2+cx+d , $a \neq 0$

(2) If $p(x) = 5x^7 - 6x^5 + 7x - 6$, find (Problem solving) (i) Co – efficient of x^5 (ii) degree of p(x)

Solution:

Given polynomial $p(x) = 5x^7 - 6x^5 + 7x - 6$

- (i) Co efficient of x^5 is '-6'
- (ii) Degree of p(x) is '7'

(3) Check whether - 2 and 2 are the zeroes of the polynomial x⁴ - 16 (Reasoning proof)

Solution:
$$p(x) = x^4 - 16$$

 $P(2) = 2^4 - 16 = 16 - 16 = 0$
 $P(-2) = (-2)^4 - 16 = 16 - 16 = 0$

Since P(2) = 0 and P(-2) = 0

 \therefore -2, 2 are the zeroes of given polynomial

(4) Find the quadratic polynomial whose sum and product of its zeroes

respectively $\sqrt{2}$, $\frac{1}{3}$ (Communication)

Solution: Given

Sum of the zeroes $\alpha + \beta = -\frac{1}{2}$ >(1)

Product of the zeroes $\alpha \beta = \frac{1}{3}$ >(2)

The quadratic polynomial with α and β as zeroes is K{x²-(α + β)x + $\alpha\beta$ }, where k($\neq 0$) is a real number.

$$K\{x^2 - \sqrt{2}x + \frac{1}{3}\}, K(\neq 0) \text{ is a real number}$$
 (From (1) & (2))

 $k(\frac{3x^2-3\sqrt{2}x+1}{3})$, $k(\neq 0)$ is real number

We can put different values of 'k'

 \therefore when k = 3, we get $3x^2 - 3$ 2x + 1

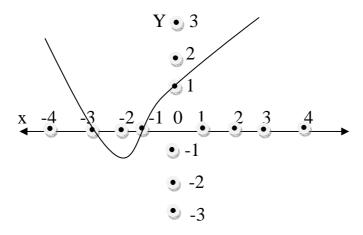
(5) If the sum of the zeroes of the quadratic polynomial $f(x) = kx^2-3x+5$ is 1. Write the value of K.

Solution: Given polynomial $f(x) = kx^2 - 3x + 5$ Sum of the zeroes $\alpha + \beta = \frac{-b}{a}$

$$1 = \frac{-(-3)}{k} \qquad (\because \text{ Given } \alpha + \beta = 1)$$

K = 3

(6) From the graph find the zeroes of the polynomial.



Solution: The zeroes of the polynomial are precisely the x - co-ordinates of the point . Where the curve intersects the x- axis

- \therefore From the graph the zeroes are -3 and -1.
- (7) If a –b , a a + b are zeroes of the polynomial $f(x) = 2x^3 6x^2 + 5x 7$, write the value of the a.

Solution: Let α , β , γ are the zeroes of cubic polynomial

$$ax^{3}+bx^{2}+cx+d$$
 then $\alpha + \beta + \gamma = \frac{-b}{a}$

$$a - b + a + a + b = \frac{-(-6)}{2}$$

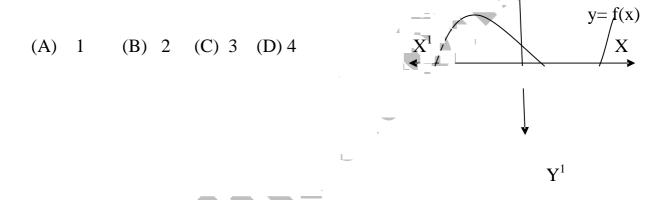
$$3a = 3$$

 $a = 1$

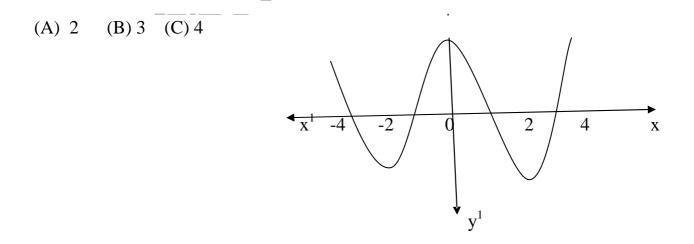
Objective Type Questions

- (1) The graph of the polynomial f(x) = 3x 7 is a straight line which intersects the x- axis at exactly one point namely []
 - (A) $(\frac{-7}{3}, 0)$ (B) $(0, \frac{-7}{3})$ (C) $(\frac{7}{3}, 0)$ (D) $(\frac{7}{3}, \frac{-7}{3})$

(2) In the given figure , the number of zeros of the polynomial f(x) are[]



(3) The number of zeros lying between -2 and 2 of the polynomial f(x) whose graph is given figure is [



(4) Which of the follow	wing is not a qu	adratic polynomial	•••••	[]
(A) $X^2 + 3x + 4$		(B) x^2-3x+4			
(C) $6+(x^2-4x)$		(D) (x-3) (x+	3)- $(x^2 + 7x)$		
(5) The degree of the	constant polyn	omial is		[]
0	(B) 1	(C) 2	(D) 3		
(6) The zero of $p(x)$	$= \mathbf{a}\mathbf{x} - \mathbf{b}$ is			[]
(A) a	(B) b	(C) ,	(D) b a		
(7) Which of the foll	owing is not a z	zero of the polynomia	l x ³ -6x ² +11x-6?	[]
(A) 1	(B) 2	(C) 3	(D) 0		
(8) If α and β are the z	zeroes of the po	lynomial 3x ² +5x+2,th	nen the value of α -	+β+α	βis
				[]
(A) - 1	(B) – 2	(C) 1	(D) 4		
(9) If the sum of the	e zeroes of the p	polynomial $p(x) = (k^2 - k^2)$	$(14)x^2 - 2x - 12$ is 1,	then	k.
takes the value(s)	•••••			[]
(A) /14	(B) -14	(C) 2	(D) ± 4		
(10) If α , β are zeroes	of $p(x) = x^2 - 5x +$	-k and $\alpha - \beta = 1$ then	the value of k is	[]

(A) 4 (B) - 6 (C) 2 (D) 5

(11) If α , β , γ are the zeros of the polynomial $ax^3 + bx^2 + cx + d$, then the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$ Is [] (A) $\frac{c}{d}$ (B) $\frac{-c}{d}$ (C) $\frac{b}{d}$ (D) $\frac{-b}{d}$

(12) If the product of the two zeros of the polynomial x³-6x²+11x-6 is 2 is then the third zero is

- (A) 1 (B) 2 (C) 3 (D) 4
- (13) The zeros of the polynomial is x^3-x^2 are []
 - (A) 0, 0, 1 (B) 0, 1, 1 (C) 1, 1, 1 (D) 0, 0, 0
- (14) If the zeroes of the polynomial x³-3x²+x+1 are , a and ar then the value of a is
 - (A) 1 (B) -1 (C) 2 (D) 3
- (15) If α and β are the zeroes of the quadratic polynomial 9x²-1, find the value of $\alpha^2 + \beta^2$ []

(A)
$$\frac{1}{9}$$
 (B) $\frac{2}{9}$ (C) $\frac{1}{3}$ (D) $\frac{2}{3}$

(16) If α , β , γ are the zeroes of the polynomial $x^3 + px^2 + qx + r$ then find [

$$\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha}$$
(A) $\frac{p}{r}$ (b) $-\frac{p}{r}$ (C) $\frac{q}{r}$ (D) $\frac{-q}{r}$

]

(17) The number to be added to the polynomial x²-5x+4, so that 3 is the zero of the polynomial is

(a) 2 (B) -2 (C)
$$0$$
 (D) 3

(18). If α , and β are zeroes of $p(x) = 2x^2 - x - 6$ then the value of $\alpha^{-1} + \beta^{-1}$ is []

- (A) $\frac{1}{6}$ (B) $\frac{-1}{6}$ (C) $\frac{1}{2}$ (D) $\frac{-1}{3}$
- (19). What is the coefficient of the first term of the quotient when $3x^3+x^2+2x+5$ is Divided by $1+2x+x^2$
 - (A) 1 (B) 2 (C) 3 (D) 5

(20) If the divisor is x^2 and quotient is x while the remainder 1, then the dividend is []

(A) x^2 (B) x (C) x^3 (D) x^{3+1}

 1.C
 2. C
 3. A
 4. D
 5. A
 6. D
 7. D
 8. A
 9. D
 10. C

 11. B
 12. C
 13. A
 14. B
 15. B
 16. A
 17. A
 18. B
 19. C
 20. D

Fill in the Blanks

- (1) The maximum number of zeroes that a polynomial of degree 3 can have is 3
- (2) The number of zeroes that the polynomial $f(x) = (x-2)^2 + 4$ can have is 2
- (3) The graph of the equation $y = ax^2 + bx + c$ is an upward parabola, If (a > 0)
- (4) If the graph of a polynomial does not intersect the x axis, then the number zeroes of the polynomial is 0
- (5) The degree of a biquadratic polynomial is 4
- (6) The degree of the polynomial $7\mu^6$ $\frac{3}{2}\mu^4$ +4 μ + μ -8 is 6
- (7) The values of $p(x) = x^3 3x 4$ at x = -1 is -2
- (8) The polynomial whose whose zeroes are -5 and 4 is x^2+x-20
- (9) If -1 is a zeroes of the polynomial $f(x) = x^2 7x 8$ then other zero is 8
- (10) If the product of the zeroes of the polynomial $ax^3 6x^2 + 11x 6$ is 6, then the
- (11) A cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes are 2, -7 and -14 respectively, is $x^3-2x^2-7x+14$
- (12) For the polynomial $2x^3-5x^2-14x+8$, find the sum of the products of zeroes, taken two at a time is <u>-7</u>

(13) If the zeroes of the quadratic polynomial ax^2+bx+c are reciprocal to each other,

Then the value of c is \underline{a}

(14) What can be the degree of the remainder at most when a biquadrate polynomial is divided by a quadratic polynomial is $\underline{1}$