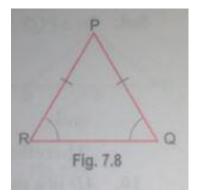
Short Answer Type Questions – I [2 MARKS]

Que 1. In Fig. 7.8, ΔPQR , PQ = PR and $\angle Q = 65^{\circ}$. Then find $\angle R$.



Sol. In $\triangle PQR$, PQ = PR, So $\angle Q = 65^{\circ} = \angle R$

[Angles opposite to equal sides of a triangle are equal.]

Que 2. If the corresponding angles of two triangles are equal, then they are always congruent. State true or false and justify your answer.

Sol. False, because two equilateral triangles with sides 3 cm and 6 cm respectively have all angles equal, but the triangles are not congruent.

Que 3. In the Fig. 7.9, PM is the bisector of $\angle P$ and PQ = PR. Then $\triangle PQM$ and $\triangle PRM$ are congruent by which criterion?

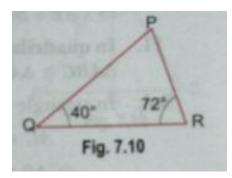
Sol. In $\triangle PQM$ and $\triangle PRM$

PQ = PR and $\angle QPM = \angle RPM$ (Given)

PM is common.

So, $\Delta PQM \cong \Delta PQM$ (By SAS rule)

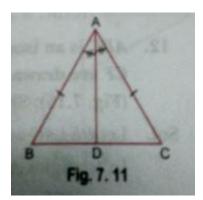
Que 4. In Fig. 7.10 $\triangle PQR$, if $\angle Q = 40^{\circ}$ and $\angle R = 72^{\circ}$, then find the shortest and the largest sides of the triangle.



Sol. In ΔPQR , we know

 $\angle Q = 40^{\circ} \text{ and } \angle R = 72^{\circ}$ Then, $\angle P = 180^{\circ} - (72^{\circ} + 40^{\circ}) = 68^{\circ}$ In $\triangle PQR$, PQ is largest side [Because side opposite to largest angle is largest] PR is shortest side [Because side opposite to shortest angle is shortest]

Que 5. In Fig. 7.11, if AB = AC and BD = DC, then find $\angle ADB$.



Sol. \triangle ADB and \triangle ADC

 $AB = AC, BD = DC \quad [Given]$ $AD = AD \qquad [Common]$ So, $\Delta ADB \cong \Delta ADC \qquad [By SSS congruence rule]$ $\Rightarrow \qquad \angle ADB = \angle ADC \qquad [CPCT]$ But $\angle ADB + \angle ADC = 180^{\circ}$ [Linear pair] $\Rightarrow \qquad \angle ADB + \angle ADB = 180^{\circ}$ $\Rightarrow \qquad 2 \angle ADB = 180^{\circ} \Rightarrow \angle ADB = 90^{\circ}$

Que 6. Is it possible to construct a triangle with lengths of its sides 5cm, 3cm and 8cm? Give reason for your answer.

Sol. No, since sum of two sides is equal to third side. (5 cm + cm = 8 cm)

Que 7. Is it possible to construct a triangle with lengths of its sides as 7 cm, 8 cm and 5 cm? Give reason for your answer.

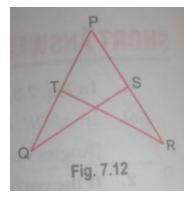
Sol. Yes, because in each case sum of two sides is greater than the third side.

Que 8. In $\triangle ABC$, $\angle A = 65^{\circ}$ and $\angle C = 30^{\circ}$. Which side of this triangle is the longest? Give reason for your answer.

Sol. $\angle B = 180^{\circ} - 65^{\circ} - 30^{\circ} = 85^{\circ}$

 \therefore AC is the longest side as side opposite to the larger angle is longer.

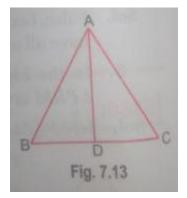
Que 9. In Fig. 7.12, PQ = PR and $\angle Q = \angle R$. Prove that $\Delta PQS \cong \Delta PRT$.



Sol. In $\triangle PQS$ and $\triangle PRT$

	PQ = PR	(Given)
	$\angle Q = \angle R$	(Given)
And	$\angle P = \angle P$	(Common)
Therefore $\Delta PQS \cong \Delta PRT$		(ASA Congruence criterion)

Que 10. AD is a median of the $\triangle ABC(Fig. 7.13)$. Is it true that AB + BC + CA > 2AD? Give reason for your answer.



Sol. Yes, since the sum of two sides of a triangle is greater than the third side.

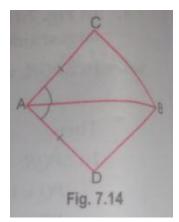
Therefore, AB + BD > AD ...(i) AC + CD > AD ...(ii)

Adding (*i*) and (*ii*), we get

AB + AC + (BD + CD) > AD + AD

 $\Rightarrow AB + BC + CA > 2AD$

Que 11. In quadrilateral ACBD, AC = AD and AB bisects $\angle A$ (in Fig.7.14). Show that $\triangle ABC \cong \triangle ABD$. What can you say about *BC* and *BD*?



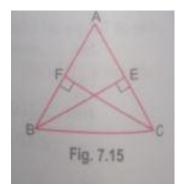
Sol. In triangle *ABC* and *ABD*, we have,

$$AC = AD$$
(Given) $\angle CAB = \angle BAD$ ($\therefore AB$ bisects $\angle A$) $AB = AB$ (Common)

And by SAS congruence criterion, we have

 $\Delta ABC \cong \Delta ABD \qquad \Rightarrow BC = BD \qquad (CPCT)$

Que 12. *ABC* is an isosceles triangle in which altitude BE and CF are drawn to equal sides AC and AB respectively (Fig.7.15). Show that these altitudes are equal.



Sol. Let $BE \perp AC$ and $CF \perp AB$.

In triangles ABE and ACF, we have

 $\angle AEB = \angle AFC$ (: Each 90⁰)

 $\angle A = \angle A$ (Common)

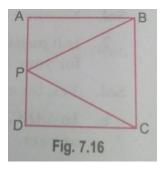
And AB = AC (Given)

By AAS criterion of congruence, we have

$$\Delta ABE \cong \Delta ACF$$

So, $BE = CF$ (CPCT)

Que 13. In Fig. (7.16) *ABCD* is a square and P is the midpoint of *AD*. *BP* and *CP* are joined. Prove that $\angle PCB = \angle PBC$.



Sol. In triangles *PAB* and *PDC*,

 $PA = PD \qquad (Given)$ $AB = CD \qquad (Side of square)$ $\angle PAB = \angle PDC = 90^{0} \qquad (By RHS, \Delta PAB \cong \Delta PDC)$ $\therefore \qquad PC = PB \Rightarrow \angle PCB = \angle PBC$