
CBSE Test Paper 05 Chapter 11 Construction

- 1. To construct a triangle similar to a given ΔABC with its sides $\frac{5}{4}$ of the corresponding sides of ΔABC , first draw ray AX such that $\angle BAX$ is an acute angle and X is on the opposite side of C with respect to AB. Then locate the points A_1, A_2, A_3, \ldots on AX at equal distances and next step is to join: (1)
 - a. A_5C
 - b. A_5B
 - c. A_4C
 - d. A_4B
- 2. To divide a line segment LM in the ratio a : b, where a and b are positive integers, draw a ray LX so that $\angle MLX$ is an acute angle and then mark points on the ray LX at equal distances such that the minimum number of these points is : (1)
 - a. greater of a and b
 - b. a + b
 - c. ab
 - d. a + b 1
- 3. A draw a pair of tangents to a circle which are inclined to each other at an angle of 65⁰, it is required to draw tangents at the end points of those two radii of the circle, the angle between which is : **(1)**
 - a. 115⁰
 - b. 105⁰
 - c. 95⁰
 - d. 110⁰
- 4. To construct a triangle similar to a given with ΔABC its sides $\frac{4}{5}$ of the corresponding sides of the ΔABC , first draw a ray BX such that $\angle CBX$, is an acute angle and X lies on the opposite side of A with respect to BC. Then locate points B_1, B_2, B_3, B_4, B_5 on BX at equal distances and join B_5 to C. Now, next step is to draw a line parallel to B_5C and passing through: (1)
 - a. *B*₄

- b. B_5
- c. B_2
- d. B_3
- 5. To divide a line segment AP in the ration 2 : 9, a ray AX is drawn first such that $\angle BAX$ is an acute angle and then points $A_1, A_2, A_3...$ are located of equal distances on the ray AX and the points P is joined to (1)
 - a. A_{12}
 - b. A_{11}
 - c. A_8
 - d. A_3
- 6. To construct a triangle similar to given ΔABC with its sides $\frac{3}{7}$ of the corresponding sides of ΔABC , first draw a ray BX such that $\angle CBX$ is an acute angle and X lies on the opposite side of A with respect to BC. Then locate points $B_{1,}B_{2,}B_{3,}$... on BX at equal distance and next step is to join: (1)
 - a. B_4 to C
 - b. B_4 to C
 - c. B_{10} to C
 - d. B_7 to C
- 7. To divide a line segment AB in the ratio 5 : 7, first a ray AX is drawn so that $\angle BAX$ is an acute angle and then at equal distances points are marked on the ray AX such that the minimum number of these points is: (1)
 - a. 11
 - b. 8
 - c. 10
 - d. 12
- 8. The construction of triangle, similar and smaller to a given triangle as per given scale factor x : y, is possible only when, (1)
 - a. x < y
 - b. Independent of scale factor
 - c. x > y
 - d. x = y
- 9. In the given figure, $\triangle BPQ$ is similar to $\triangle BCA$ with sides $\frac{x}{y}$ of the corresponding sides of $\triangle BCA$. Then, find the value of $\frac{x}{y}$. (1)

- 10. To divide a line segment AB in the ratio 5 : 7, first AX is drawn, so that $\angle BAX$ is an acute angle and then at equal distance, points are marked on the ray AX, find the minimum number of these points. (1)
- 11. In the given figure of construction $riangle QST \sim riangle QRP$, then find QT : QP. (1)

- 12. Give three sides such that construction of a triangle is possible. (1)
- 13. Draw a circle of radius 4 cm. Draw two tangents to the circle inclined at an angle of 60° (2)
- 14. Draw a circle of radius 3 cm. Take a point P outside the circle at a distance of 5.8 cm from its centre. Draw tangents from P to the circle. **(2)**
- 15. Draw a line segment of length 8 cm and divide it in the ratio 3 : 2. Measure the two parts. **(2)**
- 16. Construct the tangents to a circle from a point outside it, where O is centre of the circle and a point A outside it. **(2)**
- 17. Construct a riangle ABC in which AB = 6.5cm, $riangle B=60^\circ$ and BC = 5.5 cm. Also construct a

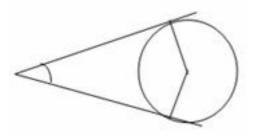
triangle ABC similar to riangle ABC whose each side is $rac{3}{2}$ times the corresponding side of the riangle ABC. (3)

- Draw a circle of radius 6 cm. Draw a tangent to this circle making an angle of 30° with a line passing through the centre. (3)
- 19. Construct an isosceles triangle whose base is 8 cm and altitude 4 cm. Draw its incircle and measure its radius. Write steps of construction also. **(3)**
- 20. Let ABC be a right triangle in which AB = 3 cm, BC = 4 cm and $\angle B$ = 90°. BD is the perpendicular from B on AC. The circle through B, C, D is drawn. Construct the tangents from A to this circle. (3)

CBSE Test Paper 05 Chapter 11 Construction

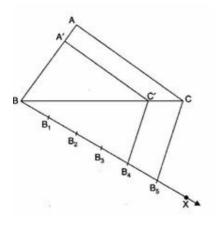
Solution

1. d. A_4B

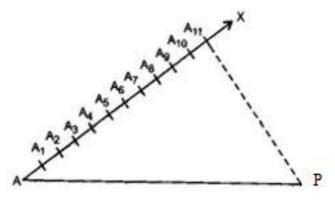

Explanation: According to the question, the next step is to join Then we have to draw a parallel side of A_4B given with A_5 . which cuts extended BC at C'.now $\triangle ABC'$ is the required triangle

2. b. a + b

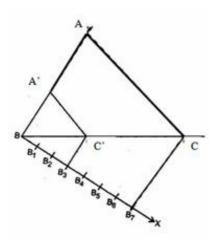
Explanation: According to the question, the minimum number of those points which are to be marked should be (Numerator + Denominator) i.e., a + b


3. a. 115⁰

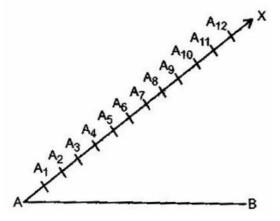
Explanation: According to the question, the angle between the radii should be $180^{\circ} - 65^{\circ} = 115^{\circ}$


4. a. B_4

Explanation: According to the question, the next step is to draw a line parallel to B_5C and passing through B_4

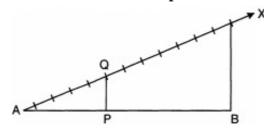

5. b. A_{11}

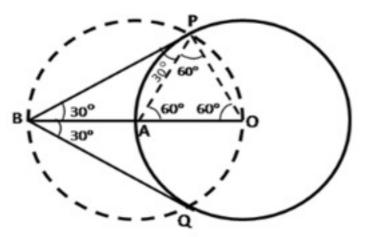
Explanation: According to the question, the points P is joined to A_{11} .


6. d. B_7 to C

Explanation: According to the question, the next step is to join B₇ to C.

7. d. 12

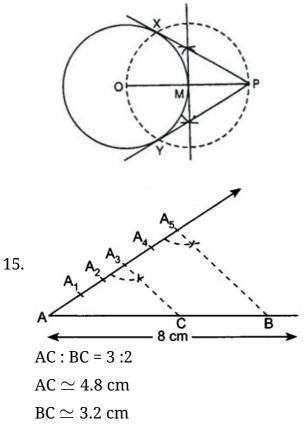

Explanation: According to the question, the minimum number of those points which are to be marked should be (Numerator + Denominator) i.e., 5 + 7 = 12.

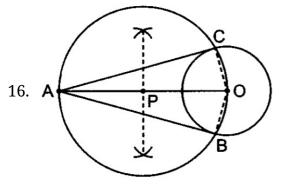

8. a. x < y

Explanation: The construction of triangle, similar and smaller to a given triangle as per given scale factor x : y, is possible only when

- 9. In the given figure, $\triangle BPQ$ is similar to $\triangle BCA$ with sides $\frac{x}{y}$ of the corresponding sides of $\triangle BCA$. $\frac{x}{y} = \frac{3}{5}$
- 10. We have to divide a line segment AB in the ratio 5 : 7, first AX is drawn, so that $\angle BAX$ is an acute angle and then at equal distance, points are marked on the ray AX, Minimum number of points marked on AX = 5 + 7 = 12

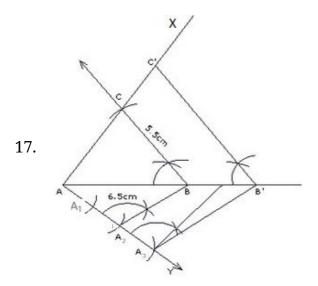
- 11. $\triangle QST \sim \triangle QRP$ $\frac{QT}{QP} = \frac{2}{3}$ QT : QP = 2 : 3
- 12. To construct a triangle sum of two sides of a triangle must be greater than largest side. Let the sides are 2.5 cm, 4.5 cm and 6.5 cm
- 13. Steps of construction:
 - 1. Take a point O on the plane of the paper and draw a circle of radius OA = 4cm.
 - 2. Produce OA to B such that OA = AB = 4cm
 - 3. Draw a circle with centre at A and radius AB.
 - 4. Suppose it cuts the circle drawn in step (i) at P and Q.
 - 5. Join BP and BQ to get the desired tangets.




Justification:

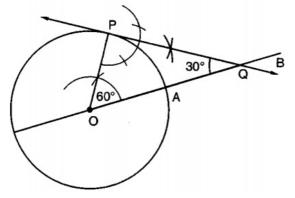
In \triangle OAP, OA = OP = 4 cm.. (radii of the same circle) Also, AO = 4cm ..(Radius of the circle with centre A) \triangle OAP is equilateral. \angle PAO = 60° $\therefore \angle$ BAP = 120° In BAP, we have BA = AP and \angle BAP = 120° $\therefore \angle$ ABP = \angle APB = 30° Similary, we can get \angle ABQ = 30° $\therefore \angle$ PBQ = 60°

- 14. Steps of construction:
 - i. Draw a circle of radius 3 cm, whose centre is O.
 - ii. Take a point P at a distance of 5.8 cm from its centre.
 - iii. Join OP.
 - iv. Draw perpendicular bisector of OP which cuts OP in M.
 - v. With M as a centre and radius MO, draw a circle which cuts the given circle at X and Y.
 - vi. Join PX and PY.


PX and PY are the required tangents.

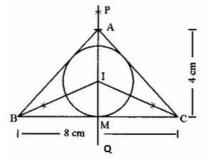
Steps of Construction:

- i. Let O be the center and A is any point outside it. Join AO and bisect it. Let P be the mid-point of AO.
- ii. Taking P as centre and PO as radius, draw a circle. Let it intersect the given circle at the points B and C.
- iii. Join AB and AC. AB and AC are the required tangents as shown in given figure. Note: AC \perp OC; AB \perp OB


Steps of construction:

- i. Draw a line segment AB = 6.5cm.
- ii. At B construct $\angle ABX = 60^{\circ}$.
- iii. With B as centre and radius BC = 5.5cm draw an arc intersecting BX at C.
- iv. Join AC. Triangle so obtained is the required triangle.
- v. Construct an acute angle \angle BAY at A on opposite side of vertex C of $\triangle ABC$.
- vi. Locate 3 points A_1 , A_2 , A_3 on AY such that $AA_1 = A_1A_2 = A_2A_3$.
- vii. Join A₂ to B and draw the line through A₃ parallel to A₂B intersecting the extended

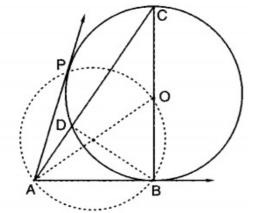
line segment AB at B'.


- viii. Draw a line through B' parallel to BC intersecting the extended line segment AC at C'.
 - ix. $\triangle AB'C'$ so obtained is the required triangle
- 18. Steps of construction

Step I Draw a circle with centre O and radius 3 cm.

Step II Draw a radius OA of this circle and produce it to B. **Step III** Construct an angle $\angle AOP$ equal to the complement of 30° i.e. equal to 60°. **Step IV** Draw perpendicular to OP at P which intersects OA produced at Q Clearly, PQ is the desired tangent such at $\angle OQP = 30^\circ$

- 19. Steps of construction:
 - i. Draw BC = 8 cm.
 - ii. Draw PQ the perpendicular bisector of BC intersecting BC at M.
 - iii. Taking M as centre and MA as radius equal to the altitude of the triangle of 4 cm intersect PQ at A.
 - iv. Join A to B and C.
 - v. Draw bisectors of $\angle B$ and $\angle C$ intersecting AM at I.
 - vi. Taking I as centre and IM as radius draw an incircle which is the required circle.
 - vii. Measure radius IM which is equal to 1.7 cm approximately.



20. We follow the following steps.

Step I Draw a triangle ABC

Step II Construct perpendicular BD from B on AC.

Step III Draw a circle with BC as a diameter. This circle will pass through D.

Step III Let O be the mid-point of BC. Join AO.

Step IV Draw a circle with AO as diameter. This circle cuts the circle drawn in step II at B and P.

Step V Join AP. AP and AB are desired tangents drawn from A to the circle passing through B, C and D.