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Non-linear Waves, Shocks
and Solitons

Non-linear Effects in Acoustic Waves

The linearity of the longitudinal acoustic waves discussed in Chapter 6 required the

assumption of a constant bulk modulus

B ¼ � dP

dV=V

If the amplitude of the sound wave is too large this assumption is no longer valid and the

wave propagation assumes a new form. A given mass of gas undergoing an adiabatic

change obeys the relation

P

P0

¼ V0

V

� ��
¼ V0

V0ð1þ �Þ
� ��

in the notation of Chapter 6, so that

@P

@x
¼ @p

@x
¼ ��P0ð1þ �Þ�ð�þ1Þ @ 2�

@x2

since � ¼ @�=@x.
Since ð1þ �Þð1þ sÞ ¼ 1, we may write

@p

@x
¼ ��P0ð1þ sÞ�þ1 @

2�

@x2
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and from Newton’s second law we have

@p

@x
¼ ��0

@ 2�

@t 2

so that

@ 2�

@t 2
¼ c20ð1þ sÞ�þ1 @

2�

@x2
; where c20 ¼

�P0

�0

ð15:1Þ

Physically this implies that the local velocity of sound, c0ð1þ sÞð�þ1Þ=2
, depends upon

the condensation s, so that in a finite amplitude sound wave regions of higher density and

pressure will have a greater sound velocity, and local disturbances in these parts of the

wave will overtake those where the values of density pressure and temperature are lower.

A single sine wave of high amplitude can be formed by a close fitting piston in a tube

which is pushed forward rapidly and then returned to its original position. Figure 15.1a

shows the original shape of such a wave and 15.1b shows the distortion which follows as it

propagates down the tube. If the distortion continued the wave form would eventually

appear as in Figure 15.1c, where analytical solutions for pressure, density and temperature

would be multi valued, as in the case of the non-linear oscillator of Figure 14.3c. Before

this situation is reached, however, the wave form stabilizes into that of Figure 15.1d, where

at the vertical ‘shock front’ the rapid changes of particle density, velocity and temperature

produce the dissipating processes of diffusion, viscosity and thermal conductivity. The

velocity of this ‘shock front’ is always greater than the velocity of sound in the gas into

which it is moving, and across the ‘shock front’ there is always an increase in entropy. The

competing effects of dissipation and non-linearity produce a stable front as long as the

wave retains sufficient energy. The N-type wave of Figure 15.1d occurs naturally in

explosions (in spherical dimensions) where a blast is often followed by a rarefaction.

The growth of a shock front may also be seen as an extension of the Doppler effect

(p. 141), where the velocity of the moving source is now greater than that of the signal. In

Figure 15.2a as an aircraft moves from S to S 0 in a time t the air around it is displaced and

the disturbance moves away with the local velocity of sound v S. The circles show the

positions at time t of the sound wave fronts generated at various points along the path of the

aircraft but if the speed of the aircraft u is greater than the velocity of sound v S regions of

high density and pressure will develop, notably at the edges of the aircraft structure and

(a) (b) (c) (d)

Pressure

Figure 15.1 The local sound velocity in a high amplitude acoustic wave (a) is pressure and density
dependent. The wave distorts with time (b) as the crest overtakes the lower density regions. The
extreme situation of (c) is prevented by entropy-producing mechanisms and the wave stabilises to an
N type shock-wave (d) with a sharp leading edge
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along the conical surface tangent to the successive wavefronts which are generated at a

speed greater than sound and which build up to a high amplitude to form a shock. The

cone, whose axis is the aircraft path, has half angle � where

sin� ¼ v S

u

It is known as the ‘Mach Cone’ and when it reaches the ground a ‘supersonic bang’ is heard.

The growth of the shock at the surface of the cone may be seen by considering the sound

waves in Figure 15.2(b) generated at points A (time tA) and B (time tB) along the path of

the aircraft, which travels the distance AB ¼ x ¼ u�t in the time interval �t ¼ tB � tA.

The sound waves from A will travel the distance r0 to reach the point P at a time

t0 ¼ tA þ r0

v S

Those from B will travel the distance r1 to P to arrive at a time

t1 ¼ tB þ r1

v S

S S′ S′′ S′′′

θ

θ

α

P
(a)

u ∆t

A

P

B

r1
r0

(b)

Figure 15.2 (a) The circles are the wavefronts generated at points S along the path of the aircraft,
velocity u > v S the velocity of sound. Wavefronts superpose on the surface of the Mach Cone (typical
point P) of half angle � ¼ sin�1 v S=u to form a shock front. (b) At point P sound waves arrive
simultaneously from positions A and B along the aircraft path when ðu=v SÞ cos � ¼ 1: ð�þ � ¼ 90�Þ

Non-linear Effects in Acoustic Waves 507



If x is small relative to r0 and r1, we see that

r1 � r0 � x cos � ¼ u�t cos �

so the time interval

t1 � t0 ¼ tB � tA þ ðr1 � r0Þ
v S

¼ �t � u�t cos �

v S

¼ �t 1� u cos �

v S

� �

For the aircraft speed u < v S, t1 � t0 is always positive and the sound waves arrive at P in

the order in which they were generated.

For u > v S this time sequence depends on � and when

u

v S

cos � ¼ 1

t1 ¼ t0 and the sound waves arrive simultaneously at P to build up a shock.

Now the angles � and � are complementary so the condition

cos � ¼ v S

u

defines

sin� ¼ v S

u

so that all points P lie on the surface of the Mach Cone.

A similar situation may arise when a charged particle q emitting electromagnetic

waves moves in a medium of refractive index greater than unity with a velocity v q which

may be greater than that of the phase velocity v of the electromagnetic waves in the

medium ðv < cÞ. AMach Cone for electromagnetic waves is formedwith a half angle�where

sin� ¼ v

v q

And the resulting ‘shock wave’ is called Cerenkov radiation. Measuring the effective

direction of propagation of the Cerenkov radiation is one way of finding the velocity of the

charged particle.

Shock Front Thickness

The extent of the region over which the gas properties change, the shock front thickness,

may be only a few mean free paths in a monatomic gas because only a few collisions

between atoms are necessary to exchange the energy required to raise them from the
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equilibrium conditions ahead of the shock to those behind it. In a polyatomic gas the

collisions are effective in producing a rapid increase in translational and rotational

mode energies, but vibrational modes take much longer to reach their new equilibrium, so

that the shock front thickness is very much greater.

Within the shock front thickness the state of the gas is not easily found, but the state of

the gas on one side of the shock may be calculated from the state of the gas on the other

side by means of the conservation equations of mass, momentum and energy.

Equations of Conservation

In a laboratory, shock waves are produced in a tube which is divided by a diaphragm into a

short high-pressure section and a much longer low-pressure section. When the diaphragm

bursts the expanding high pressure gas behaves as a very fast low-inertia piston which

compresses the low pressure gas on the other side of the diaphragm and drives a shock

wave down the tube. The profile of this shock wave is the step function shown as the dotted

line in Figure 15.3, and the gas into which the shock is propagating is considered to be

at rest. This simplifies the analysis, for we can consider the situation in Figure 15.3 as it

appears to an observer O travelling with the shock front velocity u1 into the stationary gas.

The shock front is located within the region bounded by the surfaces A and B of unit area,

each of which remains fixed with respect to the observer. The stationary gas which moves

through the shock front from surface B acquires a flow velocity u < u1 and a velocity

relative to the shock front of u2 ¼ u1 � u. From the observer’s viewpoint the quantity of

gas flowing into unit area of the region AB per unit time is �1u1, where �1 is the density of

Observer on shock front

Shock front velocity u1

Shocked gas
Density r2
Pressure P2
Flow velocity u
Relative velocity
u2 = u1−u

Stationary gas
Density r1
Pressure P1
Relative velocity
         u1

Unshocked
gas at rest

x

A B

P
re

ss
ur

e

Figure 15.3 The pressure ‘step profile’ of a shock wave developed in a shock tube is shown by the
dotted line. The plane cross-sections at A and B remain fixed with respect to the observer O moving
with the shock front at velocity u1 into unshocked gas at rest of pressure p 1 and density � 1. The
shocked gas has a pressure p2, a density � 2 and a velocity u, with a relative velocity u2 ¼ u 1 � u
with respect to the shock front. The states of the gas at A and B are related by the conservation
equations of mass, momentum and energy across the shock front. Experimental measurement of the
shock velocity u1 is sufficient to determine the unknown parameters if the stationary gas parameters
are known
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the gas ahead of the shock. The quantity leaving unit area of AB per unit time is

�2ðu1 � uÞ ¼ �2u2, where �2 is the density of the shocked gas.

Conservation of mass yields �1u1 ¼ �2u2 ¼ m (a constant mass). The force per unit area

acting across the region AB is p2 � p1, which equals the rate of change of momentum of

the gas within the unit element, which is mðu1 � u2Þ. The conservation of momentum is

therefore given by

p1 þ �1u
2
1 ¼ p2 þ �2u

2
2:

The work done on unit area of the region per unit time is p1u1 � p2u2, and this equals the

rate of increase of the kinetic and internal energy of the gas passing through unit area of the

shock wave.

The difference

p1u1 � p2u2 ¼ p1

�1

m� p2

�2

m

so that if the internal energy per unit mass of the gas is written eð p; �Þ, then the equation of
conservation of energy per unit mass becomes

1

2
u2
1 þ e1 þ p1

�1

¼ 1

2
u2
2 þ e2 þ p2

�2

where for an ideal gas p=� ¼ RT and e ¼ cvT ¼ ð1=� � 1Þp=�, where T is the absolute

temperature, cv is the specific heat per gram at constant volume and � ¼ cp=cv, where cp is
the specific heat per gram at constant pressure.

These three conservation equations

�1u1 ¼ �2u2 ¼ m ðmassÞ
p1 þ �1u

2
1 ¼ p2 þ �2u

2
2 ðmomentumÞ

and

1

2
u2
1 þ e1 þ p1

�1

¼ 1

2
u2
2 þ e2 þ p2

�2

ðenergyÞ

together with the internal energy relation eð p; �Þ completely define the properties of an ideal

gas behind a shock wave in terms of the stationary gas ahead of it.

In an experiment the properties of the gas ahead of the shock are usually known, leaving

five unknowns in the four equations, which are the shock front velocity u1, the density of

the shocked gas �2, the relative flow velocity behind the shock u2, the shocked gas pressure

p2 and its internal energy e2. In practice the shock front velocity u1 is measured and the

other four properties may then be calculated.

Mach Number

A significant parameter in shock wave theory is the Mach number. It is a local parameter

defined as the ratio of the flow velocity to the local velocity of sound. The Mach number of
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the shock front is therefore M s ¼ u1=c1, where u1 is the velocity of the shock front

propagating into a gas whose velocity of sound is c1.

The Mach number of the gas flow behind the shock front is defined asMf ¼ u=c2, where
u is the flow velocity of the gas behind the shock front ðu < u1Þ and c2 is the local velocity

of sound behind the shock front. There is always an increase of temperature across the

shock front, so that c2 > c1 and M s > Mf . The physical significance of the Mach number

is seen by writing M 2 ¼ u2=c2, which indicates the ratio of the kinetic flow energy,
1
2
u2 mol�1, to the thermal energy, c2 ¼ �RT mol�1. The higher the proportion of the total

gas energy to be found as kinetic energy of flow the greater is the Mach number.

Ratios of Gas Properties Across a Shock Front

A shock wave may be defined in terms of the shock Mach number M s, the density or

compression ratio across the shock front � ¼ �2=�1, the temperature ratio across the shock

T2=T1 and the compression ratio or shock strength y ¼ p2=p1.

Given the shock strength, y ¼ p2=p1, the conservation equations are easily solved to

yield

M s ¼ u1

c1
¼ yþ �

1þ �

� �1=2

where

� ¼ � � 1

� þ 1

� ¼ �2

�1

¼ �þ y

1þ �y

and

T2

T1

¼ y
1þ �y

�þ y

� �

Alternatively these may be written in terms of the experimentally measured parameterM s as

p2

p1

¼ y ¼ M 2
s ð1þ �Þ � �

�2

�1

¼ � ¼ M 2
s

1� �þ �M 2
s

and

T2

T1

¼ ½�ðM 2
s � 1Þ þM 2

s �½�ðM 2
s � 1Þ þ 1�

M 2
s

For weak shocks (where p2=p1 is just greater than 1) �, T2=T1 and M s are also just greater

than unity, and the shock wave moves with the speed of sound.
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Strong Shocks

The ratio p2=p1 � 1 defines a strong shock, in which case

M 2
s ! ð� þ 1Þ

2�
y

and

� ¼ �2

�1

! � þ 1

� � 1

� �

a limit of 6 for air and 4 for a monatomic gas for a constant �. The flow velocity

u ¼ u1 � u2 ! 2u1

ð� þ 1Þ

and the temperature ration

T2

T1

¼ c2

c1

� �2

! ð� � 1Þ
ð� þ 1Þ y

The temperature increase across strong shocks is of great experimental interest. The

physical reason for this increase may be seen by rewriting the equation of energy

conservation as 1
2
u2
1 þ h1 ¼ 1

2
u2
2 þ h2, where h ¼ ðeþ p=�Þ is the total heat energy or

enthalpy per unit mass. For strong shocks h2 � h1 of the cold stationary gas and u1 � u2,

so that the energy equation reduces to h2 � 1
2
u2
1, which states that the relative kinetic

energy of a stationary gas element just ahead of the shock front is converted into thermal

energy when the shock wave moves over that element. The energy of the gas which has

been subjected to a very strong shock wave is almost equally divided between its kinetic

energy and its thermal or internal energy. This may be shown by considering the initial

values of the internal energy e1 and pressure p1 of the cold stationary gas to be negligible

quantities in the conservation equations, giving the kinetic energy per unit mass behind the

shock as

1
2
u2 ¼ 1

2
ðu1 � u2Þ2 ¼ e2

the internal energy per unit mass of the shocked gas.

In principle, the temperature behind very strong shock waves should reach millions of

degrees. In practice, real gas effects prevent this. In a monatomic gas high translational

energies increase the temperature until ionization occurs and this process then absorbs

energy which otherwise would increase the temperature still further. In a polyatomic gas

the total energy is divided amongst the various modes (translational, rotational and

vibrational) and the temperatures reached are much lower than in the case of the

monatomic gas. The reduction of � due to these processes is significant, since with
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increasing ionization � ! 1, and the temperature ratio depends upon the factor

ð� � 1Þ=ð� þ 1Þ which becomes very small.

(Problems 15.1, 15.2, 15.3, 15.4, 15.5, 15.6)

Solitons

We have seen that a pulse, limited in space, is also limited in time. Fourier analysis shows

that a pulse is the superposition of a large number of components with different frequencies

and that the high frequency components contribute to the vertical edges of the pulse Fig-

ure 10.3. The superposition of these components changes as phase differences develop;

different frequencies will have different phase velocities and the pulse disperses.

It is surprising, therefore, that high amplitude solitary waves or solitons are known to

exist. The first recorded observation of a soliton is that of Scott–Russel (1844) who saw a

single wave about 40 cm high travelling along a canal in Scotland. Rayleigh (1876)

developed an expression for the shape of this soliton based on the hydrodynamics of waves

in shallow water.

That expression, the bell-shaped Figure 15.4 is given by

� ¼ a sech2�ðx� x0Þ

where

� ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a

h2ðhþ aÞ

s
:

x
x0

h

= a sec h2a (x − x0)h

h

a

Figure 15.4 The solitary wave (soliton) on a shallow canal seen by Scott--Russel (1844) was
described as a sech2 bell-shaped function by Rayleigh (1876). The canal depth is h, the soliton
amplitude is a and � measures a displacement on the soliton curve. The soliton is centred at x0 and �
is a function of a and h
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�, a, h and x0 are all shown in Figure 15.4. The coordinate x0 about which the static figure

is centred is replaced by ct when the soliton is moving; c is the soliton velocity and t is the

time. We shall see that c is related to the height of the soliton. Larger amplitude solitons

move faster.

Further sightings of solitons on Dutch canals led to a thorough discussion of waves with

finite amplitude in shallow water by Korteweg and de Vries (1895). Their equation

describing soliton behaviour is known as the KdVequation and is now taken as the basis of

soliton theory. We shall not pursue the relevant fluid dynamics necessary to obtain the KdV

equation but we shall obtain its mathematical form by a method which may lack formal

rigour but which provides a good working model. It also emphasizes the physical

characteristics which produce a soliton.

The underlying physics of solitons is the competition between two processes. One of

these causes a high amplitude or non-linear wave to break; we have seen this in the

formation of a shock wave in Figure 15.1c. This results from the increased phase velocities

of the high amplitude non-linear components of the wave.

In a soliton this is opposed by the dispersion of the wave components in such a way that

a stable profile is maintained.

We shall derive the form of the KdV equation and then discuss the following topics:

� Solitons, Schrödinger’s equation and elementary particles.

� Solitons in optical fibres. Telecommunications..

A list of references is given at the end of the chapter.

Non-Linearity

Equation (15.1) shows that the higher amplitude components of an acoustic wave

propagate with a phase velocity

v ¼ @x

@t
¼ c0ð1þ sÞ�þ1=2

where c0 is the phase velocity of a small amplitude linear wave and s, the condensation, is a

measure of the compression in the wave.

We may expand this, to a first order, to give

v ¼ @x

@t
¼ c0 1þ � þ 1

2
s . . .

� �
ð15:2Þ

In a linear, low-amplitude, right-going wave we have

� ¼ �m e ið!t�kxÞ
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So, denoting @�=@t as � t and @�=@x as � x we have

� t=�x ¼ �!
k

¼ �c0

or

� t þ c0� x ¼ 0 ð15:3Þ

Throughout this chapter we shall indicate partial differentiation with respect to a variable

by writing that variable as a subscript. Thus, � t ¼ @�=@t; �x ¼ @�=@x; � tt ¼ @ 2�=@t 2 and
� xx ¼ @ 2�=@x2. Replacing c0 in equation (15.3) by v in equation (15.2) gives

� t þ c0 1þ � þ 1

2

� �
s

� �
� x ¼ 0

which, because s ¼ k � is in phase with � t (Figure 6.2), becomes

� t þ c0 1þ � þ 1

2

� �
k�

� �
� x ¼ � t þ c0�x þ c0

� þ 1

2

� �
k�� x ¼ 0 ð15:4Þ

We are interested in non-linear effects and after removing the linear contribution of

equation (15.4) we are left with the non-linear expression

� t þ b�� x ¼ 0 ð15:5Þ

where

b ¼ c0
� þ 1

2

� �
k

Equation (15.5) provides the first two terms of the KdV equation. We now consider the

third, the dispersion term, which competes with the non-linear b��x term.

Dispersion and the Form of the KdV Equation A typical dispersion equation is that for

transverse and longitudinal waves in a periodic structure given by equation (5.12) as

v ¼ !

k
¼ c0

sin ka=2

ka=2

� �

where k is the wave number and a is the particle separation. For small k, long �, we may

expand the sine term to give

v ¼ !

k
¼ c0

ka=2

ka

2
� ka

2

� �3

� � � þ
" #
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or

! ¼ c0k 1� ka

2

� �2
" #

¼ c0k � dk 3 ð15:5aÞ

where

d ¼ c0a
2=4

Writing a linear wave in the form

� ¼ �m e ið!t�kxÞ

gives

� t ¼ i!�; � x ¼ �ik� and � xxx ¼ ik 3�

which, with equation (15.5a), gives

� t þ c0� x þ d� xxx ¼ 0

Again, the contribution � t þ c0� x applies only to linear waves and replacing this for non-

linear waves by equation 15.5

� t þ b�� x

gives

� t þ b�� x þ d� xxx ¼ 0 ð15:6Þ
where b and d are constant coefficients. This is the form of the KdV equation which

describes soliton behaviour. The coefficients b and d depend upon the particular soliton

under discussion.

We gain an insight into the effect of the dispersion term by considering the following.

Let us write a right-going linear wave in the form

� ¼ �m eið!t�kxÞ ¼ �m eikðc 0t�xÞ

where

! ¼ c0k

The effect of dispersion, from the previous section, changes ! ¼ c0k to

! ¼ c0k 1� ka

2

� �2
" #

so we have

� ¼ �m exp ik c0 1� ka

2

� �2
( )

t � x

" # !
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and dispersion has the effect of shifting the wave. Note that in this case of normal

dispersion the shift retards the higher k, shorter wavelength terms.

Mathematically, this dispersive shift is used to offset the steepening, wave breaking

effects of non-linearity. The technique, known as a Gardner–Morikawa transformation, is

to choose a coordinate system which moves with the velocity c0, the pulse rides on this

moving coordinate so that dispersion relative to c0 is much reduced. In addition, because

any dispersive change is now so much slower, a much longer time scale 	 > t is chosen and

the final aim is to show that changes in the soliton profile are negligible in the 	 time scale.

The Elements of the KdV Equation Although we derived the form of the KdV equation

using the amplitude �, the equation is most often written in terms of a quantity u which

may represent any property of the wave which varies with distance and time.

In their paper ‘The Discovery of the Soliton’ (1965) Zabusky and Kruskal used the

equation in the form

ut þ uux þ � 2uxxx ¼ 0 ð15:7Þ

where � � 1.

Their experiment was made by computer simulation. In the absence of the third

dispersive term the non-linear equation

ut þ uux ¼ 0 ð15:8Þ

describes the development of the shock wave of Figure 15.1. The positive pulses of Figure

15.1a, b and c are superposed in Figure 15.5 with u plotted against x. It is evident that ut

increases with higher values of u and equation (15.8) retains a single valued solution only

as long as the gradient ux of the leading edge becomes increasingly negative as the pulse

steepens.

Now equation (15.8) is satisfied by any function u ¼ f ðx� utÞ—see Problem 15.7—and

ux ¼ ð1� uxtÞ f 0 ð15:9Þ

u a b c

x

Figure 15.5 Figs. 15.1 (a), (b) and (c) superimposed to show breaking of a non-linear wave
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where

f 0 ¼ @f=@ðx� utÞ

Taking the pulse profile at t ¼ 0 as u ¼ f ðxÞ ¼ cos
x equation (15.9) shows that

ux ¼ �1 at u � 0 (the foot of the pulse) when x ¼ 0:5 and t ¼ 1=
. At this point the wave
becomes infinitely steep and breaks. This behaviour was observed by Zabusky and Kruskal.

When Zabusky and Kruskal added the third dispersion term in their computer experiment

to give the KdV equation

ut þ uux þ � 2uxxx ¼ 0

they found that after a time t ¼ 1=
 the solution broke into a train of solitary waves

(solitons) of successively larger amplitudes with the larger waves travelling faster than the

smaller ones. Even more important from the point of view of optical solitons, after one

soliton had overtaken another, each soliton retained its unique identity (Figure 15.6).

Solitons are transparent to each other and are unaffected by mutual collisions.

(Problems 15.7, 15.8)

Two Important Forms of the KdV Equation

1. The KdV equation for shallow water waves may be written in the form

ut þ 6uux þ uxxx ¼ 0 ð15:10Þ
with a solution

uðx; tÞ ¼ 2�2sech2 �ðx� ctÞ

¼ 2
@ 2

@x2
log ½1þ e2�ðx�ctÞ�

or

uðx; tÞ ¼ 2
@ 2

@x2
log ½1þ e�2�ðx�ctÞ�

A A′

B

v1 v2 < v1 v1

Figure 15.6 The velocity of a soliton increases with its magnitude and solitons are transparent in
mutual collisions, each retaining its own identity. A large soliton A overtakes a smaller soliton B to
emerge as A 0 with B unaffected
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Note that the exponents in the log solutions may be positive or negative.

The sech2 form of the solution may be seen to fit equation (15.10) with a soliton

velocity c ¼ 4�2 (twice the maximum value of u) by showing that

ut ¼ 2�uc tanh�; where � ¼ �ðx� ctÞ
uux ¼ �2�u2 tanh�

and

uxxx ¼ �8�3u tanh�þ 12�u2 tanh�

The sech2 shape of the soliton is shown in Figure 15.7. Its peak value is

u ¼ 2�2

(Problems 15.9, 15.10)

2. The second important form of the KdV equation is

ut � 6uux þ uxxx ¼ 0 ð15:11Þ

(the shallow water wave form with a negative second term). This has a time

independent soliton solution of

uðxÞ ¼ �2�2 sech2ðx� x0Þ

where x0 locates the centre of the soliton. This solution may be shown to satisfy

equation (15.11) by calculating ux and uxxx as for equation (15.10).

A graph of this soliton, Figure 15.8, shows its minimum to have a value of �2�2. Its

importance is its connection with Schrödinger’s equation, which we now discuss.

2α2

x

Figure 15.7 The KdV equation ut þ 6uux þ ux x x ¼ 0 has a soliton solution uðx; tÞ ¼
2�2 sech2 �ðx � ctÞ with a maximum value of 2� 2
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(Problem 15.11)

Solitons, Schrödinger’s Equation and Elementary Particles

In 1968, Miura found a remarkable connection between equation (15.11) and the equation

v t þ 6v 2v þ v x xx ¼ 0 ð15:12Þ
which itself has a soliton solution.

Miura showed that if v 2 þ v x ¼ u then

@

@x
þ 2v

� �
ðv t � 6v 2v x þ v xxxÞ ¼ ut � 6uux þ uxxx ð15:13Þ

(Problem 15.12)

So if v satisfies equation (15.12) with the sign of its second term changed, then u satisfies

equation (15.11). Now Miura’s transformation with

v 2 þ vx ¼ uðxÞ and v ¼  x= 

yields

 xx � uðxÞ ¼ 0 ð15:14Þ

(Problem 15.13)

If uðxÞ is now transformed to uðxÞ � �, where � is a constant, then equation (15.14)

becomes Schrödinger’s equation

 xx þ ð�� uðxÞÞ ¼ 0

with � as an eigenvalue.

x0

-a 
2

-2a 
2

Figure 15.8 The KdV equation ut � 6uux þ ux x x ¼ 0 has a time independent solution uðxÞ ¼
�2� 2 sech2 �ðx � x 0Þ with a minimum value of �2� 2. This equation is related via Miura’s
transformation to Schrödinger’s equation which has an eigenvalue of � ¼ �� 2
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So Miura’s transformation has related the KdV equation

ut � 6uux þ uxxx ¼ 0 ð15:11Þ

to Schrödinger’s equation

 xx þ ð�� uðxÞÞ ¼ 0 ð15:15Þ

Using the soliton solution

u ¼ �2�2 sech2 �ðx� x0Þ

of equation (15.11) we can show that the wave function

 ¼ A sech�ðx� x0Þ; where A is a constant ð15:16Þ

satisfies equation (15.15) when the eigenvalue � ¼ ��2 which is half the value of the

minimum of the soliton with which it is associated (Figure 15.8) (See Gardner et al., 1967).

(Problems 15.14, 15.15, 15.16)

Since � is negative this represents a bound state in wave mechanics.

Other values of � > 0 may be associated with solitons but these are not bound states and

are related to progressive waves.

The fact that solitons may be associated with Schrödinger’s equation and retain their

unique identities in mutual collisions has led physicists to postulate that solitons may

appear as massive elementary particles much heavier than the proton.

Solitons may enter particle physics in another way, confined not only in space but in

time. In this case they are called instantons. Instantons have already been used to explain a

pattern of particle masses which had posed a long-standing puzzle.

There are four ways of making quark–antiquark mesons from light quarks. Three of

these mesons have been known for many years: the negative, positive and neutral pi

mesons (pions) with masses equivalent to about 140 MeV (an electron equivalent mass is

	 0:5MeV).

The fourth meson has never been found but the eta meson has all the required properties

except its mass which is about 550 MeV. Instantons explain this mass anomaly—they

appear as energy excitations, located in space, in the field which binds the quarks together.

They change the mass distribution among the mesons because they affect the various quark

combinations in different ways (see Rebbi, 1979).

Optical Solitons

At the time of this writing the most practical use of solitons is in telecommunications.

Optical fibres act as wave guides to microwaves and higher frequency electromagnetic

waves and optical solitons are able to carry information along single mode silica fibres at

multigigabit rates for distances greater than 9000 km, the width of the Pacific Ocean, with
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a bit error rate (BER) < 10�9, the international standard. Modern fibres have a very low

loss rate of < 1 dB km�1 and an effective area of 	 30mm2. The electrical power involved

is very low and a total optical system is feasible including the amplifiers spaced along the

cable. This permits a simpler, faster and more easily maintained system than that using

conventional electronics. Research on optical solitons is world-wide but, for the English

reader, the work of Linn Mollenauer and his colleagues at the A. T. & T. Bell Labs, New

Jersey is the most accessible (see references).

Optical solitons have the normal sech2 intensity profile and their amplitudes are given by

sech wave function solutions to a non-linear Schrödinger equation (see Appendix, p. 555).

As with all solitons, optical solitons are produced by a balance between the competing

effects of dispersion and non-linearity but the non-linearity of optical fibres is a very

special case which contributes in a remarkable way to the maintenance of the soliton

profile.

The Kerr Optical Effect and Self-phase Modulation In some materials, including silica

fibres, the index of refraction for light of a given wavelength varies with the intensity of the

light. This is the Kerr optical effect, which is expressed by

n� n0 ¼ n2I

where n is the index of refraction for a light wave of intensity I (large enough for non-

linearity), n0 is the refractive index for a low amplitude wave of the same frequency and n2

is a constant equal to 3:2
 10�16 cm2 W�1. The value of n2 is small but the area of a

single mode optical fibre 	 10�6 cm2, so we must think in terms of megawatts per square

metre. Moreover, the effects of non-linearity build up over fibre distances of many

kilometres.

Since n2I is positive we have

n� n0 ¼ c
1

v
� 1

v 0

� �
> 0

so the phase velocity v of a high amplitude wave is less than v 0, the phase velocity of a low

amplitude linear wave of the same wavelength.

At a given wavelength this creates a phase retardation between the two amplitudes of

�� ¼ 2


�
L n2 I

over a length L of the fibre. This phase retardation is obviously greater for the short

wavelength high frequency components of the pulse, Figure 15.9, than for the lower

frequencies and so in the high intensity central section of the pulse the higher frequencies

are shifted towards the tail of the pulse while the lower frequencies advance to the front.

This process is opposed by the dispersive properties of the fibre because at the

wavelength at which the solitons are centred; that is, � 	 1:5 mm (1500 nm) the dispersion

is negative (anomalous) so that @v g=@� < 0, where v g is the group velocity.

Negative dispersion advances the trailing higher frequencies and retards the lower

frequencies, both in a direction towards the centre of the pulse, so the pulse sharpens
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towards a soliton sech2 shape, Figure 15.10, and in a loss-free perfect silica fibre the soliton

would maintain this shape indefinitely. In practice, the wavelength � 	 1:5 mm is close to

the minimum of the loss versus wavelength behaviour of the fibre, which accounts for low

loss fibres of < 1 dB km�1. Optical amplifiers, which we shall discuss shortly, maintain the

shape of the soliton over very long distances but even without amplification a soliton can

travel several hundred kilometres along the fibre without changing its amplitude or shape.

This distance is called the soliton period, Figure 15.11, and is given by

z0 ¼ 0:322

2c	 2

�2
vacD

¼ 0:39
	 2

D
at � 	 1:55mm

where c is the velocity of light in free space, �vac is the wavelength in free space, 	 is the

full width at half the maximum value of the soliton and D is the group velocity dispersion

parameter of the fibre; that is, the change in pulse delay with change in wavelength per unit

of fibre length.

The units of 	 are picoseconds and experimental solitons are produced in the range 1–

50 ps. The units of D are picoseconds per nanometre per kilometre and experimental values

of D are 	 10 ps nm�1 km�1. At D 	 1 ps nm�1 km�1 a 50 ps pulse has a soliton period

z0 � 930 km.

high
frequencies
lag

low
frequencies
lag

Figure 15.9 In the Kerr optical effect the velocity of light at a given wavelength depends upon its
intensity. The high frequencies in the high intensity region of a soliton travelling in an optical fibre
suffer a phase retardation; the low frequencies are advanced

high
frequency
advance

low
frequency
lag

Figure 15.10 The effects of Figure 15.9 are reversed by the negative (anomalous) dispersion of the
optical fibre at the wavelength on which the soliton is centred. This sharpens the soliton pulse
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Experimental Aspects Experimentally, the solitons are produced by a mode locked laser

with an additional fibre arm in the feedback loop. As the laser builds up from noise the

initially broad pulses are considerably narrowed by passing through the fibre arm and then

reinjected back into the laser cavity, forcing the laser itself to produce narrower pulses.

This process is repeated until the pulses become solitons and are ready for injection, via

coupling, into the transmission system. The laboratory cable is a fibre spool 	 75 km long

and the solitons are recirculated through this loop to travel distances > 10 000 km if

required.

A typical laser soliton source produces pulses of 	 50 ps with a power 	 0:5mW at a

repetition rate of 2.5 GHz.

The Raman Effect This plays a very important role in optical soliton transmission. It

arises when molecules in a material absorb radiation and it involves the vibrational and

sometimes the rotational energy levels of the molecules. Figure 15.12 shows the vibrational

Soliton
period

c z0

Figure 15.11 A soliton can travel several hundred kilometres in an optical fibre without being
degraded in any way. This distance z0, is called the soliton period

∆υ

∆υ

υυ υ υυ−∆υ υ−∆υ

Virtual
state

Rayleigh
scattering

Raman effect
Stokes line

Raman effect
Anti-Stokes line

2

1

0

Figure 15.12 The Raman effect can degrade a soliton by transferring energy from its higher
frequency to its lower frequency components. Vibrational energy levels in the optical fibre absorb
higher frequency radiation � from the soliton which reabsorbs it at a lower frequency � ��� (Stokes
line). There are three possible processes. In Rayleigh scattering a photon returns to its original
vibrational energy level, the Raman effect provides a frequency change �� ¼ �1, where �� is the
frequency interval between vibrational energy levels
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energy levels in a molecule with 0 as the ground state. Suppose initially that the molecule is

in the energy level 1 and absorbs a photon of frequency � which raises it to an excited level

which may not be a stationary state. If the photon drops back to its original level the re-

radiated photon of frequency � is called Rayleigh scattering. However, selection rules also

allow vibrational level changes �� ¼ �1, where �� is the vibrational energy level

interval, so the photon may drop back into level 2 or 0. The re-radiated or scattered photon

will then appear at the frequencies � ��� (Stokes line) or � þ�� (anti-Stokes line).

The Raman effect can ‘degrade’ a single soliton via a process known as the ‘self-

frequency shift’. Here the vibrational levels of the silica fibre molecules absorb energy

from the higher frequencies in the soliton pulse and the scattered radiation acts as a Raman

pump for the lower frequencies in the pulse because the fibre provides a Raman acceptance

band over a broad frequency spectrum.

Indeed, although a power of 0.5 mW provides a stable single soliton, early experiments

showed that solitons with powers >1 W suffered from ‘self-frequency shift’ to such an

extent that the soliton initially narrowed but then formed smaller satellite solitons.

The Raman Effect and Optical Amplification Solitons can gain energy via the Raman

effect as well as lose it and this is the basis of amplification along an optical transmission

line. One method results in the line acting as its own distributed amplifier. Laser pumps

coupled into the line at regular intervals maintain the shape of a soliton by feeding in a

frequency higher than that of the soliton, the energy difference being very close to the

broad peak of the Raman gain band of the silica fibre. In Figure 15.13 the soliton

wavelength is � ¼ 1:5 mm and the lasers pump energy at � � 1:4 mm. The pumps can also

inject radiation in the counter-propagating direction, which helps to average out any effect

of pump fluctuations; the penetration of the amplifying beam along the fibre is also

enhanced. The intervals between the laser pumps are 	 30 km which is a small fraction of

the soliton period z0 (	 several hundred kilometres). In this way, the gain per interval is

kept low enough to avoid excessive amplification of noise.

A second method, Figure 15.14 uses lumped amplifiers in the form of short lengths

	 3m of optically pumped fibres doped with a rare earth such as Erbium. Again, the

interval between these lumped amplifiers is � z0 the soliton period to keep the noise

amplification low. The lumped amplifiers are energized by laser diode chips and for an

input of 	 10mW a gain of 30–40 dB is obtained at the useful wavelengths. The power of

L X XL L

RGP    Raman Gain Pump

1470 nm−l ~

1560 nm−l ~

RGP

Figure 15.13 The transmission line acts as its own distributed amplifier when solitons accept
higher energy photons via the Raman effect from optical pumps located at short intervals (distances
� z 0, the soliton period). Excessive noise production is avoided by frequent low gain amplification
(see Mollenauer et al., 1986)
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these amplifiers is useful in multiplexing, the subject of the next section (see Desurvire,

1992).

Multiplexing This refers to the possibility of sending more than one channel of

information down a single fibre. In current transmission systems, non-linear interaction

causes severe interchannel interference but solitons are transparent to each other. They are

unaffected by collisions and do not interfere with each other.

In multiplexing, two channels along a single fibre are provided by solitons which are

polarized in planes perpendicular to each other.

Even more channels are possible with wavelength division multiplexing. Solitons of

different wavelengths have different velocities and analysis shows that in a system using a

chain of lumped amplifiers, adjacent WDM (wavelength division multiplexed) solitons

interact just as in a lossless fibre so long as the collision length (twice the length of a

soliton) is two or three times the amplifier spacing (Figure 15.15).

This implies that several multigigabit per second WDM channels spanning a wavelength

separation of 1 or 2 nm may be used in a single fibre.

   A—Erbium-doped amplifying fiber
OP—optical pump (l = 1480 nm)
   C—coils of transmission line

l = 1532 nm OP A A A

CCC

OP25 km 25 km 25 km

Figure 15.14 Solitons are now maintained by lumped amplifiers in the form of � 3m lengths of
optically pumped fibres doped with the rare earth Erbium separating 25 km lengths of transmission
line. The interval between the low gain amplifiers � z0 (the soliton period) to avoid noise
amplification

A A A A

Collision length

A      Amplifier
         location

Figure 15.15 Wavelength division multiplexing is possible with solitons of different wavelengths
and velocities. These solitons do not interfere with each other so long as the collision length (twice a
soliton length) is two or three times the lumped amplifier spacing (see Mollenauer et al., 1990)
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In a conventional transmission line each channel must be isolated at the regenerative

amplifiers and separately processed but one amplifier can handle all soliton channels and

Erbium-doped amplifiers are powerful enough to do this.

Random Noise Effects and the Frequency Sliding Guiding Filter There are two main

sources of error which affect an optical soliton transmission system: fluctuations of pulse

energy and arrival time at the receiver. Spontaneous emission (noise) always accompanies

coherent Raman gain and at each amplifier, amplified spontaneous emission (ASE noise) is

added to a soliton which can change its energy and its central frequency in a random way.

The change of energy may affect the amplitude of a soliton and the accumulated effect may

reduce a soliton to such an extent that its intended arrival as a ONE in the bit system is

registered as a ZERO. Alternatively, amplified noise may register a ONE in a ZERO space.

This contributes to the bit error rate (BER) which must be kept below the international

standard of < 10�9.

The ASE change in the frequency of the soliton changes its velocity and therefore affects

its arrival time, throwing the pulse out of its proper time slot.

Amplitude and time jitter may be reduced by narrowing the bandwidth of the

transmission line (Mollenauer, 1994), using a narrow band filter at each amplifier. Each

filter is a low-finesse Fabry–Perot etalon ( p. 343), centred on the true frequency peak of

the soliton (Figure 15.16). A soliton whose frequency has been shifted from the filter peak

suffers a loss across the spectrum provided by the filter. This, together with the non-linear

effect which generates new frequencies, pushes the soliton back towards the filter peak. In

this way, the noise-induced frequency shift is returned to zero rather than being maintained

as it would in a broad-band transmission line.

Amplitude jitter is damped because a pulse with excess energy will narrow in time and

broaden in spectrum more than the average and will suffer a greater loss at each filter.

However, the soliton loss at each filter must be replaced at each amplifier by an excess gain

with a resulting growth in noise.

Mollenauer et al. (1994), found that even when the soliton source laser was not tuned

exactly to the filter peak frequency, the soliton was still guided rapidly on to the filter peak.

The filter peak frequencies were therefore gradually slid with distance so that the soliton

frequency followed the filters while the noise remained in its original frequency band and

Etalon filter

R = 9%

R > 9%

R = 9%

R > 9%

Soliton

Figure 15.16 Noise effects in an optical transmission line are reduced using a narrow band Fabry--
Perot etalon filter at each amplifier. The low finesse, R 	 9%, of fixed frequency filters can be
increased, R > 9%, if the frequency of the filters is gradually shifted with distance along the line.
The soliton frequency has no difficulty in adjusting itself to this shift and noise is progressively
reduced (see Mollenauer et al., 1994)
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its growth was inhibited. This noise reduction allowed the etalon filters to be strengthened

to a higher finesse. Experiments with a soliton pulse width of 	 	 16 ps, D 	
0:5 ps nm�1 km�1, amplifier spacing ¼ 26 km with one filter per amplifier, and a frequency

sliding rate of 7 GHz 10�3 km gave a net frequency shift over 9000 km (trans-Pacific

distance) of a few soliton bandwidths, i.e. 0.5 nm at � ¼ 1557 nm. Such a series of sliding

frequency etalon filters can operate over a range of wavelengths wide enough to allow

several channels of wavelength division multiplexing.

Problem 15.1
The properties of a stationary gas at temperature T 0 in a large reservoir are defined by c0, the

velocity of sound, h 0 ¼ cpT 0, the enthalpy per unit mass, and �, the constant value of the specific

heat ratio. If a ruptured diaphragm allows the gas to flow along a tube with velocity u, use the

equation of conservation of energy to prove that

c20
� � 1

¼ � þ 1

2ð� � 1Þ c
�2

where c� is the velocity at which the flow velocity equals the local sound velocity.

Hence show that if u1=c
� ¼ M� and u 1=c1 ¼ M s, then

M�2 ¼ ð� þ 1ÞM 2
s

ð� � 1ÞM 2
s þ 2

Problem 15.2
Using a coordinate system which moves with a shock front of velocity u 1, show from the

conservation equations that c� in Problem 15.1 is given by

c�2 ¼ u 1u2

where u2 is the relative flow velocity behind the shock front.

Problem 15.3
Use the conservation equations to prove that the pressure ratio across a shock front in a gas of

constant � is given by

p2

p1

¼ � � �

1� ��

where � ¼ � 2=� 1, the density ratio, and � ¼ ð� � 1Þ=ð� þ 1Þ.

Problem 15.4
Use the results of Problems 15.1 and 15.2 with the equation of momentum conservation to prove that

the shock front Mach number is given by

M s ¼ u1

c1
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
yþ �

1þ �

r

where y ¼ p 2=p1, the pressure ratio across the shock and � ¼ ð� � 1Þ=ð� þ 1Þ. Hence show that the

flow velocity behind the shock is given by

u ¼ c1ð1� �Þðy� 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1ð1þ �Þðyþ �Þp
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Problem 15.5
The diagrams show (a) a shock wave of pressure p2 and flow velocity u propagating into a stationary

gas, pressure p1, and (b) after reflexion at a rigid wall the reflected wave of pressure p3 moving back

into the gas behind the incident shock still at pressure p 2. Use the result at the end of Problem 15.4 to

show that the flow velocity ur behind the reflected wave is given by

ur

c2
¼ ð1� �Þð p3=p2 � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ �Þð p3=p2 þ �Þp

and since uþ ur ¼ 0 at the rigid wall, use this result together with the ratio for c2=c1 ¼ ðT 2=T 1Þ 1=2
to prove that

p3

p2

¼ ð2�þ 1Þy� �

�yþ 1

where y ¼ p 2=p 1 and � ¼ ð� � 1Þ=ð� þ 1Þ.

Rigid
wall

Rigid
wall

p3

Ur

p2

p1

p2

u u

(a) (b)

Problem 15.6
Use Problem 15.5 to prove that the ratio

p3 � p 1

p2 � p 1

! 2þ 1

�

in the limit of very strong shocks. (Note that this value is 8 for � ¼ 1:4 and 6 for � ¼ 5=3; compared

with the normal acoustic pressure jump of 2 upon reflexion.)

Problem 15.7
Equation (15.9) evaluates ux for u ¼ f ðx� utÞ. Obtain u t in a similar way and use this with equation

(15.9) to prove equation (15.8).

Problem 15.8
Burger’s equation u t þ uux � �uxx ¼ 0 where � > 0 is a special case. It has a second-order

dispersion term and is directly integrable. Show that u ¼ �2� x= transforms Burger’s equation

into the diffusion equation

@ 2 

@t 2
¼ �

@ 2 

@x2

For fluids, � is a measure of viscosity which dissipates excess momentum in non-linear waves.
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Problem 15.9
Show that uðx; tÞ ¼ 2� 2 sech2 �ðx� ctÞ is a soliton solution of the KdV equation

u t þ 6uux þ uxxx ¼ 0 after calculating u t; ux and uxx x as shown in the text.

Problem 15.10
For small values of q, log ð1þ qÞ � q. Show that values of uðx; tÞ near the base of Figure 15.5(a)

where uux � 0 may be written

uðx; tÞ � 2
@ 2

@x2
e�2�ðx�ctÞ

and that this satisfies the dispersion equation u t þ uxx x ¼ 0 if c ¼ 4� 2.

Problem 15.11
Use the method of Problem 15.9 to show that uðxÞ ¼ �2�2 sech2 �ðx� x0Þ is a solution of the KdV

equation u t � 6uux þ uxx x ¼ 0.

Problem 15.12
Prove equation (15.13) if u ¼ v 2 þ v x:

Problem 15.13
Verify equation (15.14) for uðxÞ ¼ v x þ v 2 and v ¼  x= .

Problem 15.14
Show that the wave function  ¼ A sech�ðx� x 0Þ where A is a constant satisfies Schrödinger’s

equation (15.15) when � ¼ ��2.

Problem 15.15
KdV equations are invariant to a Galilean transformation. Show that the transformations u ! u� �
where � is constant together with x ! xþ 6�t returns u t þ 6uux þ uxx x ¼ 0 to its original form.

Problem 15.16
At time t ¼ 0 a high amplitude signal has a profile y ¼ a sin
x with @y=@t ¼ 0. Thereafter, it

propagates according to the non-linear wave equation

@ 2y

@t 2
¼ c20 1þ "

@y

@x

� �
@ 2y

@x2

where " is a small positive constant.
Show that the time required for the leading edge of a positive signal to become infinitely steep is

given by

t ¼ 4=c 0"a

2

Hint: Rayleigh’s method (Rayleigh, Theory of Sound, Vol. 2, Dover Press p. 35), shows the required

time to be the reciprocal of the maximum value of jdu=dxj where du is the relative phase velocity

between two points on the leading edge of a positive signal separated by a horizontal distance dx.

Note that waves propagate in the positive and negative x-directions.
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