2. Fractions

Questions Pg-24

1. Question

Explain each of the patterns below and write the general principle in algebra.

$$\frac{1^2+1}{1+1} = 1 \qquad \frac{2^2+2}{2+2} = 1\frac{1}{2} \qquad \frac{3^2+3}{3+3} = 2 \qquad \frac{4^2+4}{4+4} = 2\frac{1}{2}$$

Answer

$$\frac{1^2 + 1}{1 + 1} = \frac{1(1 + 1)}{1(1 + 1)} = \frac{2}{2} = 1$$
$$\frac{2^2 + 2}{2 + 2} = \frac{2(2 + 1)}{2(1 + 1)} = \frac{3}{2} = 1\frac{1}{2}$$
$$\frac{3^2 + 3}{3 + 3} = \frac{3(3 + 1)}{3(1 + 1)} = \frac{4}{2} = 2$$
$$\frac{4^2 + 4}{4 + 4} = \frac{4(4 + 1)}{4(1 + 1)} = \frac{5}{2} = 2\frac{1}{2}$$

Generally, we can write,

 $\frac{n^2 + n}{n + n} = \frac{n(n + 1)}{n(1 + 1)} = \frac{n + 1}{2}$ where, n can be any natural number.

2. Question

Explain each of the patterns below and write the general principle in algebra.

$$\frac{2^2 - 2}{2 - 1} = 2 \qquad \frac{3^2 - 3}{3 - 1} = 3 \qquad \frac{4^2 - 4}{4 - 1} = 4 \qquad \frac{5^2 - 5}{5 - 1} = 5$$

Answer

$$\frac{2^2 - 2}{2 - 1} = \frac{2(2 - 1)}{(2 - 1)} = 2$$
$$\frac{3^2 - 3}{3 - 1} = \frac{3(3 - 1)}{(3 - 1)} = 3$$
$$\frac{4^2 - 4}{4 - 1} = \frac{4(4 - 1)}{(4 - 1)} = 4$$
$$\frac{5^2 - 5}{5 - 1} = \frac{5(5 - 1)}{(5 - 1)} = 5$$

Generally, we can write,

.

 $\frac{n^2-n}{n-1}\,=\,\frac{n(n-1)}{(n-1)}\,=\,n$ where, n can be any natural number.

3. Question

Explain each of the patterns below and write the general principle in algebra.

$$\frac{2^2 - 1}{2 - 1} = 3 \qquad \frac{3^2 - 1}{3 - 1} = 4 \qquad \frac{4^2 - 1}{4 - 1} = 5 \qquad \frac{5^2 - 1}{5 - 1} = 6$$

Answer

using identity, $a^2 - b^2 = (a + b)(a-b)$, in the numerator.

$$\frac{2^2 - 1}{2 - 1} = \frac{(2 + 1)(2 - 1)}{(2 - 1)} = 3$$
$$\frac{3^2 - 1}{3 - 1} = \frac{(3 + 1)(3 - 1)}{(3 - 1)} = 4$$
$$\frac{4^2 - 1}{4 - 1} = \frac{(4 + 1)(4 - 1)}{(4 - 1)} = 5$$
$$\frac{5^2 - 1}{5 - 1} = \frac{(5 + 1)(5 - 1)}{(5 - 1)} = 6$$

Generally, we can write,

 $\frac{n^2-1}{n-1} = \frac{(n+1)(n-1)}{(n-1)} = (n + 1) \text{ where, n can be any natural number.}$

Questions Pg-28

1. Question

Look at this method of making a pair of equal fraction from another such pair.

 $\frac{1}{3} = \frac{2}{6} \to \frac{1}{2} = \frac{3}{6}$ $\frac{3}{4} = \frac{9}{12} \to \frac{3}{9} = \frac{4}{12}$

i) Check some more pairs of equal fractions. By interchanging the numerator of one with the denominator of the other, do you get equal fractions?

ii) Write this as a general principle using algebra and explain it.

Answer

i) $\frac{1}{4} = \frac{2}{8} \rightarrow \frac{1}{2} = \frac{4}{8}$ $\frac{2}{3} = \frac{10}{15} \rightarrow \frac{2}{10} = \frac{3}{15}$ $\frac{2}{5} = \frac{4}{10} \rightarrow \frac{2}{4} = \frac{5}{10}$

So, in all these examples we get equal fractions.

ii) General principle using algebra,

We know that,

When $\frac{a}{b} = \frac{p}{q}$ then, aq = pb(1)

Now, on dividing both sides by pq, we get

 $\frac{aq}{pq} = \frac{pb}{pq}$ $\Rightarrow \frac{a}{p} = \frac{b}{q}$

2. Question

Look at these calculations:

$$\frac{1}{2} = \frac{2}{4} \qquad \frac{(3 \times 1) + (4 \times 2)}{(3 \times 2) + (4 \times 4)} = \frac{11}{22} = \frac{1}{2}$$
$$\frac{1}{2} = \frac{3}{6} \qquad \frac{(3 \times 1) + (4 \times 3)}{(3 \times 2) + (4 \times 6)} = \frac{15}{30} = \frac{1}{2}$$

i) Take some more fractions equal to $\frac{1}{2}$ and form fractions by multiplying the numerators and denominators by 3 and 4 and adding.

Do you get fractions equal to $\frac{1}{2}$?

ii) Take some other pairs of equal fractions and check this

iii) In all these, instead of multiplying numerators and denominators by 3 and 4, multiply by some other numbers and add. Do you still get equal fractions?

iv) Explain why, if the fraction $\frac{p}{q}$ is equal to the fraction $\frac{a}{b}$, then for any pair of natural numbers m and n, the fractions $\frac{ma + np}{mb + nq}$ is equal to $\frac{a}{b}$.

Answer

i) $\frac{1}{2} = \frac{4}{8} \frac{(3 \times 1) + (4 \times 4)}{(3 \times 2) + (4 \times 8)} = \frac{19}{38} = \frac{1}{2}$ $\frac{1}{2} = \frac{5}{10} \frac{(3 \times 1) + (4 \times 5)}{(3 \times 2) + (4 \times 10)} = \frac{23}{46} = \frac{1}{2}$

We observe that, in these cases also, we obtain $\frac{1}{2}$

ii) $\frac{2}{3} = \frac{4}{6} \frac{(3 \times 2) + (4 \times 4)}{(3 \times 3) + (4 \times 6)} = \frac{22}{33} = \frac{2}{3}$ $\frac{2}{3} = \frac{10}{15} \frac{(3 \times 2) + (4 \times 10)}{(3 \times 3) + (4 \times 15)} = \frac{46}{69} = \frac{2}{3}$ $\frac{2}{3} = \frac{6}{9} \frac{(3 \times 2) + (4 \times 6)}{(3 \times 3) + (4 \times 9)} = \frac{30}{45} = \frac{2}{3}$

We observe in these cases also, we obtain equal fraction, $\frac{2}{2}$

iii) let us now take 2 and 5 instead of 3 and 4 in part(ii).

 $\frac{2}{3} = \frac{4}{6} \frac{(2 \times 2) + (5 \times 4)}{(2 \times 3) + (5 \times 6)} = \frac{24}{36} = \frac{2}{3}$ $\frac{2}{3} = \frac{10}{15} \frac{(2 \times 2) + (5 \times 10)}{(2 \times 3) + (5 \times 15)} = \frac{54}{81} = \frac{2}{3}$ $\frac{2}{3} = \frac{6}{9} \frac{(2 \times 2) + (5 \times 6)}{(2 \times 3) + (5 \times 9)} = \frac{34}{51} = \frac{2}{3}$

So, again we get equal fractions.

iv) We know that,

When $\frac{a}{b} = \frac{p}{q}$ then, aq = pb(1)

 $\therefore \text{ for } \frac{\text{ma} + np}{\text{mb} + nq} = \frac{a}{b}$ (ma + np) × b = a × (mb + nq) →this must be satisfied $\therefore (\text{ma} + np) × b = \text{mab} + npb(2)$ And a × (mb + nq) = mab + nqa = mab + npbusing (1) $\therefore a × (mb + nq) = mab + npb(3)$ Since, (2) is equal to (3) $\therefore \frac{\text{ma} + np}{\text{mb} + nq} = \frac{a}{b}$

3. Question

The sum of the square of a number and one, divided by the difference of 1 from the square gives $\frac{221}{220}$. What

is the number?

Answer

Let the number be x.

$$\Rightarrow \frac{x^{2} + 1}{x^{2} - 1} = \frac{221}{220}$$

$$\Rightarrow 220(x^{2} + 1) = 221(x^{2} - 1)$$

$$\Rightarrow 220x^{2} + 220 = 221x^{2} - 221$$

$$\Rightarrow x^{2} = 441$$

$$\Rightarrow x = \pm 21$$

 \therefore The required number can be 21 or -21.

4. Question

The sum of a number and its square is one and a half times their difference. What is the number?

Answer

Let the number be x.

As per the condition,

$$\Rightarrow x + x^{2} = \frac{1}{2}(x - x^{2})$$
$$\Rightarrow 2x + 2x^{2} = x - x^{2}$$
$$\Rightarrow 3x^{2} + x = 0$$
$$\Rightarrow 3x\left(x + \frac{1}{3}\right) = 0$$
$$\Rightarrow x = 0 \text{ or } x = -\frac{1}{3}$$

Questions Pg-34

1. Question

Find the larger of each pair of fractions below, without multiplication:

i)
$$\frac{13}{17}$$
, $\frac{14}{15}$ ii) $\frac{13}{17}$, $\frac{11}{18}$ iii) $\frac{14}{15}$, $\frac{11}{18}$

Answer

We know that,

When the denominators of the fractions are equal ,

then the fraction having greater numerator is larger than

the other. Example: $\frac{3}{4} > \frac{2}{4}$

Also, When the numerators of the fractions are equal ,

then the fraction having smaller denominator is larger

than the other. Example: $\frac{6}{4} > \frac{6}{5}$

on combining these two statements we can conclude that,

The fraction having larger numerator and also smaller denominator is greater.

Now,

```
i) Among \frac{13}{17} and \frac{14}{15}
```

since, 14 is greater than 13 and 15 is smaller than 17.

 $\frac{13}{17} < \frac{14}{15}$

ii) Among $\frac{13}{17}$ and $\frac{11}{18}$

since, 13 is greater than 11 and 17 is smaller than 18.

 $\therefore \frac{13}{17} > \frac{11}{18}$

iii) Among $\frac{14}{15}$ and $\frac{11}{18}$

since, 14 is greater than 11 and 15 is smaller than 18.

 $\frac{11}{18} < \frac{14}{15}$

2. Question

Find the larger of each pair of fractions below, without pen and paper.

. 3 8	3 6	101 98
i) $\frac{3}{5}, \frac{8}{13}$	$\frac{11}{5}, \frac{1}{11}$	iii) $\frac{101}{102}, \frac{98}{99}$

Answer

We know that,

 $\frac{a}{b} < \frac{p}{q}$ when aq<pb

 $3 \times 13 = 39$

 $5 \times 8 = 40$

Since, 39<40

 $\frac{3}{5} < \frac{8}{13}$ ii) $\frac{3}{5}, \frac{6}{11}$ We know that,

 $\frac{a}{b} > \frac{p}{q} \text{ when aq>pb}$ $3 \times 11 = 33$ $5 \times 6 = 30$ Since, 33>30 $\therefore \frac{3}{5} > \frac{6}{11}$ iii) $\frac{98}{99}$, $\frac{101}{102}$ $\ln \frac{98}{99} \text{ adding 3 to both numerator and denominator gives <math>\frac{101}{102} \text{ and since, } 98 < 99$ $\therefore \frac{98}{99} < \frac{101}{102} \dots \text{ using, } \frac{a}{b} < \frac{a+n}{b+n} \text{, when } b > a$

3. Question

i) Find three fractions larger than $\frac{1}{3}$ and smaller than $\frac{1}{2}$.

ii) Find three such fractions, all with the denominator 24.

iii) Find three such fractions, all with the numerator 4.

Answer

i) we know that, when $\frac{a}{b} < \frac{p}{q}$ then $\frac{a}{b} < \frac{a+p}{b+q} < \frac{p}{q}$ (1) 1 1

$$\overline{3} < \overline{2}$$

$$\Rightarrow \frac{1}{3} < \frac{2}{5} < \frac{1}{2}$$
.....using (1)
$$\Rightarrow \frac{1}{3} < \frac{3}{8} < \frac{2}{5} < \frac{3}{7} < \frac{1}{2}$$
....using (1)

 $\therefore \frac{3}{8}, \frac{2}{5}, \frac{3}{7}$ are the required fractions.

ii) Lets make the denominator of $\frac{1}{3}$ and $\frac{1}{2}$ equal to 24.

 $\frac{1 \times 8}{3 \times 8} = \frac{8}{24}$ $\frac{(1 \times 12)}{2 \times 12} = \frac{12}{24}$

Now, we can say that,

 $\frac{8}{24} < \frac{9}{24} < \frac{10}{24} < \frac{11}{24} < \frac{12}{24}$ $\therefore \frac{9}{24}, \frac{10}{24} \text{ and } \frac{11}{24} \text{ are the required fractions.}$ iii) Lets make the numerator of $\frac{1}{3}$ and $\frac{1}{2}$ equal to 4. $\frac{1 \times 4}{3 \times 4} = \frac{4}{12}$

 $\frac{1 \times 4}{3 \times 4} = \frac{4}{12}$ $\frac{1 \times 4}{2 \times 4} = \frac{4}{8}$

Now, we can say that,

 $\frac{4}{12} < \frac{4}{11} < \frac{4}{10} < \frac{4}{9} < \frac{4}{8}$

 $\therefore \frac{4}{11}, \frac{4}{10}, \frac{4}{9}$ are the required fractions.

4. Question

From a fraction, a new fraction is formed by adding the same natural number to both the numerator and the denominator.

i) In what kind of fractions does this give a larger fraction?

ii) In what kind of fractions does this give a smaller fraction?

Answer

Let the fraction be $\frac{a}{b}$

Now, fraction obtained by adding a natural number n to both numerator and denominator $=\frac{a+n}{b+n}$

```
i) \frac{a}{b} < \frac{a+n}{b+n} when b>a

Proof: \frac{a}{b} < \frac{a+n}{b+n}

\Rightarrow a(b+n) < (a+n)b

\Rightarrow ab + an < ab + bn

\Rightarrow an < bn

\Rightarrow a < b

ii) \frac{a}{b} > \frac{a+n}{b+n} when b<a

Proof: \frac{a}{b} > \frac{a+n}{b+n}

\Rightarrow a(b+n) > (a+n)b

\Rightarrow ab + an > ab + bn

\Rightarrow an > bn

\Rightarrow a > b
```

Questions Pg-38

1. Question

Find the general principle of each of the patterns below and explain it using algebra.

$$1 - \frac{1}{3} = \frac{2}{3} = \frac{2}{2^2 - 1}; \frac{1}{2} - \frac{1}{4} = \frac{2}{8} = \frac{2}{3^2 - 1};$$
$$\frac{1}{3} - \frac{1}{5} = \frac{2}{15} = \frac{2}{4^2 - 1}.$$

Answer

On observing the pattern we get general formula as,

 $\frac{1}{n-1} - \frac{1}{n+1} = \frac{2}{n^2 - 1}$

To prove this algebraically,

We know that $\frac{a}{b} - \frac{p}{q} = \frac{aq-bp}{bq}$ so, $\frac{1}{n-1} - \frac{1}{n+1} = \frac{(n+1) - (n-1)}{(n-1)(n+1)}$ $= \frac{n+1-n+1}{n^2-1}$

Using, $(a-b)(a + b) = a^2 - b^2$

$$=\frac{2}{n^2-1}$$

Hence, proved!

2. Question

Find the general principle of each of the patterns below and explain it using algebra.

$$\frac{1}{2} + \frac{2}{1} = \frac{5}{2} = 2 + \frac{1}{1 \times 2}; \frac{2}{3} + \frac{3}{2} = \frac{13}{6}$$
$$= 2 + \frac{1}{2 \times 3}; \frac{3}{4} + \frac{4}{3} = \frac{25}{12} = 2 + \frac{1}{3 \times 4}$$

Answer

On observing the pattern we get general formula as

$$\frac{n}{n+1} + \frac{n+1}{n} = 2 + \frac{1}{n(n+1)}$$

To prove this algebraically,

We know that
$$\frac{a}{b} - \frac{p}{q} = \frac{aq-bp}{bq}$$
 so,
 $\frac{n}{n+1} + \frac{n+1}{n} = \frac{n^2 + (n+1)^2}{n(n+1)}$
 $= \frac{n^2 + n^2 + 2n + 1}{n(n+1)}$
 $= \frac{2n^2 + 2n + 1}{n(n+1)}$
 $= \frac{2n(n+1) + 1}{n(n+1)}$
 $= \frac{2n(n+1) + 1}{n(n+1)} + \frac{1}{n(n+1)}$
 $= 2 + \frac{1}{n(n+1)}$

Hence, proved!

3. Question

Find the general principle of each of the patterns below and explain it using algebra.

$$\frac{1}{2} + \frac{1}{3} = \frac{5}{6} \qquad \frac{3}{2} - \frac{2}{3} = \frac{5}{6}$$
$$\frac{1}{3} + \frac{1}{4} = \frac{7}{12} \qquad \frac{4}{3} - \frac{3}{4} = \frac{7}{12}$$
$$\frac{1}{4} + \frac{1}{5} = \frac{9}{20} \qquad \frac{5}{4} - \frac{4}{5} = \frac{9}{20}$$

Answer

On observing the pattern we get general formula as

 $\frac{1}{n} + \frac{1}{n+1} = \frac{(n+1)+n}{n(n+1)} = \frac{n+1}{n} - \frac{n}{n+1}$

To prove this algebraically,

We know that $\frac{a}{b} - \frac{p}{q} = \frac{aq-bp}{bq}$ so, $\frac{1}{n} + \frac{1}{n+1} = \frac{(n+1)+n}{n(n+1)}$(1) $\frac{n+1}{n} - \frac{n}{n+1} = \frac{(n+1)^2 - n^2}{n(n+1)}$ $= \frac{(n+1-n)(n+1+n)}{n(n+1)}$ \therefore using, $a^2-b^2 = (a-b)(a+b)$ n+1+n

From (1) and (2), we get

 $\frac{1}{n} + \frac{1}{n+1} = \frac{(n+1)+n}{n(n+1)} = \frac{n+1}{n} - \frac{n}{n+1}$

Hence, proved!

4. Question

Find the general principle of each of the patterns below and explain it using algebra.

$$4\frac{1}{4} - 1\frac{1}{2} = 3 \qquad 4\frac{1}{2} - 1\frac{1}{2} = 3$$

$$5\frac{1}{3} - 1\frac{1}{3} = 4 \qquad 5\frac{1}{3} - 1\frac{1}{3} = 4$$

$$6\frac{1}{4} - 1\frac{1}{4} = 5 \qquad 6\frac{1}{4} - 1\frac{1}{4} = 5$$

Answer

On observing the pattern we get general formula as

$$(n + 2)\frac{1}{n} - 1\frac{1}{n} = (n + 1) = (n + 2)\frac{1}{n} \div 1\frac{1}{n}$$

To prove this algebraically,

We know that
$$\frac{a}{b} - \frac{p}{q} = \frac{aq-bp}{bq}$$
 so,
 $(n + 2)\frac{1}{n} - 1\frac{1}{n} = \frac{n(n + 2) + 1}{n} - \frac{n + 1}{n}$
 $= \frac{n^2 + 2n + 1}{n} - \frac{n + 1}{n}$
 $= \frac{n^2 + 2n + 1 - n - 1}{n}$
 $= \frac{n^2 + n}{n}$
 $= \frac{n(n + 1)}{n} = (n + 1) \dots (1)$
 $(n + 2)\frac{1}{n} \div 1\frac{1}{n} = \frac{n(n + 2) + 1}{n} \div \frac{n + 1}{n}$
 $= \frac{n(n + 2) + 1}{n} \times \frac{n}{n + 1}$
 $= \frac{n^2 + 2n + 1}{n + 1}$
 $= \frac{(n + 1)^2}{n + 1} = (n + 1) \dots (2)$

From (1) and (2), we get

$$(n + 2)\frac{1}{n} - 1\frac{1}{n} = (n + 1) = (n + 2)\frac{1}{n} \div 1\frac{1}{n}$$

Hence, proved!

Questions Pg-45

1. Question

Find the fraction of denominator is a power of 10 equal to each of the fractions below, and then write their decimal forms:

i)
$$\frac{1}{50}$$
 ii) $\frac{3}{40}$ iii) $\frac{5}{16}$ iv) $\frac{12}{625}$

Answer

i)
$$\frac{1}{50} = \frac{1 \times 2}{5 \times 10 \times 2} = \frac{2}{100} = 0.02$$

ii) $\frac{3}{40} = \frac{3 \times 5^2}{2^2 \times 10 \times 5^2} = \frac{75}{1000} = 0.075$
iii) $\frac{5}{16} = \frac{5 \times 5^4}{2^4 \times 5^4} = \frac{3125}{10000} = 0.3125$
iv) $\frac{12}{625} = \frac{12 \times 2^4}{5^4 \times 2^4} = \frac{192}{10000} = 0.0192$

2 A. Question

Find fractions of denominators which are power of 10, getting closer and closer to each of the fractions below and then write their decimal form.

 $\frac{5}{3}$

Answer

$$\frac{5}{6} = \frac{1}{10} \times \frac{50}{6}$$
$$= \frac{1}{10} \left(8 + \frac{2}{6} \right) = \frac{8}{10} + \frac{1}{30}$$
$$\Rightarrow \frac{5}{6} - \frac{8}{10} = \frac{1}{30}$$

Thus, we get a fraction of denominator 10, close to $\frac{5}{6}$

Now, to get a fraction of denominator 100, close to $\frac{5}{6}$,

start with

$$\frac{5}{6} = \frac{1}{100} \times \frac{500}{6}$$
$$= \frac{1}{100} \left(83 + \frac{2}{6} \right) = \frac{83}{100} + \frac{1}{300}$$
$$\Rightarrow \frac{5}{6} - \frac{83}{100} = \frac{1}{300}$$

Similarly, we can have

$$\frac{5}{6} = \frac{1}{1000} \times \frac{5000}{6}$$
$$= \frac{1}{1000} \left(833 + \frac{2}{6} \right) = \frac{833}{1000} + \frac{1}{3000}$$
$$\Rightarrow \frac{5}{6} - \frac{833}{1000} = \frac{1}{3000}$$

We observe that, the fractions $\frac{8}{10}$, $\frac{83}{100}$, $\frac{833}{1000}$ get closer and closer to $\frac{5}{6}$

 \therefore we can write,

$$\frac{5}{6} = 0.833$$

2 B. Question

Find fractions of denominators which are power of 10, getting closer and closer to each of the fractions below and then write their decimal form.

 $\frac{3}{11}$

11

Answer

$$\frac{3}{11} = \frac{1}{10} \times \frac{30}{11}$$
$$= \frac{1}{10} \left(2 + \frac{8}{11}\right) = \frac{2}{10} + \frac{8}{110}$$
$$\Rightarrow \frac{3}{11} - \frac{2}{10} = \frac{8}{110}$$

Thus, we get a fraction of denominator 10, close to $\frac{3}{11}$

Now, to get a fraction of denominator 100, close to $\frac{3}{11}$,

start with

$$\frac{3}{11} = \frac{1}{100} \times \frac{300}{11}$$
$$= \frac{1}{100} \left(27 + \frac{3}{11} \right) = \frac{27}{100} + \frac{3}{1100}$$
$$\Rightarrow \frac{3}{11} - \frac{27}{100} = \frac{3}{1100}$$

Similarly, we can have

$$\frac{3}{11} = \frac{1}{1000} \times \frac{3000}{11}$$
$$= \frac{1}{1000} \left(272 + \frac{8}{11} \right) = \frac{272}{1000} + \frac{8}{11000}$$
$$\Rightarrow \frac{3}{11} - \frac{272}{1000} = \frac{8}{11000}$$

We observe that, the fractions $\frac{2}{10}$, $\frac{27}{100}$, $\frac{272}{1000}$ get closer and closer to $\frac{3}{11}$

∴ we can write,

$$\frac{3}{11} = 0.272$$

2 C. Question

Find fractions of denominators which are power of 10, getting closer and closer to each of the fractions below and then write their decimal form.

23

11

Answer

$$\frac{23}{11} = \frac{1}{10} \times \frac{230}{11}$$
$$= \frac{1}{10} \left(20 + \frac{10}{11} \right) = \frac{20}{10} + \frac{1}{11}$$
$$\Rightarrow \frac{23}{11} - \frac{20}{10} = \frac{1}{11}$$

Thus, we get a fraction of denominator 10, close to $\frac{23}{11}$

Now, to get a fraction of denominator 100, close to $\frac{23}{11}$,

start with

$$\frac{23}{11} = \frac{1}{100} \times \frac{2300}{11}$$
$$= \frac{1}{100} \left(209 + \frac{1}{11} \right) = \frac{209}{100} + \frac{1}{1100}$$
$$\Rightarrow \frac{23}{11} - \frac{209}{100} = \frac{1}{1100}$$

Similarly, we can have

 $\frac{23}{11} = \frac{1}{1000} \times \frac{23000}{11}$

$$= \frac{1}{1000} \left(2090 + \frac{10}{11} \right) = \frac{2090}{1000} + \frac{1}{1100}$$

$$\Rightarrow \frac{23}{11} - \frac{2090}{1000} = \frac{1}{1100}$$

$$\frac{23}{11} = \frac{1}{10000} \times \frac{230000}{11}$$

$$= \frac{1}{10000} \left(20909 + \frac{1}{11} \right) = \frac{20909}{10000} + \frac{1}{110000}$$

$$\Rightarrow \frac{23}{11} - \frac{20909}{10000} = \frac{1}{110000}$$
We observe that, the fractions $\frac{20}{10}, \frac{209}{1000}, \frac{20909}{10000}$ get closer and closer to $\frac{23}{11}$
 \therefore we can write,

22

 $\frac{23}{11} = 2.0909$

2 D. Question

Find fractions of denominators which are power of 10, getting closer and closer to each of the fractions below and then write their decimal form.

 $\frac{1}{13}$

Answer

$$\frac{1}{13} = \frac{1}{10} \times \frac{10}{13}$$
$$= \frac{1}{10} \left(0 + \frac{10}{13} \right) = \frac{0}{10} + \frac{1}{13}$$
$$\Rightarrow \frac{1}{13} - \frac{0}{10} = \frac{1}{13}$$

Thus, we get a fraction of denominator 10, close to $\frac{1}{13}$

Now, to get a fraction of denominator 100, close to $\frac{1}{13}$,

start with

$$\frac{1}{13} = \frac{1}{100} \times \frac{100}{13}$$
$$= \frac{1}{100} \left(7 + \frac{9}{13}\right) = \frac{7}{100} + \frac{9}{1300}$$
$$\Rightarrow \frac{1}{13} - \frac{7}{100} = \frac{9}{1300}$$

Similarly, we can have

$$\frac{1}{13} = \frac{1}{1000} \times \frac{1000}{13}$$
$$= \frac{1}{1000} \left(76 + \frac{12}{13}\right) = \frac{76}{1000} + \frac{12}{13000}$$
$$\Rightarrow \frac{5}{6} - \frac{76}{1000} = \frac{12}{13000}$$

We observe that, the fractions $\frac{0}{10}$, $\frac{7}{100}$, $\frac{76}{1000}$ get closer and closer to $\frac{1}{13}$

∴ we can write,

 $\frac{1}{13} = 0.076$

3. Question

i) Explain using algebra, that the fractions $\frac{1}{10}$, $\frac{11}{100}$, $\frac{111}{1000}$, ... gets closer and closer to $\frac{1}{9}$.

ii) Using the general principle above on single digit numbers, find the decimal forms of $\frac{2}{9}, \frac{4}{9}, \frac{5}{9}, \frac{7}{9}, \frac{8}{9}$ (why

$$\frac{2}{9}$$
 and $\frac{6}{9}$ are left out in this?)

iii) What can we say in general about those decimal forms in which a single digit repeats?

Answer

i) We can easily see that

 $\frac{1}{9} - \frac{1}{10} = \frac{1}{90}$ $\frac{1}{9} - \frac{11}{100} = \frac{1}{900}$ $\frac{1}{9} - \frac{111}{1000} = \frac{1}{9000}$ Since, $\frac{1}{9000} < \frac{1}{900} < \frac{1}{90}$ Thus, $\frac{1}{10}$, $\frac{11}{100}$, $\frac{111}{1000}$ get closer and closer to $\frac{1}{9}$ ii) From part (i), We can write $\frac{1}{9} = 0.111$ $\therefore \frac{2}{9} = 2 \times \frac{1}{9} = 0.222$ $\frac{4}{9} = 4 \times \frac{1}{9} = 0.444$ $\frac{5}{9} = 5 \times \frac{1}{9} = 0.555$ $\frac{7}{9} = 7 \times \frac{1}{9} = 0.777$ $\frac{8}{9} = 8 \times \frac{1}{9} = 0.888$

 $\frac{3}{a}$ and $\frac{6}{a}$ are excluded because they in these fractions numerator and denominator have common factors.

iii) The decimal forms in which a single digit repeat are generally those in which we get the same remainder after each step. These forms are called repeating or recurring decimal forms.