Network Theory

Current: Electric current is the time rate of change of charge flow.

$$i = \frac{dq}{dt}$$
 (Ampere)

• Charge transferred between time *t_O* and *t*

$$q = \int_{t_o}^t i dt$$

Sign Convention: A negative current of -5A flowing in one direction is same as a current of +5A in opposite direction.

Voltage: Voltage or potential difference is the energy required to move a unit charge through an element, measured in volts.

Power: It is time rate of expending or absorbing energy.

- Law of conservation of energy must be obeyed in any electric circuit.
- Algebraic sum of power in a circuit, at any instant of time, must be zero.

i.e. $\Sigma P = 0$

Circuit Elements:

Passive element: If it is not capable of delivering energy, then it is passive element. Example: Resistor, Inductor, and Capacitor

Active element: If an element is capable of delivering energy independently, then it is called active element. Example: Voltage source, and Current source.

Linear and Non linear elements: If voltage and current across an element are related to each other through a constant coefficient then the element is called as linear element otherwise it is called as non-linear.

Unidirectional and Bidirectional: When elements characteristics are independent of direction of current then element is called bi-directional element otherwise it is called as unidirectional.

- R, L & C are bidirectional
- Diode is a unidirectional element.
- Voltage and current sources are also unidirectional elements.
- Every linear element should obey the bi-directional property but vice versa as is not necessary.

Resistor: Linear and bilateral (conduct from both direction)

- In time domain V(t) = I(t)R
- In s domain: V(s) = RI(s)

$$R = \frac{\rho l}{A}$$
 ohm

• l = length of conductor, $\rho = resistivity$, A = area of cross section

• Extension of wire to n times results in increase in resistance:

$$R' = n^2 R$$

• Compression of wire results in decrease in resistance:

$$R' = \frac{R}{n^2}$$

Capacitor: All capacitors are linear and bilateral, except electrolytic capacitor which is unilateral.

• Time Domain:

$$i(t) = \frac{Cdv(t)}{dt} \qquad v(t) = \frac{1}{C} \int_{-\infty}^{t} i(t)dt$$

• In s-domain:

$$I(s) = sCV(s) \qquad V(s) = \frac{1}{sC}I(s)$$

- Capacitor doesn't allow sudden change of voltage, until impulse of current is applied.
- It stores energy in the form of electric field and power dissipation in ideal capacitor is zero.

Impedance:

$$Z_c = -jX_c\Omega$$
 & $X_c = \frac{1}{\omega C}$; $X_c \rightarrow Capacitive reactance$; $\omega = 2\pi f$

Inductor: Linear and bilinear element

Time Domain:	$v(t) = L \frac{di(t)}{dt}$		$i(t) = \frac{1}{L} \int_{\infty}^{t} v(t) dt$
Impedance	$Z_L = j X_L \Omega$	&	$X_L = \omega L \ \Omega$
In s-domain	V(s) = sL I(s)		$\mathbf{I}(s) = \frac{1}{sL} \mathbf{V}(s)$

- Inductor doesn't allowed sudden change of current, until impulse of voltage is applied. It stores energy in the form of magnetic field.
- Power dissipation in ideal inductor is zero.

FORMULAS FOR THE BASIC CIRCUIT COMPONENTS					
CIPCUIT	IMPEDANCE		VOLT-AMP EQUATIONS		ENERGY
ELEMENT	absolute value	complex form	instantaneous values	RMS values for sinusoidal signals	(dissipated on R or stored in L, C)
RESISTANCE	R	R	v=i×R	Vrms=Irms×R	E=Irms ² R×t
INDUCTANCE	2πfL	jωL	v=L×di/dt	Vrms=Irms×2πfL	E=Li ² /2
CAPACITANCE	1/(2πfC)	1/jωC	i=C×dv/dt	Vrms=Irms/(2πfC)	E=Cv ² /2

Notes:

R- resistance in ohms, L- inductance in henrys, C- capacitance in farads, f - frequency in hertz, t- time in seconds, π≈3.14159;

ω=2πf - angular frequency;

j - imaginary unit (j²=-1)

Euler's formula: e^{jX}=cosx+jsinx

Rules of series	Rules of Parallel
$V_{eq} = V_1 + V_2 + V_3$ $R_{eq} = R_1 + R_2 + R_3$ $C_{eq} = \frac{1}{\frac{1}{c_1} + \frac{1}{c_2} + \frac{1}{c_3}}$	$i_{eq} = i_1 + i_2 + i_3$ $R_{eq} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}$ $C_{eq} = C_1 + C_2 + C_3$

CALCULATIONS OF EQUIVALENT RLC IMPEDANCES				
CIRCUIT CONNECTION	COMPLEX FORM	ABSOLUTE VALUE		
RLC	Z=R+jωL+1/jωC	$\mathbf{Z} = \sqrt{\mathbf{R}^2 + (\omega \mathbf{L} - \frac{1}{\omega \mathbf{C}})^2}$		
Parallel	Ζ= 1/ <mark>(1/R+1/jωL+j</mark> ωC)	$Z = \frac{1}{\sqrt{\frac{1}{R^2} + \left(\omega C - \frac{1}{\omega L}\right)^2}}$		

Mesh Analysis:

- Path A set of element that may be traversed in order, without passing thru the same node twice
- Loop a closed path
- Mesh A loop that does not contain any other loop within it
- Planar Circuit A circuit that may be drawn on a plane surface in such a way that there are no branch crossovers
- Non-Planar Circuit A circuit that is not planar, i.e, some branch(es) pass over some other branch(es) (Can not use Mesh Analysis)

Transformer: 4 terminal or 2-port devices.

• $N_1 > N_2$: Step down transformer

$$\frac{V_1}{V_2} = \frac{N_1}{N_2}$$

• $N_2 > N_1$: Step up transformer

$$\frac{\left|\frac{I_1}{I_2} = \frac{N_2}{N_1}\right|}{\text{Where } \frac{N_1}{N_2} = K \rightarrow Turns \ ratio}$$

• Transformer doesn't work as amplifier because current decreases in same amount power remain constant.

Gyrator:

- $R_0 = Coefficient of Gyrator$
- $V_1 = R_0 I_2$
- $V_2 = -R_0 I_1$
- If load is capacitive then input impedance will be inductive and vice versa.
- If load is inductive then input impedance will be capacitive.
- It is used for simulation of equivalent value of inductance.

Voltage Source:

• In practical voltage source, there is small internal resistance, so voltage across the element varies with respect to current.

• Ideal voltmeter, R_V is infinite (Internal resistance)

Current Source:

• In practical current source, there is small internal resistance, so current varies with respect to the voltage across element

- Ideal Ammeter, R_a is 0 (Internal resistance)
- Internal resistance of voltage source is in series with the source.
- Internal resistance of ideal voltage source is zero.
- Internal resistance of current source is in parallel with the source.
- Internal resistance of ideal current source is infinite.

Independent Source: Voltage or current source whose values doesn't depend on any other parameters.

• Example: Generator

Dependent Source: Voltage or current source whose values depend upon other parameters like current, voltage.

Lumped Network: A network in which all network elements are physically separable is known as lumped network.

Distributed network: A network in which the circuit elements like resistance, inductance etc, are not physically separate for analysis purpose, is called distributed network. Example: Transmission line.

Thevenin's Theorem: Any linear network can be replaced by an independent voltage sources in series with an impedance such that the current voltage relation at the terminals is unchanged.

Norton's Theorem: Identical to the venin's statement except that the equivalent circuit is an independent current source in parallel with an impedance. ($Z_S = R_{Th}$)

Root Mean Square

Average of a signal that is symmetric about the horizontal Axis

$$\begin{split} V_{rms} &= \frac{V_m}{\sqrt{2}} & I_{rms} = \frac{I_m}{\sqrt{2}} \\ V_{eff} &= V_{rms} & I_{eff} = I_{rms} \end{split}$$

Time	Domain	Frequency	domain
R →	v = Ri	V = RI	
L 	$v = L \frac{di}{dt}$	$V = j\omega L \mathbf{I}$	jwL ► + V -
C ($v = \frac{1}{C} \int i dt$	$\boldsymbol{V} = \frac{1}{jwC}\boldsymbol{I}$	1/jwC ↓ (+ V -