
Chapter 3

Divide-and-conquer

DiviDe-anD-conQuer
Divide-and-conquer is a top down technique for designing algo-
rithms that consists of dividing the problem into smaller sub prob-
lems hoping that the solutions of the sub problems are easier to
fi nd and then composing the partial solutions into the solution of
the original problem.

Divide-and-conquer paradigm consists of following major phases:

 • Breaking the problem into several sub-problems that are similar
to the original problem but smaller in size.

 • Solve the sub-problem recursively (successively and independently)
 • Finally, combine these solutions to sub-problems to create a

solution to the original problem.

Divide-and-Conquer Examples
 • Sorting: Merge sort and quick sort
 • Binary tree traversals
 • Binary Search
 • Multiplication of large integers
 • Matrix multiplication: Strassen’s algorithm
 • Closest-pair and Convex-hull algorithm

Merge Sort
Merge sort is a sorting algorithm for rearranging lists (or any other
data structure that can only be accessed sequentially, e.g., fi le
streams) into a specifi ed order.
Merge sort works as follows:
 1. Divide the unsorted list into two sub lists of about half the size.
 2. Sort each of the two sub lists.

A problem of size n

Sub-problem 1
 of size n/2

Sub-problem 2
 of size n/2

A solution to sub-
 problem 1

A solution to sub-
 problem 2

A solution to the
original problem

Figure 1 Divide-and-conquer technique.

 3. Merge the two sorted sub lists back into one sorted list
 4. The key of merge sort is merging two sorted lists into one,

such that if we have 2 lists
X(x

1
 ≤ x

2
 ≤ x

3
 … ≤ x

m
) and

Y (y
1
 ≤ y

2
 ≤ y

3
 … ≤ y

n
) the resulting list is z (z

1
 ≤ z

2
 ≤ … ≤ z

m+n
)

Example 1: L
1
 = {3, 8, 9}, L

2
 = {1, 5, 7}

Merge (L
1
, L

2
) = {1, 3, 5, 7, 8, 9}

 Divide-and-conquer

 Divide-and-conquer examples

 Divide-and-conquer technique

 Merge sort

 Quick sort

 Performance of quick sort

 Recurrence relation

 Searching

 Linear search

 Binary search

LEARNING OBJECTIVES

3.108 | Unit 3 • Algorithms

Example 2:

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 86 4 0

4 0

Merge:

99 6 86 15 58 35 86 0 4

4 0

0 4 6 15 35 58 86 86 99

6 15 86 99 0 4 35 58 86

6 99 15 86 35 58 0 4 86

Implementing Merge Sort
Merging is done with a temporary array of the same size as
the input array.

Pro: Faster than in-place since the temp array holds the result-
ing array until both left and right sides are merged into the temp
array then the temp array is appended over the input array.

Con: The memory required is doubled. The double mem-
ory merge sort runs O(N log N) for all cases, because of its
Divide-and-conquer approach.

T(N) = 2T(N/2) + N
= O(N log N)

Quick Sort
Quick sort is an example of Divide-and-conquer strategy. In
Quick sort we divide the array of items to be sorted into two
partitions and then call the quick sort procedure recursively
to sort the two partitions, i.e., we divide the problem into
two smaller ones and conquer by solving the smaller ones.
The conquer part of the quick sort routine looks like this

<Pivot >Pivot
 Low Pivot High

Make bold

<Pivot 1 >Pivot 1 >Pivot
 Low Pivot 1 Pivot High

Divide: Partition the array A [p - r] into 2 sub arrays A [p
- q – 1] and A [q + 1 - r] such that each element of A [p - q
– 1] is less than or equal to A[q], which is, in turn, less than
or equal to each element of A [q + 1 - r]

Conquer: Sort the 2 sub arrays A [p - q – 1] and A [q +
1 - r] by recursive calls to quick sort.

Combine: Since the sub arrays are sorted inplace, no work
is needed to combine them.

Sort left partition in the same way. For this strategy to
be effective, the partition phase must ensure that the pivot,
is greater than all the items in one part (the lower part) and
less than all those in the other (upper) part. To do this, we
choose a pivot element and arrange that all the items in the
lower part are less than the pivot and all those in the upper
part are greater than it. In the general case, the choice of
pivot element is first element.

(Here number of elements/2 is pivot)

 Quick sort (A, 1, 12)
38 81 22 48 13 69 93 14 45 58 79 72
14 58 22 48 13 38 45 69 93 81 79 72

 Quick sort (A, 1, 7)
38 58 22 48 13 14 45
38 45 22 14 13 48 58

Quick sort (A, 9, 12)
 93 81 79 72
 72 79 81 93

quick sort (A, 1, 5)
38 45 22 14 13
13 14 22 45 38

quick sort (A, 9, 10)
 72 79
 72 79

quick sort (A, 1, 2)
 13 14
 13 14

quick sort (A, 4, 5)
 45 38
 38 45

Figure 2 Tree of recursive calls to quick sort.

 • Quick sort is a sorting algorithm with worst case run-
ning time O(n2) on an input array of n numbers. Inspite
of this slow worst case running time, quick sort is often
the best practical choice for sorting because it is effi-
cient on the average: its expected running time is O(n
log n) and the constants hidden in the O-notation are
quite small

 • Quick sort algorithm is fastest when the median of the array
is chosen as the pivot element. This is because the resulting
partitions are of very similar size. Each partition splits itself
in two and thus the base case is reached very quickly.

Chapter 3 • Divide-and-conquer | 3.109

Example: Underlined element is pivot.

1

3 1 4 5 9 2 6 8 7

3 1 4 5 9 2 6 8 7

3 1 4 2 5 9 6 8 7

3 1 4 2

3 1 4 2

1 2 4 3

4 3

3 4

9 6 8 7

9 6 8 7

6 7 8 9

6 8 9

1 2 3 4 6 7 8 9

1 2 3 4 5 6 7 8 9

Figure 3 The ideal quick sort on a random array

Performance of Quick Sort
 • Running time of quick sort depends on whether the par-

titioning is balanced or unbalanced, it depends on which
elements are used for partitioning. If the partitioning is
balanced, the algorithm runs asymptotically as fast as
merge sort. If the partitioning is unbalanced, it runs as
slowly as insertion sort.

 • The worst case of quick sort occurs when the partitioning
routine produces one sub-problem with n – 1 elements and
one with ‘1’ element. If this unbalanced partitioning arises
in each recursive call, the partitioning costs q (n) time.

Recurrence Relation
T(n) = T(n – 1) + T(1) + q (n)

(\ T(0) = q (1))
= T(n – 1) + q (n)

If we sum the costs incurred at each level of the recursion
we get an arithmetic series, which evaluates to q (n2).

 • Best case partitioning–PARTITION produces 2 sub prob-
lems, each of size no more than n/2, since one is of size

n/2 and one of size n/ 12 –
The recurrence for the running time is then

T(n) ≤ 2T(n/2) + q(n)

The above Recurrence relation has the solution T(n) = O(n
log n) by case 2 of the master theorem.

 • The average–case time of quick sort is much closer to the
best than to the worst case
For example, that the partitioning algorithm always pro-

duces a 8-to-2 proportional split, which at first seems unbal-
anced. The Recurrence relation will be

T(n) ≤ T(8n/10) + T(2n/10) + cn

The recursion tree for this recurrence has cost ‘cn’ at every
level, until a boundary condition is reached at depth log

10
n =

q (log n). The recursion terminates at depth log
10/8

n = q(log n).
The total cost of quick sort is O(n log n)

Searching
Two searching techniques are:

 • Linear search
 • Binary search

Linear Search
Linear search (or) sequential search is a method for find-
ing a particular value in list that consists of checking every
one of its elements, one at a time and in sequence, until the
desired one is found. Linear search is a special case of brute
force search. Its worst case cost is proportional to the num-
ber of elements in the list.

Implementation
boolean linear search (int [] arr, int target)
{

int i = 0;

while (i < arr. length) {

if (arr [i] = = target){

return true;

}

+ + i;
}
return false;
}

Example:

Consider the array

10 7 1 3 –4 2 20

Search for 3

10 7 1 3 –4 2 20

 3?

Move to next element

10 7 1 3 –4 2 20

 3?

Move to next element

10 7 1 3 –4 2 20

 3?

Move to next element

10 7 1 3 –4 2 20

 3?
Element found; stop the search.

Binary Search
A binary search algorithm is a technique for finding a particu-
lar value in a linear array, by ruling out half of the data at each

3.110 | Unit 3 • Algorithms

step; a binary search finds the median, makes comparison, to
determine whether the desired value comes before or after it,
and then searches the remaining half in the same manner. A
binary search is an example of Divide-and-conquer algorithm.

Implementation
function binary search (a, value, left, right)

{
if right < left
 return not found

mid: = floor ((right –left)/2) + left
if a [mid] = value
return mid
if value < a[mid]

return binary search (a, value, left, mid –1) else return binary search
(a, value, mid + 1, right)
}

Example: Value being searched 123

2 6 7 34 76 123 234 567 677 986

First, mid, last (6)

2 6 7 34 76 123 234 567 677 986

First (1) mid(5) Last(10)

2 6 7 34 76 123 234 567 677 986

First (6) mid(8) Last(10)

2 6 7 34 76 123 234 567 677 986

First (6)
Mid (6)

Last(7)

exerciSeS

Practice Problems 1
Directions for questions 1 to 15: Select the correct alterna-
tive from the given choices.

 1. How many comparisons are required to search an item
89 in a given list, using Binary search?

4 8 19 25 34 39 45 48 66 75 89 95

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

 (A) 3 (B) 4
 (C) 5 (D) 6

 2. Construct a Binary search tree with the given list of
elements:

 300, 210, 400, 150, 220, 370, 450, 100, 175, 215, 250

 Which of the following is a parent node of element
250?

 (A) 220
 (B) 150
 (C) 370
 (D) 215

 3. What is the breadth first search order of the given tree?

a

b

h

d

c

e f g

 (A) acbhdefg (B) abcdefgh
 (C) adbcefgh (D) aebcdfgh

 4. What is the depth first search order of the given graph?

1 4

2

53

 (A) 14325
 (B) 12435
 (C) 14253
 (D) 12354

 5. When pre-order traversal is applied on a given tree,
what is the order of elements?

1

2 3

4 5

 (A) 1 – 2 – 4 – 5 – 3
 (B) 1 – 4 – 2 – 5 – 3
 (C) 1 – 2 – 4 – 3 – 5
 (D) 1 – 2 – 3 – 4 – 5

 6. What is the order of post-order traversal and in-order
traversals of graph given in the above question?

 (A) 4 – 2 – 5 – 1 – 3 and 4 – 5 – 2 – 3 – 1

 (B) 4 – 5 – 2 – 3 – 1 and 4 – 2 – 5 – 1 – 3

 (C) 4 – 5 – 2 – 1 – 3 and 4 – 2 – 5 – 1 – 3

 (D) 4 – 5 – 2 – 3 – 1 and 4 – 2 – 5 – 3 – 1

Chapter 3 • Divide-and-conquer | 3.111

 7. Find the number of bridges in the given graph

a

b

d

c e

fh

i

j

k

n

m

l

q

r p

s

t

v

w

u

og

 (A) 12 (B) 13
 (C) 11 (D) 10

 8. Match the following:

I. In-order 1. ABCDEFGHI

II. Pre-order 2. DBHEIAFCG

III. Post-order 3. ABDEHICFG

IV. Level-order 4. DHIEBFGCA

 For the tree

A

B

D

C

E F

H I

G

 (A) I – 2, II – 3, III – 4, IV – 1
 (B) I – 3, II – 1, III – 4, IV – 2
 (C) I – 1, II – 2, III – 3, IV – 4
 (D) I – 4, II – 3, III – 2, IV – 1

 9. A complete n-array tree in which each node has ‘n’
children (or) no children.

Let ‘I’ be the number of internal nodes and ‘L’ be the
number of leaves in a complete n-ary tree.

 If L = 51 and I = 10 what is the value of ‘n’?
 (A) 4 (B) 5
 (C) 6 (D) Both (A) and (B)

 10. A complete n-ary tree is one in which every node has 0
(or) n children. If ‘X ’ is the number of internal nodes of a
complete n-ary tree, the number of leaves in it is given by

 (A) X(n – 1) + 1 (B) Xn – 1
 (C) Xn + 1 (D) X(n + 1) + 1

 11. The numbers 7, 5, 1, 8, 3, 6, 0, 9, 4, 2 are inserted in the
given order into an initially empty binary search tree.
The binary search tree uses the usual ordering on natu-
ral numbers. What is the in-order traversal sequence of
the resultant tree?

 (A) 7 5 1 0 3 2 4 6 8 9
 (B) 0 2 4 3 1 6 5 9 8 7

 (C) 0 1 2 3 4 5 6 7 8 9
 (D) 9 8 6 4 2 3 0 1 5 7

 12. Consider the following graph:

a

b

g

e

f

h

 Among the following sequences

 I. a b e g h f II. a b f e h g

 III. a b f h g e IV. a f g h b e

 Which are depth first traversals of the above graph?
 (A) I, II and IV only (B) I and IV only
 (C) I, III only (D) I, III and IV only

 13. The breadth first search algorithm has been imple-
mented using the queue data structure. One possible
order of visiting the nodes is

A B C

DEF

 (A) A B C D E F (B) B E A D C F
 (C) E A B D F C (D) Both (A) and (B)

 14. An undirected graph G has ‘n’ nodes. Its adjacency
matrix is given by an n × n square matrix.

 (i) Diagonal elements are 0’s
 (ii) Non-diagonal elements are 1’s

 Which of the following is true?

 (A) Graph G has no minimum spanning tree
 (B) Graph G has a unique minimum spanning tree of

cost (n –1)
 (C) Graph G has multiple distinct minimum spanning

trees, each of cost (n – 1)
 (D) Graph G has multiple spanning trees of different cost.

 15. Which of the following is the breadth first search tree
for the given graph?

a b c d

efgh

3.112 | Unit 3 • Algorithms

 (A) a

b

c

d

f

g

e

h

 (B) a

e

c

d

f

g

b

 (C) a

b

c

d

f

g

h

 (D) a

b

c

d

f

g

e

Practice Problems 2
Directions for questions 1 to 15: Select the correct alterna-
tive from the given choices.

 1. Which of the following algorithm design technique is
used in finding all pairs of shortest distances in a graph?

 (A) Divide-and-conquer
 (B) Greedy method
 (C) Back tracking
 (D) Dynamic programming

 2. Let LASTPOST, LASTIN and LASTPRE denote the
last vertex visited in a post-order, in-order and pre-
order traversals respectively of a complete binary tree.
Which of the following is always true?

 (A) LASTIN = LASTPOST
 (B) LASTIN = LASTPRE
 (C) LASTPRE = LASTPOST
 (D) LASTIN = LASTPOST = LASTPRE

 3. Match the following:

 X : Depth first search

 Y : Breadth first search

 Z : Sorting

 a : Heap

 b : Queue

 c : Stack
 (A) X – a, Y – b, Z – c
 (B) X – c, Y – a, Z – b
 (C) X – c, Y – b, Z – a
 (D) X – a, Y – c, Z – b

 4. Let G be an undirected graph, consider a depth first tra-
versal of G, and let T be the resulting DFS Tree. Let ‘U’
be a vertex in ‘G’ and let ‘V’ be the first new (unvisited)
vertex visited after visiting ‘U’ in the traversal. Which
of the following is true?

 (A) {U, V} must be an edge in G and ‘U’ is a descend-
ant of V in T.

 (B) {U, V} must be an edge in ‘G’ and V is a descend-
ant of ‘U ’ in T.

 (C) If {U, V} is not an edge in ‘G’ then ‘U’ is a leaf in T.

 (D) if {U, V} is not an edge in G then U and V must
have the same parent in T.

 5. Identify the binary tree with 3 nodes labeled A, B and C
on which preorder traversal gives the sequence C, B, A.

 (A)

AB

C (B)

CB

A

 (C)

BC

A (D)

AC

B

 6. Consider an undirected unweighted graph G. Let a
breadth first traversal of G be done starting from a node r.
Let d(r, u) and d(r, v) be the lengths of the shortest
paths from r to u and v respectively in ‘G’. If u is visited
before v during the breadth first travel, which of the fol-
lowing is correct?

 (A) d(r, u) < d(r, v) (B) d(r, u) > d (r, v)

 (C) d(r, u) ≤ d (r, v) (D) None of these

 7. In a complete 5-ary tree, every internal node has exactly
5 children. The number of leaves in such a tree with ‘3’
internal nodes are:

 (A) 15 (B) 20
 (C) 13 (D) Can’t predicted

 8. Which of the following algorithm is single pass that is they
do not traverse back up the tree for search, create, insert
etc.

 (A) Depth first search (B) Pre-order traversal
 (C) B-tree traversal (D) Post-order traversal

 9. Which of the following is the adjacency matrix of the
given graph?

c

a b

d

 (A) 0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

 (B) 1 1 1 1

0 0 0 0

0 0 0 1

0 0 1 0

 (C) 1 1 1 1

0 0 0 0

0 0 0 1

1 0 1 0

 (D) 1 1 1 1

0 0 0 0

1 0 0 1

0 0 1 0

Chapter 3 • Divide-and-conquer | 3.113

 10. Which one of the following is the post-order traversal of
the given tree?

b
c

d e
f

a

 (A) d e a f c b a (B) d e b f c a
 (C) e b d f c a (D) a b c d e f

Common data for questions 11 and 12:

 11. The pre-order traversal of a tree is a b d h i e c f g. Which
of the following is the correct tree?

 (A) a

b

h

f

i

g

d

e c

 (B) a

b

d

h

e

i

c

f g

 (C) a

c

d

h

e

i

b

f g

 (D) a

b

e

h

d

i

c

f g

 12. Which of the following is in-order traversal of the above
tree?

 (A) a b h d e i f g c (B) a b d h e i f g c
 (C) h d i b e a f c g (D) i d h b e a f c g

 13. Consider the below binary search tree

11

10 16 32 44

43 55

22

33

 Which of the following is the resultant binary search tree
after deletion of 33?

 (A)

11

10 16 32 44

55

22

43

 (B)

11

10 16 43 55

45

22

44

 (C)

11

10 16 43 44

55

22

32

 (D)

11

10 16 43 44

43

22

55

 14. Match the following:

I. Articulation Point 1. An edge whose removal
disconnects graph

II. Bridge 2. A vertex whose removal
disconnects graph

III. Bi connected
component

3. Maximal set of edges such
that any two edges in the set
lie on a common simple cycle

 (A) I – 1, II – 2, III – 3 (B) I – 2, II – 1, III – 3

 (C) I – 2, II – 3, III – 1 (D) I – 1, II – 2, III – 3

 15. If x is the root of an n-node subtree, then the inorder-
tree-walk takes

 (A) q (n) (B) q (n2)
 (C) q (n3) (D) q (n log n)

3.114 | Unit 3 • Algorithms

PreviouS YearS’ QueStionS

 1. Which one of the following is the tightest upper
bound that represents the time complexity of insert-
ing an object into a binary search tree of n nodes?
 [2013]

 (A) O(1) (B) O(log n)
 (C) O(n) (D) O(n log n)
 2. Consider a rooted n node binary tree represented

using pointers. The best upper bound on the time
required to determine the number of sub trees having
exactly 4 nodes is O (na logb n). The value of a + 10b
is _______ [2014]

 3. Which one of the following is the recurrence equation
for the worst case time complexity of the Quicksort
algorithm for sorting n(≥2) numbers? In the recur-
rence equations given in the options below, c is a con-
stant. [2015]

 (A) T(n) = 2T(n/2) + cn
 (B) T(n) = T(n – 1) + T(1) + cn
 (C) T(n) = 2T(n – 1) + cn
 (D) T(n) = T(n/2) + cn

 4. Suppose you are provided with the following function
declaration in the C programming language.

 int partition (int a[], int n);

 The function treats the first element of a [] as a pivot,
and rearranges the array so that all elements less than
or equal to the pivot is in the left part of the array, and
all elements greater than the pivot is in the right part
in addition, it moves the pivot so that the pivot is the
last element of the left part. The return value is the
number of elements in the left part.

 The following partially given function in the C pro-
gramming language is used to find the k th smallest
element in an array a [] of size n using the partition
function. We assume k ≤ n.

 int kth_smallest (int a [], int n, int k) [2015]

 {
 int left_end = partition(a, n);
 if (left_end+1 == k) {
 return a [left_end];
)
 if (left_end+1 > k) {
 return kth_smallest (__________);
 } else {
 return kth_smallest (__________);
 }
 }

 The missing argument lists are respectively
 (A) (a, left_end, k) and (a+left_end+1, n-left_end-1,

k-left_end-1)
 (B) (a, left_end, k) and (a, n-left_end-1, k-left_end-1)

 (C) (a+left_end+1, n-left_end-1, k-left_end-1) and
(a, left_end, k)

 (D) (a, n-left_end-1, k-left_end-1) and (a, left_end, k)

 5. Assume that a mergesort algorithm in the worst case
takes 30 seconds for an input of size 64. Which of the
following most closely approximates the maximum
input size of a problem that can be solved in 6 min-
utes? [2015]

 (A) 256 (B) 512
 (C) 1024 (D) 2048

 6. The given diagram shows the flowchart for a recur-
sive function A(n). Assume that all statements, except
for the recursive calls, have O (1) time complexity. If
the worst case time complexity of this function is O
(na), then the least possible value (accurate up to two
decimal positions) of α is ____. [2016]

 Flowchart for Recursive Function A(n)

 7. Let A be an array of 31 numbers consisting of a
sequence of 0’s followed by a sequence of 1’s. The
problem is to find the smallest index i such that A[i]
is 1 by probing the minimum number of locations in
A. The worst case number of probes performed by an
optimal algorithm is . [2017]

 8. Match the algorithms with their time complexities:

Algorithm Time complexity

(P) Towers of Hanoi with n disks (i) Θ (n2)

(Q) Binary search given n sorted
numbers

(ii) Θ (n log n)

(R) Heap sort given n numbers
at the worst case

(iii) Θ (2n)

(S) Addition of two n × n
matrices

(iv) Θ (log n)

 [2017]
 (A) P → (iii), Q → (iv), R → (i), S → (ii)
 (B) P → (iv), Q → (iii), R → (i), S → (ii)
 (C) P → (iii), Q → (iv), R → (ii), S → (i)
 (D) P → (iv), Q → (iii), R → (ii), S → (i)

Chapter 3 • Divide-and-conquer | 3.115

anSwer keYS

exerciSeS

Practice Problems 1
 1. A 2. A 3. B 4. C 5. A 6. B 7. B 8. A 9. C 10. A
 11. C 12. D 13. A 14. C 15. A

Practice Problems 2
 1. B 2. B 3. C 4. B 5. A 6. D 7. C 8. C 9. A 10. B
 11. B 12. C 13. A 14. B 15. A

Previous Years’ Questions
 1. C 2. 1 3. B 4. A 5. B 6. 2.2 to 2.4 7. 5 8. C

	Unit 3: Programming and Data Structures
	PART B: Algorithms
	Chapter 3: Divide-and-conquer
	Divide-and-conquer
	Merge Sort
	Quick Sort
	Searching
	Exercises
	Previous Years’ Questions
	Answer Keys

