
260 261

Learning Objectives

 After the completion of this chapter,
the student will be able to

• Understand the
purpose of Inheritance

• Construct C++
programs using
Inheritance

• Execute and debug programs which
contains the concept of Inheritance

16.1 Introduction to Inheritance

Inheritance is one of the most important
features of Object Oriented Programming.
In object-oriented programming, inheritance
enables new class and its objects to take on the
properties of the existing classes. A class that
is used as the basis for creating a new class is
called a superclass or base class. A class that
inherits from a superclass is called a subclass
or derived class

16.2 Need for Inheritance

 Inheritance is an important feature of
object oriented programming used for code
reusability. It is a process of creating new classes
called derived classes, from the existing or base
classes. Inheritance allows us to inherit all the
code (except declared as private) of one class to
another class. The class to be inherited is called
base class or parent class and the class which

CHAPTER 16
Inheritance

inherits the other class is called derived class or
child class. The derived class is a power packed
class, as it can add additional attributes and
methods and thus enhance its functionality.

Notes

The main advantage of inheritance is

• It represents real world
relationships well

• It provides reusability of code

• It supports transitivity

16.3 Types of Inheritance

 There are different types of
inheritance viz., Single Inheritance, Multiple
inheritance, Multilevel inheritance, hybrid
inheritance and hierarchical inheritance.

1. Single Inheritance
 When a derived class inherits only
from one base class, it is known as single
inheritance

2. Multiple Inheritance
 When a derived class inherits from
multiple base classes it is known as multiple
inheritance

3. Hierarchical inheritance
 When more than one derived classes
are created from a single base class , it is
known as Hierarchical inheritance.

Unit IV Object Oriented
Programming with C++

Chapter 16 Page 260-274.indd 260 3/24/2020 9:23:56 AM

260 261

4. Multilevel Inheritance

 The transitive nature of inheritance is reflected by this form of inheritance. When a class
is derived from a class which is a derived class – then it is referred to as multilevel inheritance.

5. Hybrid inheritance

 When there is a combination of more than one type of inheritance, it is known as
hybrid inheritance. Hence, it may be a combination of Multilevel and Multiple inheritance or
Hierarchical and Multilevel inheritance or Hierarchical, Multilevel and Multiple inheritance.

The following diagram represents the different types of inheritance

A

B

B

C

A

A

B C

D

A B

C

A

B C D

Multilevel Inheritance

Hybrid Inheritance

Hierarchical Inheritance

Single Inheritance Multiple Inheritance

16.4 Derived Class and Base class

 While defining a derived class, the derived class should identify the class from which it
is derived.The following points should be observed for defining the derived class.
i The keyword class has to be used
ii The name of the derived class is to be given after the keyword class
iii A single colon (:)
iv The type of derivation (the visibility mode), namely private, public or protected. If no

visibility mode is specified ,then by default the visibility mode is considered as private.

Chapter 16 Page 260-274.indd 261 3/24/2020 9:23:56 AM

262 263

v The name of the base class(parent class), if more than one base class, then it can be given
separated by comma.

class derived_class_name :visibility_mode base_class_name

{ // members of derivedclass };

The following are some of the examples for different forms of inheritance

16.4.1 Single Inheritance

include <iostream>
using namespace std;
class student //base class
{ private :
 char name[20];
 int rno;
 public:
 void acceptname()
 { cout<<"\n Enter roll no and name .. "; cin>>rno>>name; }
 void displayname()
 { cout<<"\n Roll no :-"<<rno;
 cout<<"\n Name :-"<<name<<endl; } };
class exam : public student //derived class with single base class
 {
 public:
 int mark1,mark2,total;
 void acceptmark()
 { cout<<"\n Enter mark1 and mark2.... "; cin>>mark1>>mark2; }
void displaymark()
{ cout<<"\n\t\t Marks Obtained ";
 cout<<"\n Subject1.. "<<mark1;
 cout<<"\n Subject2 .. "<<mark2;
 cout<<"\n Total .. "<<mark1+mark2; } };
int main()
{ exam e1;
 e1.acceptname(); //calling base class function using derived class object

 e1.acceptmark();
 e1.displayname(); //calling base class function using derived class object

 e1.displaymark();
 return 0;
}

Illustration 16.1 Single inheritance

Chapter 16 Page 260-274.indd 262 3/24/2020 9:23:56 AM

262 263

Output
Enter roll no and name .. 1201 KANNAN
Enter lang,eng,phy,che,csc,mat marks.. 100 100 100 100 100 100
Roll no :-1201
Name :-KANNAN
 Marks Obtained
 Language.. 100
English .. 100
Physics .. 100
 Chemistry.. 100
Comp.sci.. 100
Maths .. 100

 In the above program the derived class “exam” inherits all the members of the base class
“student”. But it has access privilege only to the non private members of the base class.

16.4.3 Multilevel Inheritance

include <iostream>
using namespace std;
class student //base class
{
private :
char name[20];
int rno;
public:
void acceptname()
{ cout<<"\n Enter roll no and name .. "; cin>>rno>>name;
}
void displayname()
{ cout<<"\n Roll no :-"<<rno;
cout<<"\n Name :-"<<name<<endl; }};
 class exam : public student //derived class with single base class
 {
 total=mark1+mark2+mark3;
 cout<<"\nTOTAL MARK SCORED : "<<total;
 }
 };

Illustration 16.2 Multilevelw inheritance

Chapter 16 Page 260-274.indd 263 3/24/2020 9:23:56 AM

264 265

{
 public:
 int mark1, mark2 ,mark3;
 void acceptmark()
 { cout<<"\n Enter 3 subject marks.. ";
 cin>>mark1>>mark2>>mark3; }
void displaymark(){
cout<<"\n\t\t Marks Obtained ";
cout<<"\n Subject1... "<<mark1;
cout<<"\n Subject2... "<<mark2;
cout<<"\n Subject3... "<<mark3; } };
class result : public exam
{
int total;
public:
void showresult()
{
total=mark1+mark2+mark3;
cout<<"\nTOTAL MARK SCORED : "<<total;
}
};
int main()
{
 result r1;
r1.acceptname(); //calling base class function using derived class object
r1.acceptmark(); //calling base class function which itself is a derived
 // class function using its derived class object
r1.displayname(); //calling base class function using derived class object
r1.displaymark(); /*calling base class function which itself is a derived
 class function using its derived class object*/
r1.showresult(); //calling the child class function
return 0;
}

Output:
Enter roll no and name .. 1201 Lohit Sarathi
 Enter 3 subject marks.. 98 100 100
 Roll no :-1201
 Name :-Lohith Sarathi
 Marks Obtained
Subject1 ... 98
Subject 2 ... 100
Subject 3... 100
TOTAL MARK SCORED : 298

Chapter 16 Page 260-274.indd 264 3/24/2020 9:23:56 AM

264 265

In the above program class “result “ is derived from class “exam” which itself is derived from
class student.

Note

In multilevel inheritance the level of inheritance can be extended to any
number of level depending upon the relation. Multilevel inheritance is
similar to relation between grandfather, father and child.

A class without any declaration will have 1 byte size.class x{}; X occupies
1 byte.

 In the above program the derived class “result” has acquired the properties of class
“detail” and class “exam” which is derived from “student”. So this inheritance is a combination
of multi level and multiple inheritance and so it is called hybrid inheritance

16.5 VISIBILITY MODES

 An important feature of Inheritance is to know which member of the base class will be
acquired by the derived class. This is done by using visibility modes.

 The accessibility of base class by the derived class is controlled by visibility modes. The
three visibility modes are private, protected and public. The default visibility mode is private.
Though visibility modes and access specifiers look similar, the main difference between them
is Access specifiers control the accessibility of the members with in the class where as visibility
modes control the access of inherited members with in the class.

16.5.1 Private visibility mode

 When a base class is inherited with private visibility mode the public and protected
members of the base class become ‘private’ members of the derived class

BASE CLASS when inherited with
private visibility

become

become

DERIVED CLASS

private members private members

protected members protected members

public members public members

Chapter 16 Page 260-274.indd 265 3/24/2020 9:23:56 AM

266 267

16.5.2 protected visibility mode
 When a base class is inherited with protected visibility mode the protected and public
members of the base class become 'protected' members of the derived class

BASE CLASS when inherited with
protected visibility

become

become

DERIVED CLASS

private members private members

protected members protected members

public members public members

16.5.3 public visibility mode
 When a base class is inherited with public visibility mode , the protected members
of the base class will be inherited as protected members of the derived class and the public
members of the base class will be inherited as public members of the derived class.

BASE CLASS when inherited with
public visibility

become

become

DERIVED CLASS

private members private members

protected members protected members

public members public members

Tip Notes

When classes are inherited with public, protected or private the private
members of the base class are not inherited they are only visible i.e
continue to exist in derived classes, and cannot be accessed

//Implementation of Single Inheritance using public visibility mode
#include <iostream>
using namespace std;
class Shape
{ private:
 int count;
 protected:
 int width, height;
 public:
 void setWidth(int w)
 { width = w; }
void setHeight(int h)
{ height = h; } };

Illustration 16.3 Explains the significance of different visibility modes.

Chapter 16 Page 260-274.indd 266 3/24/2020 9:23:56 AM

266 267

class Rectangle: public Shape
{
public:
int getArea()
{
return (width * height);
}
};
int main()
{
Rectangle Rect;
Rect.setWidth(5);
Rect.setHeight(7);
// Print the area of theobject.
cout<< "Total area: "<<Rect.getArea() <<endl;
return 0;
}

Output
Total area: 35

The following table contain the members defined inside each class before inheritance

MEMBERS of class
visibility modes

Private Protected Public

Shape(base class) int count;
int width;
int height;

void setWidth(int)
void setHeight(int)

Rectangle (derived
class only with its
defined members)

int getArea();

The following table contains the details of members defined after inheritance

MEMBERS of class
visibility modes –public for acquiring the properties of the

base class
Private Protected Public

Shape(base class) int count;
int width;
int height;

void setWidth(int)
void setHeight(int)

Rectangle (derived
class acquired the
properties of base
class with public
visibility)

Private members of
base classes are not
directly accessible
by the derived class

int width;
int height;

int getArea();
void setWidth(int)
void setHeight(int)

 Suppose the class rectangle is derived with protected visibility then the properties of
class rectangle will change as follows

Chapter 16 Page 260-274.indd 267 3/24/2020 9:23:56 AM

268 269

MEMBERS of class
visibility modes –protected for acquiring the properties of the

base class
Private Protected Public

Shape(base class) int count;
int width;
int height;

void setWidth(int)
void setHeight(int)

Rectangle (derived
class acquired the
properties of base
class with protected
visibility)

Private members of
base classes are not
directly accessible
by the derived class

int width;
int height;
void setWidth(int)
void setHeight(int)

int getArea();

 In case the class rectangle is derived with private visibility mode from its base class
shape then the property of class rectangle will change as follows

MEMBERS of class
visibility modes –private for acquiring the properties of the

base class
Private Protected Public

Shape(base class) int count;
void setWidth(int)
void setHeight(int)

Rectangle (derived
class acquired the
properties of base
class with private
visibility)

int width;
int height;
void setWidth(int)
void setHeight(int)

int getArea();

 When you derive a class from an existing base class,it may inherit the properties of the
base class based on its visibility mode.So one must give appropriate visibility mode depending
on the need.
 Private inheritance should be used when you want the features of the base class to be
available to the derived class but not to the classes that are derived from the derived class.
 Protected inheritance should be used when features of base class to be available only to
the derived class members but not to the outside world.
 Public inheritance can be used when features of base class to be available to the derived
class members and also to the outside world.
 16.6 Inheritance and constructors and destructors
 When an object of the derived class is created ,the compiler first call the base class
constructor and then the constructor of the derived class. This is because the derived class is
built up on the members of the base class. When the object of a derived class expires first the
derived class destructor is invoked followed by the base class destructor.

Chapter 16 Page 260-274.indd 268 3/24/2020 9:23:56 AM

268 269

#include<iostream>
using namespace std;
class base
{
public:
base()
{ cout<<"\nConstructor of base class..."; }
~base()
{ cout<<"\nDestructor of base class.... "; }
};
class derived:public base
{
public :
derived()
{ cout << "\nConstructor of derived ..."; }
~derived()
{ cout << "\nDestructor of derived ..."; }};
class derived1 :public derived
{
public :
derived1()
{ cout << "\nConstructor of derived1 ...";}
~derived1()
{ cout << "\nDestructor of derived1 ...";}
};
int main()
{
derived1 x;
return 0;
}

Output:
Constructor of base class...
Constructor of derived ...
Constructor of derived1 ...
Destructor of derived1 ...
Destructor of derived ...
Destructor of base class....

Illustration 16.4 The order of constructors and destructors

Notes

• The constructors are executed in the order of inherited class i.e.,
from base constructor to derived. The destructors are executed in
the reverse order.

• The size of derived class object=size of all base class data members +
size of all data members in derived class.

16.7 Overriding / Shadowing Base class functions in derived class

 In case of inheritance there are situations where the member function of the base
class and derived classes have the same name. If the derived class object calls the overloaded

Chapter 16 Page 260-274.indd 269 3/24/2020 9:23:56 AM

270 271

member function it leads to confusion to the compiler as to which function is to be invoked.
The derived class member function have higher priority than the base class member function.
This shadows the member function of the base class which has the same name like the member
function of the derived class. The scope resolution (::) operator resolves this problem.

#include<iostream>
#include<string>
using namespace std;
class Employee
{
 private:
 char name[50];
 int code;
 public:
 void getdata();
 void display();
};
class staff: public Employee
{
 private:
 int ex;
 public:
 void getdata();
 void display();
};
void Employee::display()
{
 cout<<"Name:"<<name<<endl;
 cout<<"Code:"<<code<<endl;
}
void staff::display()
{ Employee :: display();//overriding
 cout<<"Experience:"<<ex<<" Years"<<endl;
}
int main()
{
 staff s;
 cout<<"Enter data"<<endl;
 s.getdata();
 cout<<endl<<endl<<"\tDisplay Data"<<endl;
 s.display();
 return 0;
}

Output
Enter data
Name: SUGANYA
Code: 1201
Experience: 30
 Display Data
Name: SUGANYA
Code:1201
Experience:30 Years

Illustration 16.5 The use of scope resolution operator in derived class

Chapter 16 Page 260-274.indd 270 3/24/2020 9:23:56 AM

270 271

 In the above program getdata() and display() are defined both in base and in derived
class. So when the derived class staff inherits the properties of Employee class it will have
two getdata() and display() each. To differentiate the derived getdata() and display() from the
defined getdata() and display() :: (scope resolution) operator is given along with the base class
name to the base class members

Note

When a derived class member function has the same name as
that of its base class member function ,the derived class member
function shadows/hides the base class’s inherited function .This
situation is called function overriding and this can be resolved
by giving the base class name followed by :: and the member
function name.

• The mechanism of deriving new class from
an existing class is called inheritance.

• The main advantage of Inheritance is it
supports reusability of code.

• The derived class inherits all the properties
of the base class. It is a power packed class,
as it can add additional attributes and
methods and thus enhance its functionality.

• The various types of Inheritance are
Single inheritance, multiple inheritance,
multilevel inheritance, hierarchical
inheritance and hybrid inheritance

• When a derived class inherits only from one
base class, it is known as single inheritance

• When a derived class inherits from
multiple base classes itis known as multiple
inheritance

• When a class is derived from a class which
is a derived class itself – then this is referred
to as multilevel inheritance. The transitive
nature of inheritance is reflected by this
form of inheritance.

• When more than one derived classes are
created from a single base class , it is known
as Hierarchical inheritance.

• When there is a combination of more than
one type of inheritance, it is known as
hybrid inheritance.

• In multiple inheritance, the base classes
are constructed in the order in which they

appear in the declaration of the derived
class.

• A sub-class can derive itself publicly,
privately or protectedly.

• The private member of a class cannot be
inherited .

• In publicly derived class,the public
members of the base class remain public
and protected members of base class remain
protected in derived class.

• In privately derived class, the public and
the protected members of the base class
become private in derived class

• When class is derived in protected mode,
the public and protected members of base
class become protected in derived class.

• constructors and destructors of the base
class are not inherited but during the
creation of an object for derived class the
constructors of base class will automatically
be invoked.

• The destructors are invoked in reverse
order .The destructors of the derived classes
are invoked first and then the base class.

• The size of derived class object=size of all
base class data members + size of all data
members in derived class

• overriding of the members are resolved by
using Scope resolution operator(::).

• this pointer is used to refer to the current
objects members

Points to Remember:

Chapter 16 Page 260-274.indd 271 3/24/2020 9:23:56 AM

272 273

Evaluation

SECTION – A

Choose the correct answer

1. Which of the following is the process of
creating new classes from an existing
class

 (a) Polymorphism (b) Inheritance
(c) Encapsulation (d) super class

2. Which of the following derives a class
student from the base class school

 (a) school: student
 (b) class student : public school
 (c) student : public school
 (d) class school : public student
3. The type of inheritance that reflects the

transitive nature is
 (A) Single Inheritance
 (B) Multiple Inheritance
 (C) Multilevel Inheritance
 (D) Hybrid Inheritance
4. Which visibility mode should be used

when you want the features of the base
class to be available to the derived class
but not to the classes that are derived
from the derived class?

 (A) Private (B) Public
 (C) Protected (D) All of these
5. Inheritance is a process of creating new

class from
 (A) Base class (B) abstract
 (C) derived class (D) Function
6. A class is derived from a class which

is a derived class itself, then this is
referred to as

 (A) multiple inheritance
 (B) multilevel inheritance
 (C) single inheritance
 (D) double inheritance

7. Which amongst the following is
executed in the order of inheritance?

 (A) Destructor (B) Member function
 (C) Constructor (D) Object
8. Which of the following is true with

respect to inheritance?
 (A) Private members of base class are

inherited to the derived class with
private

 (B) Private members of base class are
not inherited to the derived class with
private accessibility

 (C) Public members of base class are
inherited but not visible to the derived
class

 (D) Protected members of base class
are inherited but not visible to the
outsideclass

9. Based on the following class declaration
answer the questions (from9.1 to 9.4)

class vehicle
{ int wheels;
public:
void input_data(float,float);
void output_data();
protected:
int passenger;
 };
class heavy_vehicle : protected vehicle {
int diesel_petrol;
protected:
 int load;
public:
void read_data(float,float)
void write_data(); };
class bus: private heavy_vehicle {
char Ticket[20];
public:
void fetch_data(char);
void display_data(); };

Chapter 16 Page 260-274.indd 272 3/24/2020 9:23:56 AM

272 273

9.1. Which is the base class of the class
heavy_vehicle?

 (a) Bus (b) heavy_vehicle
 (c) vehicle (d) both (a) and (c)
9.2. The data member that can be accessed

from the function displaydata()
 (a) passenger (b) load
 (c) Ticket (d) All of these
9.3. The member function that can be

accessed by an objects of bus Class is
 (a) input_data(), output_data()
 (b) read_data() ,write_data()
 (c) fetch_data(), display_data()
 (d) All of these
9.4. The member function that is inherited

as public by Class Bus
 (a) input_data(), output_data()
 (b) read_data(), write_data()
 (c) fetch_data(), display_data()
 (d) none of these

SECTION-B
Very Short Answers

1. What is inheritance?
2. What is a base class?
3. Why derived class is called power

packed class?
4. In what multilevel and multiple

inheritance differ though both contains
many base class?

5. What is the difference between public
and private visibility mode?

SECTION-C
Short Answers
1. What are the points to be noted while

deriving a new class?
2. What is difference between the

members present in the private
visibility mode and the members
present in the public visibility mode

3. What is the difference between
polymorphism and inheritance though
are usedfor reusability of code?

4. What do you mean by overriding?
5. Write some facts about the execution

of constructors and destructors in
inheritance

SECTION - D
Explain in detail
1. Explain the different types of

inheritance
2. Explain the different visibility mode

through pictorial representation
3. Consider the following c++ code and

answer the questions

class Personal
{
int Class,Rno;
char Section;
protected:
char Name[20];
public:
personal();
void pentry();
void Pdisplay(); };
class Marks:private Personal
{ float M{5};
protected:
char Grade[5];
public:
Marks();
void Mentry();
void Mdisplay(); };
class Result:public Marks
{
float Total,Agg;
public:
char FinalGrade, Commence[20];
Result();
void Rcalculate();
void Rdisplay();
};

3.1. Which type of Inheritance is shown in
the program?

3.2. Specify the visibility mode of base
classes.

Chapter 16 Page 260-274.indd 273 3/24/2020 9:23:56 AM

274 PB

3.3 Give the sequence of Constructor/
Destructor Invocation when object of
class Result is created.

3.4. Name the base class(/es) and derived
class (/es).

3.5 Give number of bytes to be occupied
by the object of the following class:

 (a) Personal (b) Marks
(c) Result

3.6. Write the names of data members
accessible from the object of class
Result.

3.7. Write the names of all member
functions accessible from the object of
class Result.

3.8 Write the names of all members
accessible from member functionsof
class Result.

4. Write the output of the following
program

#include<iostream>
using namespace std;
class A
{ protected:
 int x;
 public:
 void show()
 {cout<<"x = "<<x<<endl;}
 A()
 { cout<<endl<<" I am class A "<<endl;}
 ~A()
 { cout<<endl<<" Bye ";} };
class B : public A
{protected:
 int y;
 public:
 B(int x1, int y1)
 { x = x1;
 y = y1; }

B()
{ cout<<endl<<" I am class B "<<endl; }
~B()
{ cout<<endl<<" Bye "; }
void show()
{ cout<<"x = "<<x<<endl;
 cout<<"y = "<<y<<endl; } };
int main()
{A objA;
B objB(30, 20);
objB.show();
return 0; }

5. Debug the following program

%include(iostream.h)
#include<conio.h>
class A()
{ public;
int a1,a2:a3;
void getdata[]
{ a1=15; a2=13; a3=13; } }
class B:: public A()
{ PUBLIC
 voidfunc()
 { int b1:b2:b3;
 A::getdata[];
 b1=a1;
 b2=a2;
 a3=a3;
 cout<<b1<<’\t’<<b2<<’t\’<<b3; }
void main()
{ B der;
 der1:func(); }

CASE STUDY
Write a class for a class Stock
Each Stock has a data member which holds the
net price, and a constructor which sets this price.
Each Stock has a method get_Price(), which
calculates and returns the gross price (the gross
price includes VAT at 21%)

Reference:
Object Oriented Programming with C++ (4th
Edition), Dr. E. Balagurusamy, Mc.Graw Hills.

Chapter 16 Page 260-274.indd 274 3/24/2020 9:23:56 AM

	Introduction Folder
	Chapter 1 Page 001-013
	Chapter 2 Page 014-040
	Chapter 3 Page 041-049
	Chapter 4 Page 050-056
	Chapter 5 Page 057-075
	Chapter 6 Page 076-087
	Chapter 7 Page 088-101
	Chapter 8 Page 102-114
	Chapter 9 Page 115-151
	Chapter 10 Page 152-179
	Chapter 11 Page 180-205
	Chapter 12 Page 206-227
	Chapter 13 Page 228-232
	Chapter 14 Page 233-248
	Chapter 15 Page 249-259
	Chapter 16 Page 260-274

