20.MODERN PHYSICS

- * Work function is minimum for cesium (1.9 eV)
- * work function W = $hv_0 = \frac{hc}{\lambda_0}$
- * Photoelectric current is directly proportional to intensity of incident radiation. (v constant)
- \ast Photoelectrons ejected from metal have kinetic energies ranging from 0 to KE_{max}
 - Here $KE_{max} = eV_s$ V_s stopping potential
- * Stopping potential is independent of intensity of light used (v-constant)
- * Intensity in the terms of electric field is

$$I = \frac{1}{2} _{0} E^{2}.c$$

- * Momentum of one photon is $\frac{h}{\lambda}$.
- * Einstein equation for photoelectric effect is

$$h_V = w_0 + k_{max}$$
 $\frac{hc}{\lambda} = \frac{hc}{\lambda_0} + eV_s$

- * Energy $\Delta E = \frac{12400}{\lambda(A^0)} eV$
- * Force due to radiation (Photon) (no transmission)

When light is incident perpendicularly

(a)
$$a = 1 r = 0$$

$$F = \frac{IA}{C}$$
, Pressure = $\frac{I}{C}$

(b)
$$r = 1$$
, $a = 0$

$$F = \frac{2IA}{C}$$
, $P = \frac{2I}{C}$

(c) when
$$0 < r < 1$$
 and $a + r = 1$

$$F = \frac{IA}{c} (1 + r), \qquad P = \frac{I}{c} (1 + r)$$

When light is incident at an angle θ with vertical.

(a)
$$a = 1, r = 0$$

$$F = \frac{IA\cos\theta}{c}$$
, $P = \frac{F\cos\theta}{A} = \frac{I}{c}\cos \theta$

(b)
$$r = 1, a = 0$$

$$F = \frac{2IA\cos^2\theta}{c}$$
, $P = \frac{2I\cos^2\theta}{c}$

(c)
$$0 < r < 1$$
, $a + r = 1$

$$P = \frac{I\cos^2\theta}{c} (1 + r)$$

$$\lambda = \frac{h}{mv} = \frac{h}{P} = \frac{h}{\sqrt{2km}}$$

Radius and speed of electron in hydrogen like atoms.

$$r_n = \frac{n^2}{Z} a_0$$
 $a_0 = 0.529 \text{ Å}$ $v_n = \frac{Z}{R} v_0$ $v_0 = 2.19 \times 106 \text{ m/s}$

Energy in nth orbit

$$E_n = E_1 \cdot \frac{Z^2}{n^2}$$
 $E_1 = 13.6 \text{ eV}$

Wavelength corresponding to spectral lines

$$\frac{1}{\lambda} = R \frac{1}{n_1^2} - \frac{1}{n_2^2}$$

 $\begin{array}{rclcrcl}
n_1 &=& 1 & & & & & & & & & & & & & \\
n_1 &=& 2 & & & & & & & & & & & & \\
n_1 &=& 2 & & & & & & & & & & & & \\
n_1 &=& 3 & & & & & & & & & & & \\
n_2 &=& 4, & 5, & 6..........$ for Lyman series Balmer Paschen

- The lyman series is an ultraviolet and Paschen, Brackett and Pfund series are in the infrared region.
- Total number of possible transitions, is $\frac{n(n-1)}{2}$, (from nth state)
- If effect of nucleus motion is considered, *

$$r_n = (0.529 \text{ Å}) \frac{n^2}{Z} \cdot \frac{m}{\mu}$$

$$E_n = (13.6 \text{ eV}) \frac{Z^2}{n^2} \cdot \frac{\mu}{m}$$

Here μ - reduced mass

$$\mu = \frac{Mm}{(M+m)}$$
, M - mass of nucleus

Minimum wavelength for x-rays

$$\lambda_{min} = \frac{hc}{eV_0} = \frac{12400}{V_0(volt)} \mathring{A}$$

Moseley s Law

$$\sqrt{v} = a(z b)$$

a and b are positive constants for one type of x-rays (independent of Z)

Average radius of nucleus may be written as
$$R = R_0 A^{1/3}$$
, $R_0 = 1.1 \times 10^{-15} M$

A - mass number

- Binding energy of nucleus of mass M, is given by B = $(ZM_p + NM_N)$
- Alpha decay process

$${}_{7}^{A}X$$
 ${}_{z-2}^{A-4}Y + {}_{2}^{4}He$

Q-value is

$$Q = \left[m \begin{pmatrix} A \\ Z \end{pmatrix} - m \begin{pmatrix} A-4 \\ Z-2 \end{pmatrix} - m \begin{pmatrix} 4 \\ 2 \end{pmatrix} + B \right] C^{2}$$

* Beta- minus decay

$${}^{A}_{Z}X$$
 ${}^{A}_{z+1}Y + \beta^{-} + \nu^{-}$

Q- value =
$$[m(_{z}^{A}X)-m(_{Z+1}^{A}Y)]c^{2}$$

Beta plus-decay

$$_{z}^{A}X$$
 $_{z-1}^{A}Y + \beta + + v$

Q- value =
$$[m(_{z}^{A}X)-m(_{Z-1}^{A}Y)-2me]c^{2}$$

* Electron capture : when atomic electron is captured, X-rays are emitted.

$$_{z}^{A}X + e$$

$$A_{Z-1}Y + v$$

Q - value =
$$[m(_{z}^{A}X)-m(_{Z-1}^{A}Y)]c^{2}$$

- * In radioactive decay, number of nuclei at instant t is given by $N = N_0 e^{\lambda t}$, λ -decay constant.
- * Activity of sample : $A = A_0 e^{\lambda t}$
- * Activity per unit mass is called specific activity.
- * Half life : $T_{1/2} = \frac{0.693}{\lambda}$
- * Average life : $T_{av} = \frac{T_{1/2}}{0.693}$
- * A radioactive nucleus can decay by two different processes having half lives t_1 and t_2 respectively. Effective half-life of nucleus is given by $\frac{1}{t} = \frac{1}{t_1} + \frac{1}{t_2}$.