
Data strUctUre
Data structure represents the logical arrangement of data in com-
puter memory for easily accessing and maintenance.

LinkeD List
A linked list is a data structure that consists of a sequence of nodes,
each of which contains data fi eld and a reference (i.e., link) to next
node in sequence.

 • Generally node of linked list is represented as self-referential
structure.

 • The linked list elements are accessed with special pointer(s)
called head and tail.

Head

Data Link

TailCA B

 • The principal benefi t of a linked list over a conventional array
is that the list elements can easily be added or removed without
reallocation or reorganization of the entire structure because the
data items need not be stored contiguously in memory or on disk.

 • Linked lists allow insertion and removal of nodes at any point
in the list.

 • Finding a node that contains a given data, or locating the place
where a new node should be inserted may require scanning most
or all of the list elements.

 • The list element does not have to occupy contiguous memory.
 • Adding, insertion or deletion of list elements can be accom-

plished with the minimal disruption of neighbouring nodes.

sinGLe-LinkeD List
List in which each node contains only one link fi eld.

Node structure
struct
{
int ele;
struct node ∗ next;
};
typedef struct node Node;

Creating a linked list with two
nodes of type list node
Creating a linked list with 2 nodes
struct node
{
Int ele;
struct node ∗ next ;
};
typedef struct node Node ;
Node ∗ ptr1, ∗ ptr2;
ptr1 = getnode ();
ptr2 = getnode ();
if((ptr1) && (ptr2))
{
Printf(“No memory”);
exit(1);
}
Ptr1 → ele = 10;

Chapter 4

Linked Lists, Stacks and Queues

  Data structure

  Linked list

  Single-linked list

  Double-linked list

  Circular linked list

  Double circular-linked list

  Stack

  Queue

  Double-ended queue

  Circular queue

  Priority queue

  Array implementation

  Linked list implementation

  Linked list implementation of priority queue

LEARNING OBJECTIVES

3.48  |  Unit 3  •  Programming and Data Structures

Ptr1 → next = ptr2;
Ptr2 → ele = 20;
Ptr2 → next = NULL;
Head = ptr1;
the linked list appears as below

10 20 \

Head

Operations on SLL (single-linked list)
•• Insert at Head
•• Insert at Tail
•• Insert in Middle
•• Delete Head
•• Delete Tail
•• Delete Middle
•• Search
•• Display

Declare two special pointers called head and tail as follows:
Node ∗Head, ∗Tail;
Head = Tail = NULL;

Head or tail is NULL represents list is empty.
Steps for Insertion:

	 1.	 Allocate memory
	 2.	 Read data
	 3.	 Adjust references

Insert head element
	 1.	 void ins _ Head (int x)
	 2.	 {
	 3.	 Node ∗temp;
	 4.	 temp = (Node ∗) malloc(sizeof (Node));
	 5.	 temp → ele = x;
	 6.	 temp → next = Head;
	 7.	 Head = temp;
	 8.	 if (Tail = = NULL)
	 9.	 Tail = Head;
	 10	 }

•• Step 4 allocates memory
•• Step 5 read data
•• Steps from 6 to 9 adjust reference
•• ‘if ’ condition represents first insertion

Insert tail element
	 1.	 void ins_tail (int x)
	 2.	 {
	 3.	 Node ∗temp;
	 4.	 temp = (Node ∗) malloc (sizeof (Node));
	 5.	 temp → ele = x;
	 6.	 temp → next = NULL;
	 7.	 Tail = temp;
	 8.	 if (Head = = NULL)
	 9.	 Head = Tail;
	10.	 }

•• Step 4 allocates memory
•• Step 5 read data
•• Steps from 6 to 9 adjust reference
•• ‘if ’ condition represents first insertion

Insert in middle/random position of list
	 1.	 void ins _ mid (int n, int pos)
	 2.	 {
		 int i = 1;
	 3.	 Node ∗ temp, N, P; //N,P represent

previous //& next nodes
	 4.	 if (Head = = NULL)
	 5.	 {
	 6.	 ins _ head(n);
	 7.	 return;
	 8.	 }
	 9.	 temp = (Node ∗) malloc(sizeof(Node));
	10.	 temp → ele = n;
	11.	 P = head;
	12.	 while (i < pos -1)
	13.	 {
		 P = P → next;
		 i++;
		 }
	14.	 N = P → next;
	15.	 temp → next = N;
	16.	 P → next = temp;
	17.	 }

•• step 4 checks, whether the insertion is into an empty
list.

•• If list is empty, invokes ins–head() function.
•• If list is not empty, then step 9 allocates memory.
•• Step 10 reads data.
•• Steps from 11 to 14 make the reference to the previ-

ous and next nodes of new node to be inserted.
•• Steps 15 and 16 create the reference to new node

from previous node and from new node to next node.

Example 1:  Head = Tail = NULL
		 n = 5, P = NULL;
		 Here the list is empty. So,

5
Head

Tail

Example 2:

10 15 Head Tail5

Insert element (n) 20 at position(pos) 3.
In current list, element 5 is the first element, 10 is the sec-
ond and 15 is the third element.
To insert an element at pos = 3, the new node has to be
placed between elements 10 and 15.
Condition in step 4 is false so step 9 executes and allocates
memory.

Chapter 4  •  Linked Lists, Stacks and Queues  |  3.49

temp

On completion of step 10 –

temp

20

	 Step 11

10 15
Head

Tail5

p

	 Step 12, 13
	 While (i < pos – 1)
	 {
	 P = P → next;
	 i++;
	 }
	 i < pos
	 1 < 2
	 Condition true, so

10 15
Head

5

p

	 i becomes 2,
	 2 < 2 // condition false
Step 14 makes a reference to next of previous element.

10 15
Head

5

p

N

Tail

Steps 15 and 16 execute as follows:

10 15
Head

5

p N

Tail

temp

Step 16

Step 16

Step 15
20

Now the element 20 becomes the 3rd element in the list.

Deletion
•• Identify the node
•• Adjust the links, such that deallocation of that node does

not make the list as unconnected components.
•• Return/display element to delete.
•• Deallocate memory.

Delete head element
	 1.	 void del _ head()
	 2.	 {
	 3.	 int x;
		 Node * temp;
	 4.	 if (Head = = NULL)

	 5.	 {
	 6.	 printf("List empty");
	 7.	 return;
	 8.	 }
	 9.	 x = Head → ele;
	10.	 temp = Head;
	11.	 if (Head = = Tail)
	12.	 Head = Tail = NULL;
	13.	 else
	14.	 Head = Head → next;
	15.	 printf ("Deleted element "%d", x);
	16.	 free(temp);
	17.	 }
		 Step 4 	 –	 Checks for list empty
		 Step 9 	 –	 Reads element to delete
		 Step 10 	 –	 Head referred by temp pointer
		 Step 11 	 –	 Checks for last deletion
		 Step 14 	 –	� Moves the head pointer to next

element in the list
		 Step 15 	 –	 Displays element to delete
		 Step 16 	 –	 Deallocates memory

Delete tail element
	 1.	 void del _ tail()
	 2.	 {
	 3.	 int x;
	 4.	 Node * temp;
	 5.	 if (Head = = NULL)
	 6.	 {
	 7.	 printf("\n list empty")
	 8.	 return ;
	 9.	 }
	10.	 temp = Head;
	11.	 while(temp → next ! = Tail)
	12.	 temp = temp → next;
	13.	 x = Tail → ele;
	14.	 Tail = temp;
	15.	 temp = temp → next;
	16.	 Tail → next = NULL;
	17.	 printf("\n Deleted element : %d", x)
	18.	 free (temp);
	19.	 }
		 Step 4	  – Checks for list empty
		 Step 10, 11, 12 – �Move the temp pointer to last but one

node of the list
		 Step 13	 – Reads tail element to delete
		 Step 14	 – �Moves tail pointer to last but one

node
		 Step 15	 – �Moves the temp pointer to last node

of the list
		 Step 16	 – �Removes the reference from tail node

to temp node, i.e., tail node becomes
the last element

		 Step 17	 – Displays elements to delete
		 Step 18	 – Deallocate memory

3.50  |  Unit 3  •  Programming and Data Structures

Delete middle element
	 1.	 void del _ mid (int pos)
	 2.	 {
	 3.	 int i = 1, x;
	 4.	 Node * temp P, N;
	 5.	 if(Head = = NULL)
	 6.	 {
	 7.	 printf ("\n list empty")
	 8.	 return;
	 9.	 }
	10.	 P = head;
	11.	 while (i < pos -1)
	12.	 {
		 P = P → next;
		 i++ ;
		 }
	13.	 temp = P → next;
	14.	 N = temp → next;
	15.	 P → next = N;
	16.	 x = temp → ele;
	17.	 printf("\n Element to Delete %d", x);
	18.	 free(temp);
	19.	 }

		 Step 5	 – Checks for empty list
		 Step 10, 11, 12  – �Move previous pointer P to previous

node of node to delete.
		 Step 13	 – Temp points to node to delete
		 Step 14	 – N points to temp next
		 Step 15	 – Creates link from P to N
		 Steps 16, 17, 18 – Read and display elements to delete

and deallocate memory.

A B C

Node Node.next Node.next.next

A B C

Node Node.next Node.next.next

Linked list using dynamic variables
Node in the linked list contains data part that is ele and link
part which points to the next node, and some other external
pointer will be pointing to this as these take some storage,
a programmer when creating a list, should check with the
available storage. For this we make use of get node ()

Function which is defined as follows:
struct node
{
int ele
struct node ∗ next ;
};
typedef struct node Node;
Node getnode ()

{
Node ptr;
ptr = (Node ∗) malloc (size of (struct node)):
return (ptr);
}
If ptr returns NULL, then it is underflow (there is no avail-
able memory) otherwise, it returns start address of memory
location.

Search an element
	 1.	 void search (int x)
	 2.	 {
	 3.	 Node ∗ temp = head;
	 4.	 int c = 1;
	 5.	 while (temp! = NULL)
	 6.	 {
	 7.	 if (temp → ele = = x)
	 8.	 {
	 9.	 printf("\n Element found at % d”, c);
	10.	 break;
	11.	 }
	12.	 c++;
	13.	 }
	14.	 if (temp = = NULL)
	15.	 printf("\n search unsuccessful");
	16.	 }
		 Step 7 – �Checks temp data with search element.

Repeats this step until the element is
found or reaches the last node

		 Step 9 – �Displays the position of search element
in the list, if found

		 Step 14, 15 – �Represents search element not exists in
list

Display
	 1.	 void display ()
	 2.	 {
	 3.	 Node ∗temp = Head;
	 4.	 printf("\n list elements: ");
	 5.	 while (temp ! = NULL)
	 6.	 {
	 7.	 printf("%d", temp → ele);
	 8.	 temp = temp → next;
	 9.	 }
	10.	 }
	Step 7 – Displays temp data
	Step 8 – Moves temp pointer to next node

Algorithm to reverse direction of all links of
singly liked list
Consider a linked list ‘L’ with head as pointer pointing
to the first node contains data element ‘ele’ and a pointer
called ‘next’ which points to the next node.

Reverse is the routine which will reverse the list, there
are three node pointers P, Q, R with P pointing to the first
node, Q pointing to NULL.

Chapter 4  •  Linked Lists, Stacks and Queues  |  3.51

	 1.	START
	 2.	if (P = NULL)
		 1.	print (“List is null”);
		 2.	Exit
	 3.	While (P)
	 4.	R = Q;
	 5.	Q = P;
	 6.	P = P → next;
	 7.	Q → next = R
	 8.	End While
	 9.	Head = Q;
	10.	STOP

Double-linked List (DLL)
Double-linked list is a linked list in which, each node con-
tains data part and two link fields.

Node structure:
struct Dnode
{
struct Dnode ∗prev;
int ele;
struct Dnode ∗next;
};

•• prev – points to previous node in list
•• next – points to next node in list
•• The operations which can be performed in SLL can also

be preformed on DLL.
•• The major difference is that we have to adjust double ref-

erence as compared to SLL.
•• We can traverse or display the list elements in forward as

well as in reverse direction.

Example:

A B C
Head

Tail

Circular-linked List (CLL)
Circular-linked list is completely same as SLL, except, in
CLL the last (Tail) node points to first (Head) node of list.

So, the Insertion and Deletion operation at Head and Tail
are little different from SLL.

Double Circular-linked List (DCL)
Double circular-linked list can be traversed in both direc-
tions again and again. DCL is very similar to DLL, except
the last node’s next pointer points to first node of list and
first node’s previous pointer points to last node of list.

So, the insertion and deletion operations at head and tail
in DCL are little different in adjusting the reference as com-
pared to DLL.

Storing ordered table as linked list: The table is stored as
a linked list, it is retrieved and stored with two pointers, one
pointer will point to node holding a record having the smallest
key and other pointer performs the search.

Stack
A stack is a last in first out (LIFO) abstract data type and data
structure. A stack can have any abstract data type as an ele-
ment, but is characterized by only two fundamental operations.

√ PUSH
√ POP

•• The PUSH operation adds an item to the top of the stack,
hiding any items already on the stack or initializing the
stack if it is empty.

•• The POP operation removes an item from the top of the
stack, and returns the poped value to the caller.

•• Elements are removed from the stack in the reverse order to
the order of their insertion. Therefore, the lower elements
are those that have been on the stack for longest period.

PUSH POP

Figure 1  Simple representation of a stack

Implementation
A stack can be easily implemented either through an array
or a linked list. The user is only allowed to POP or PUSH
items onto the array (or) linked list.

	 1.	 Array Implementation: Array implementation aims
to create an array where the first element inserted is
placed st[0] which will be deleted last.

		  The program must keep track of position top (last)
element of stack.

		 Operations
		 Initially Top = –1;//represents stack empty
		 (i) Push (S, N, TOP, x)
		 {
		 if (TOP = = N – 1)
		 printf(“overflow”);
		 else
		 TOP = TOP + 1;
		 S[TOP] = x;
		 }
		 (ii) POP (S, N, TOP, x)
		 {
		 if (TOP = = –1)
		 printf(“underflow”);
		 else
		 x = S[TOP]
		 TOP = TOP – 1
		 return x;
		 }

3.52  |  Unit 3  •  Programming and Data Structures

	 2.	 Dynamic Implementation: The Array implementa-
tion is also called static implementation, because the
stack size is fixed.

		 The stack implementation using linked list is called
dynamic implementation, because the stack size can
grow and shrink as the elements added or removed
from the stack.
•• The PUSH operation on stack is same as insert

head in SLL.
•• The POP operation is same as delete head in SLL.

Algorithm to add and delete to a link stack and link
queue

Link stack:

head Top

data1 data2

data1

The linked stack with head and top pointers is shown
above

The algorithm to push the elements into stack is given
below, the method push (item)

Steps:

	 1.	 ptr = getnode (Node)
	 2.	 ptr.data = item
	 3.	 ptr.next = Top
	 4.	 Top = new
	 5.	 Head.next = Top
	 6.	 Stop.

for deletion of elements from stack, its algorithm is pop(),
it is given below

Steps:

	 1.	if (Top = NULL)
		 1.	 print “stack is empty”
		 2.	 exit

	 2.	Else
		 1.	 ptr = Top.next
		 2.	 item = Top.data
		 3.	 Head.next = ptr
		 4.	 Top = ptr
	 3.	End if
	 4.	Stop.
Linked queue representation

head

data1 data2next

rearfront

datan

The linked queue with head, front and rear point is shown
above.

The algorithm to enqueue the elements into queue is
given below, the method enqueue (item)

Steps:

	 1.	ptr = getNode (Node)
	 2.	ptr.data = item
	 3.	ptr.next = NULL
	 4.	if (front = NULL)
	� front = ptr
	 else
	 rear.next = ptr;

	 5.	end if
	 6.	rear = ptr
	 7.	Stop
For deletion of elements from queue that is ptr dequeue ()
is given below

Steps:

	 1.	if (front = NULL)
		 1.	print “underflow”.
		 2.	exit
	 2.	ptr = front;
	 3.	front = ptr.next
	 4.	Head.next = front
	 5.	item = ptr.data
	 6.	free(ptr)
	 7.	end.

Uses of Stack
•• Function calls: When a function is called all local storage

for the function is allocated on system ‘stack’, and return
address also pushed on to system stack.

•• Recursion stacks can be used to implement recursion if
the programming language does not provide recursion
facility.

•• Reversing a list
•• Parsing: Stacks are used by compilers to check the syntax

of program.
•• For evaluating expressions.

Expression Notations
Infix expression: Here binary operator comes between the
operands.

Postfix expression: Here the binary operator comes after
both the operands.
Example:  ab+
Prefix expression: Here the binary operator comes before
both the operands.

Example:  +ab

Infix to postfix conversion
•• If operand, output to postfix expression
•• If operator, push it onto stack
•• In case of parenthesis, when an opening parenthesis is

read, it is pushed onto stack and when a closing parenthe-
sis is read, all operators up to the first opening parenthesis
must be popped from the stack into the post fix notation.

Chapter 4  •  Linked Lists, Stacks and Queues  |  3.53

Example:  (A + (B – C))*D

i/p Postfix notation Stack
((

A A (

+ A (+

(A (+(

B AB (+(

- AB (+(–

C ABC (+(–

) ABC– (+

) ABC–+ -

* ABC–+ *
D ABC–+D *

ABC–+D*

Evaluation of postfix expression
We use operand stack for evaluation. Scan the post fix
expression,
•• When an operand encounters while scanning, push on to

stack.
•• While scanning post fix expression, if operator found then

•• Pop top two operands from stack
•• Perform the operation on those two operands
•• Push, result on to stack top

•• Finally, the stack contains only one value, which repre-
sents result of the expression.

Example:  6 2 3 + – 3 8 2 / + ∗ 2 ∗ 3 +

Symbol OP1 OP2 Value Operand stack

6 6

2 6, 2

3 6, 2, 3

+ 2 3 5 6,5

- 6 5 1

3 1, 3

8 1, 3, 8

2 1, 3, 8, 2

/ 8 2 4 1, 3, 4

+ 3 4 7 1, 7

∗ 1 7 7 7

2 7, 2

∗ 7 2 14 14

3 14, 3

+ 14 3 17

Result is 17.

Performing add, delete operations on stack
(multiple stack)
Let us consider an array whose size is ‘max’
with multiple stack A, B having top A and top B, push and
pop operations on one stack A is given below.

Algorithm for push A(x)
Initially A[Max], top A = –1, top B = MAX;

	1.	if (top A = top B)
		 a.	 print “ overflow”
		 b.	 exit
	2.	top A = top A + 1
	3.	A[top A] = x
	4.	stop

Algorithm for pop A(x)

	1.	if (top A = – 1)
		 a.	 print “underflow”
		 b.	 exit
	2.	y = A[top A]
	3.	top A = top A – 1
	4.	return y
	5.	stop

Algorithm for push B(x)

	1.	if (top B – 1 = top A)
		 a.	 print “overflow”
		 b.	 exit
	2.	top B = top B –1
	3.	A[top B] = x
	4.	stop

Algorithm for pop B(x)

	1.	if (top B = max)
		 a.	 print “underflow”
		 b.	 exit
	2.	y = A [top B]
	3.	top B = top B – 1
	4.	return y
	5.	stop

Queue
A queue is an ordered collection of items from which items
may be deleted at one end (called that front of queue) and
into which items may be inserted at the other end (called
rear of queue).

Queue is a linear data structure maintains the data in first
in−first out (FIFO) order.

Implementation
Queue can be implemented in the following ways:

	 1.	 Array static implementation: queue cannot be extended
beyond the array size.

	 2.	 Linked list dynamic implementation: Queue size
increases as the elements added/inserted to queue.
Queue shrinks when an element deleted from
queue.

3.54  |  Unit 3  •  Programming and Data Structures

Array Implementation
const int SIZE = 10;
int q[SIZE];
int f = –1, r = –1; //f = r = –1 represents queue empty

RearFront

Insertion
	 1.	 void insert (int x)
	 2.	 {
	 3.	 if (r = = SIZE –1)
	 4.	 {
	 5.	 printf(“Q FULL”)
	 6.	 return;
	 7.	 }
	 8.	 r++;
	 9.	 q[r] = x;
	10.	 if (f = = –1)
	11.	 f = r;
	12.	 }
Step 3 – Checks for queue full
Step 8 – Increments rear (r)
Step 9 – Inserts ‘x’ into queue
Step 10 – Checks whether insertion is first
Step 11 – If first insertion, updates front (f)

Deletion
	 1.	 void deletion()
	 2.	{
	 3.	 int x;
	 4.	 if (f = = –1)
	 5.	 {
	 6.	 if (“\n Q Empty”);
	 7.	 return;
	 8.	 }
	 9.	 x = q[f];
	10.	 if (f = = r)
	11.	 f = r = –1;
	12.	 else
	13.	 f++;
	14.	 printf(“\n deleted element %d”, x);
	15.	 }
Step 4 – Checks for queue empty
Step 9 – Deletes ‘q’ front element
Step 10 – Checks whether queue having only one element
Step 11 – �Rear and front initializes to –1, if queue is having

only one element
Step 13 – Queue front points to next element
Step 14 – Deleted element is printed

Display
	 1.	 void display()
	 2.	 {
	 3.	 int i = f;
	 4.	 if (f = = –1)
	 5.	 {

	 6.	 printf(“Queue Empty”);
	 7.	 return;
	 8.	 }
	 9.	 printf (“\n Queue Elemetns”);
	10.	 for(; i < = r; i++)
	11.	 printf(“ %d”, q[i]);
	12.	 }
Step 4 – Checks for ‘q’ empty
Step 10 and 11 – Display ‘q’ elements

Double-ended Queue
A double-ended queue (deque) is an abstract data structure
that implements a queue for which elements can only be
added to or removed from the front (head) (or) rear (tail)
end.

 RearRear

 Front

Insertions and deletions are possible at both ends.

Linked List Implementation
Double-ended Queue
•• Insert – Front is same as insert – Head
•• Insert – Rear is same as insert – Tail
•• Delete front is same as delete – Head
•• Delete – Rear is same as delete – Tail

Circular Queue
As the items from a queue get deleted, the space for that
item is reclaimed. Those queue positions continue to be
empty. This problem is solved by circular queues. Instead
of using a linear approach, a circular queue takes a circu-
lar approach; this is why a circular queue does not have a
beginning or end.

0
1

2

3

4

5
67

8

9

The advantage of using circular queue over linear queue is
efficient usage of memory.

Algorithm to implement addition and deletion from
circular queue
Circular Queue Insertion:
To add an element ‘X’ to a Queue ‘Q’ of size ‘N’ with front
and rear pointers as ‘F’ and ‘R’ is done with insert (X),
Initially F = R = 0.
Insert (X)

Chapter 4  •  Linked Lists, Stacks and Queues  |  3.55

Steps:
	1.	if (((R = N) & & (F = 1)) or ((R +

1) = F))
		 a.	 print “overflow”
		 b.	 exit
	2.	if (R = N)
	 then R = 0;
	 Else
		 R = R + 1;
	3.	Q[R] = x;
	4.	if (F = 0)
	 F = 1
	5.	Stop.
To delete an element we implement an algorithm delete ().
‘y’ contains the deleted element.

delete()
Steps:
	1.	if (F = 0)
		 a.	 print “underflow”
		 b.	 exit
	2.	y = Q[F]
	3.	if (F = R)
	 F = R = 0
	 else
	 If (F = N)
	 F = 1
	 Else
	 F = F + 1
	4.	Return y
	5.	Stop.

Priority Queue
In priority queue, the intrinsic ordering of elements does
determine the results of its basic operations.

There are two types of priority queues.

•• Ascending priority queue is a collection of items in which
items can be inserted arbitrarily and from which only the
smallest items can be removed.

•• Descending priority queue is similar but allows deletion
of the largest item.

Array Implementation
•• The insertion operation on priority queue selects the posi-

tion to the element to insert.
•• Makes the position empty/free by moving the existing

element (if required).
•• Place the element in required position.
•• Deletion operation simply deletes front of queue.

Linked-list Implementation
•• Insertion operation create a node
•• Reads element into node
•• Find out the location
•• Insert the node into list, by adjusting the reference
•• Deletion operation simply deletes head elements, making

the head next as head element

Linked-list Implementation of Priority
Queue
•• Insertion in queue is same as insert-tail of queue
•• Deletion from queue is same as delete head

Exercises

Practice Problems 1
Directions for questions 1 to 16:  Select the correct alterna-
tive from the given choices.

	 1.	 If the array representation of a circular queue contains
only one element then

	 (A)	 front = rear	 (B)	 front = rear + 1
	 (C)	 front = rear − 1	 (D)	 front = rear = NULL

	 2.	 The five items P, Q, R, S and T are pushed in a stack,
one after another starting from P. The stack is popped
four times, and each element is inserted in a queue. The
two elements are deleted from the queue and pushed
back on the stack. Now one item is popped from the
stack. The popped item is _____.

	 (A)	 P	 (B)	 Q
	 (C)	 R	 (D)	 S

	 3.	 What are the contents of the stack (initially the stack is
empty) after the following operations?

	 PUSH (A)
	 PUSH (B)
	 PUSH (C)
	 POP

	 PUSH(D); POP; POP;
	 PUSH(E)
	 PUSH(F)
	 POP

	 (A)	 ABE	 (B)	 AE
	 (C)	 A 	 (D)	 ABCE

	 4.	 Consider the below code, which deletes a node from
the beginning of a list:

	 void deletefront()
	 {
	 if(head = = NULL)
	 return;
	 else
	 {
	
	
	
	 }
	 }

		 Which lines will correctly implement else part of above
code?

3.56  |  Unit 3  •  Programming and Data Structures

	 (A)	if (head → next = = NULL)
		 head = head → next;
	 (B)	if (head = = tail)
		 head = tail = NULL;
		 else
		 head = head → next;
	 (C)	if (head = = tail = = NULL)
		 head = head → next;
	 (D)	head = head → next;
	 5.	 When a new element is inserted in the middle of

linked list, then the references of _____ to be adjusted/
updated.

	 (A)	 those nodes that appear after the new node
	 (B)	 those nodes that appear before the new node
	 (C)	 head and tail nodes
	 (D)	� those nodes that appear just before and after the

new node
	 6.	 The following C function takes double-linked list as an

argument. It modifies the list by moving the head (first)
element to tail of the list.

	 typedef struct node
	 {
		 struct node *p;
		 int data;
		 struct node *n;
	 } Node;
	 Node ⃰ Move – to – last (Node *head)
	 {
	 Node ⃰ temp, ⃰ prev, ⃰ next;
	 if (head = = NULL)||(head → n = = NULL))
	 return head;
	 temp = head;
	 prev = head;
	 head = head → n;
	 while (prev → n! = NULL)
	 {
	 X;
	 }
	 Y;
	 return head;
	 }
	 (A)	X: prev = prev → n;
		 Y: prev → n = temp;
		 temp → p = prev;
		 temp → n = NULL;
		 head → P = NULL;
	 (B)	X: next = prev → n;
		 Y: prev → n = temp;
		 temp → p = prev;
	 (C)	X: prev = prev → n;
		 Y: prev → n = temp;
		 temp → n = NULL;
		 head → p = NULL;
	 (D)	X: next = prev → n;
		 prev = prev → n;
		 Y: prev → n = Next;

		 next → n = head;
		 temp → n = NULL;

	 7.	 Which of the following program segment correctly
inserts an element at the front of the linked list. Assume
that Node represents linked list node structure, value is
the element to be inserted.

	 (A)	temp = (Node ٭)malloc (sizeof (Node));
		 temp → data = value;
		 temp → next = head;
		 head = temp;
	 (B)	�temp = (Node ٭)malloc(sizeof (Node٭)	

);
		 temp → data = value;
		 temp → next = head;
		 head = temp;
	 (C)	�temp = (Node ٭)malloc (sizeof (Node));
		 head = temp;
		 temp → next = head;
		 temp → data = value;
	 (D)	�temp = (Node ٭)malloc (sizeof (Node

 ;(٭
		 temp → data = value;
		 head = temp;
		 temp → next = head;
	 8.	 Consider the following program segment:
	 struct element
	 {
		 int x;
		 struct element ⃰link;
	 }
	 void shuffle(struct element ⃰head)
	 {
	 struct ⃰p, ⃰q;
	 int t;
	 if (!head || !head → link) return;
	 p= head ; q = head → link;
	 while(q)
	 {
	 t = p → x;
	 p→ x = q → x;
	 q → x = t;
	 p = q → link;
	 q = p? p : 0;
	 }
	 }

		 The function called with list containing 10, 15, 20, 25,
30, 35, 40 in given order. What will the order of ele-
ments of the list, after executing the function shuffle?

	 (A)	 10	 15	 20	 25	 30	 35	 40
	 (B)	 40	 35	 30	 25	 20	 15	 10
	 (C)	 20	 15	 10	 25	 40	 35	 30
	 (D)	 15	 10	 25	 20	 35	 30	 40

	 9.	 Primary ADT’s are
	 (A)	 Linked list only	 (B)	 Stack only
	 (C)	 Queue only	 (D)	 All of these

Chapter 4  •  Linked Lists, Stacks and Queues  |  3.57

	10.	 Linked list uses NULL pointers to signal
	 (A)	 end of list 	 (B)	 start of list
	 (C)	 Either (A) or (B)	 (D)	 Neither (A) nor (B)

	11.	 Which of the following is essential for converting an
infix to postfix form efficiently?

	 (A)	 Operator stack 	 (B)	 Operand stack
	 (C)	 Both (A) and (B)	 (D)	 Parse tree

	12.	 Stacks cannot be used to
	 (A)	 Evaluate postfix expression
	 (B)	 Implement recursion
	 (C)	 Convert infix to postfix
	 (D)	� Allocate resource like CPU by the operating system

	13.	 Linked list can be sorted
	 (A)	 By swapping data only
	 (B)	 By swapping address only

	 (C)	 Both (A) and (B)
	 (D)	 None of these

	14.	 Linked list are not suitable for implementing
	 (A)	 Insertion sort
	 (B)	 Binary search
	 (C)	 Radix sort
	 (D)	 Polynomial manipulation

	15.	 Insertion of node in a double-linked list requires how
many changes to previous (prev) and next pointers?

	 (A)	 No changes 	 (B)	 2 next and 2 prev
	 (C)	 1 next and 1 prev	 (D)	 3 next and 3 prev

	16.	 Minimum number of stacks required to implement a
queue is

	 (A)	 1	 (B)	 2
	 (C)	 3	 (D)	 4

Practice Problems 2
Directions for questions 1 to 11:  Select the correct alterna-
tive from the given choices.

	 1.	 Stack is useful for implementing _____.
	 (A)	 radix sort
	 (B)	 breadth first search
	 (C)	 quick sort
	 (D)	 recursion

	 2.	 Which is true about linked list?
	 (A)	 A linked list is a dynamic data structure.
	 (B)	 A linked list is a static structure.
	 (C)	 A stack cannot be implemented by a linear linked list.
	 (D)	 None of the above

	 3.	 The process of accessing the data stored in a tape is
similar to manipulating data on a _____.

	 (A)	 stack 	 (B)	 list
	 (C)	 queue	 (D)	 heap

	 4.	 Which of the following is used to aid in evaluating a
prefix expression?

	 (A)	 Queue	 (B)	 Heap
	 (C)	 Stack 	 (D)	 Hash

	 5.	 Select the statement which best completes the sentence
 ‘Abstract data type is…’

	 (A)	 a data type which is abstract in nature
	 (B)	 a kind of data type
	 (C)	 data structure
	 (D)	� a mathematical model together with a set of opera-

tions defined on it

	 6.	 Which of the following data structures may give an
overflow error, even through the current number of ele-
ments in it is less than its size?

	 (A)	 Simple queue 	 (B)	 Circular queue
	 (C)	 Stack 	 (D)	 None of these

	 7.	 In a circular linked list, insertion of a record involves
the modification of _____.

	 (A)	 no pointer 	 (B)	 four pointers
	 (C)	 two pointers 	 (D)	 All of the above

	 8.	 Among the following, which one is not the right opera-
tion on a stack?

	 (A)	� Remove the item that is inserted latest into the
stack.

	 (B)	 Add an item to the stack.
	 (C)	� Remove the first item that is inserted into the

stack, without deleting other elements.
	 (D)	 None of the above

	 9.	 Among the following which one is not the right opera-
tion on dequeue?

	 (A)	 Inserting an element in the middle of a dequeue.
	 (B)	 Inserting an element at the front of a dequeue.
	 (C)	 Inserting an element at the rear of a dequeue.
	 (D)	 None of the above

	10.	 A linear list in which elements can be added or removed
at either end but not in the middle is _____.

	 (A)	 queue
	 (B)	 dequeue
	 (C)	 array
	 (D)	 tree

	11.	 The post fix notation of A/B * * C + D * E – A * C is
	 (A)	 ABC * * /DE * + AC * –
	 (B)	 ABC * * D/E * + AC + –
	 (C)	 ABC * * /DE * AC + –
	 (D)	 ABC * * /DE * + AC + –

3.58  |  Unit 3  •  Programming and Data Structures

	 1.	 An abstract data type (ADT) is � [2005]
	 (A)	 same as an abstract class.
	 (B)	 a data type that cannot be instantiated.
	 (C)	� a data type for which only the operations defined

on it can be used, but none else.
	 (D)	 All of the above

	 2.	 An implementation of a queue Q, using two stacks S
1

and S
2
, is given below:

		 void insert (Q, x)	 {
		  push (S1, x);
		 }
		 void delete (Q)	 {
		  if (stack-empty (S2)) then
		   if (stack-empty (S1)) then	 {
		    print (“Q is empty”);
		    return;
		   }
		   else while(!(stack-empty(S1)))
		   {
		     x = pop (S1);
		     push(S2, x);
		   }
		  x = pop (S2);
		 }
	� Let n insert and m (≤ n) delete operations be per-

formed in an arbitrary order on an empty queue Q.
Let x and y be the number of push and pop operations
performed respectively in the process. Which one of
the following is true for all m and n?� [2006]

	 (A)	 n + m ≤ x < 2n and 2m ≤ y n + m
	 (B)	 n + m ≤ x < 2n and 2m ≤ y 2n
	 (C)	 2m ≤ x < 2n and 2m ≤ y n + m
	 (D)	 2m ≤ x < 2n and 2m ≤ y 2n

	 3.	 The following postfix expression with single digit
operands is evaluated using a stack:

	 8 2 3 ∧ / 2 3 ∗ + 5 1 ∗ –
	� Note that ∧ is the exponentiation operator. The top

two elements of the stack after the first ∗ is evaluated
are:� [2007]

	 (A)	 6 and 1	 (B)	 5 and 7
	 (C)	 3 and 2	 (D)	 1 and 5

	 4.	 The following C function takes a single-linked list of
integers as a parameter and rearranges the elements of
the list. The function is called with the list containing
the integers 1, 2, 3, 4, 5, 6, 7 in the given order. What
will be the contents of the list after the function com-
pletes execution?

	 struct node {
	 int value;
	 struct node *next;
	 };
	 void rearrange (struct node *list) {
	 struct node *p, *q;

	 int temp;
	 if (!list || !list -> next) return;
	 p = list; q = list -> next;
	 while (q) {
	� temp = p -> value; p -> value = q ->

value;
	 q -> value = temp; p = q → next;
	 q = p?p -> next : 0;
	 }
	 }
� [2008]
	 (A)	 1, 2, 3, 4, 5, 6, 7	 (B)	 2, 1, 4, 3, 6, 5, 7
	 (C)	 1, 3, 2, 5, 4, 7, 6	 (D)	 2, 3, 4, 5, 6, 7, 1

	 5.	 Suppose a circular queue of capacity (n – 1) elements
is implemented with an array of n elements. Assume
that the insertion and deletion operations are carried
out using REAR and FRONT as array index vari-
ables, respectively. Initially, REAR = FRONT = 0.
The conditions to detect queue full and queue empty
are� [2012]

	 (A)	 Full: (REAR + 1) mod n = = FRONT
		 Empty: REAR = = FRONT
	 (B)	 Full: (REAR + 1) mod n = = FRONT
		 Empty: (FRONT + 1) mod n = = REAR
	 (C)	 Full: REAR = = FRONT
		 Empty: (REAR + 1) mod n = = FRONT
	 (D)	 Full: (FRONT + 1) mod n = = REAR
		 Empty: REAR = = FRONT

	 6.	 Consider the C program below� [2015]
	 #include <stdio.h>
	 int *A, stkTop;
	 int stkFunc (int opcode, int val)
	 {
		 static int size=0, stkTop=0;
		 switch (opcode) {
		  case -1: size = val; break;
		  case 0: if (stkTop < size) 		
		 A[stkTop++] =
		    val; break;
	�	 � default: if (stkTop) return A[-

-stkTop];
		 }
		 return -1;
		 }
		 int main ()
		 {
		 int B[20]; A = B; stkTop = -1;
		 stkFunc (-1, 10);
		 stkFunc (0, 5);
		 stkFunc (0, 10);
		� printf (“%d\n”, stkFunc(1, 0) +

stkFunc(1, 0));
		 }

		 The value printed by the above program is _____

Previous Years’ Questions

Chapter 4  •  Linked Lists, Stacks and Queues  |  3.59

	 7.	 The result of evaluating the postfix expression 10 5 +
60 6/* 8 – is� [2015]

	 (A)	 284	 (B)	 213
	 (C)	 142	 (D)	 71

	 8.	 Let Q denote a queue containing sixteen numbers and
S be an empty stack.

		 Head (Q) returns the element at the head of the queue
Q without removing it from Q. Similarly Top(S)
returns the element at the top of S without removing
it from S.

		 Consider the algorithm given below.

while Q is not Empty do
	 if S is Empty OR Top(S) ≤ Head (Q)
	 then
		 x : = Dequeue (Q)
		 Push (S, x);
	 else
		 x : = Pop (S);
		 enqueue (Q, x);
	 end
end

		 The maximum possible number of iterations of the
while loop in the algorithm is ____ .� [2016]

	 9.	 The attributes of three arithmetic operators in some
programming language are given below.

Operator 	Precedence 	Associativity Arity

+ 	 High 	 Left Binary

– 	 Medium 	 Right Binary

* 	 Low 	 Left Binary

		 The value of the expression

		 2 – 5 + 1 – 7 * 3 in this language is ______.� [2016]

	10.	 A circular queue has been implemented using a sin-
gly linked list where each node consists of a value
and a single pointer pointing to the next node. We
maintain exactly two external pointers FRONT and
REAR pointing to the front node and the rear node of
the queue, respectively. Which of the following state-
ments is/are CORRECT for such a circular queue,
so that insertion and deletion operations can be per-
formed in O (1) time?

	 I.	� Next pointer of front node points to the rear
node.

	 II.	� Next pointer of rear node points to the front
node.

� [2017]

	 (A) I only	 (B) II only
	 (C) Both I and II	 (D) Neither I nor II

Answer Keys

Exercises

Practice Problems 1
	 1.  A	 2.  C	 3.  B	 4.  B	 5.  D	 6.  A	 7.  A	 8.  D	 9.  D	 10.  A
	11.  A	 12.  D	 13.  C	 14.  B	 15.  B	 16.  B

Practice Problems 2
	 1.  D	 2.  A	 3.  C	 4.  C	 5.  D	 6.  A	 7.  C	 8.  C	 9.  A	 10.  B
	11.  A

Previous Years’ Questions
	 1.  C	 2.  A	 3.  A	 4.  B	 5.  	 6.  15	 7.  C	 8.  256	 9.  9	 10.  B

	Unit 3: Programming and Data Structures
	PART A: Programming and Data Structures
	Chapter 4: Linked Lists, Stacks and Queues
	Data Structure
	Linkek List
	single-Linked List
	Uses of Stack
	Queue
	Exercises
	Previous Years’ Questions
	Answer Keys

