
compensator

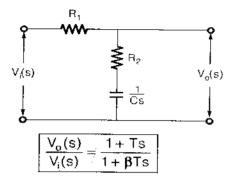
Compensator in control system are used for improving the performance specifications i.e. the transient and steady state response characteristics.

Lead Compensator

Note:

where.

- Zero is closer to origin than the pole.
 - It is similar to the PD controller.


Effect of Lead Compensator

- 1. It improves the transient response.
- 2. It increases the margin of stability.
- 3. It increases the bandwidth.

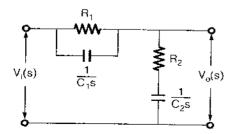
4.
$$\left(\frac{\text{Signal}}{\text{Noise}}\right)_{\text{output}} < \left(\frac{\text{Signal}}{\text{Noise}}\right)_{\text{input}}$$

- 5. It helps to increase error constant upto some extent.
- 6. It allows to pass high frequencies and low frequencies are attenuated.
- 7. Increase the phase shift.

LAG Compensator

where,

$$T = R_2 C$$
 and $\beta = \frac{1}{\alpha} = \frac{R_1 + R_2}{R_2}$ $(\beta > 1)$


Note:

- Pole is closer to origin than the zero.
- It is similar to the PI controller.

Effect of Lag Compensator

- 1. It improves the steady state response.
- 2. It increases the error constant.
- 3. It decreases the bandwidth.
- 4. It reduces the effect of noise.
- It reduces the stability margin.
- 6. It does not affect the transient response.
- 7. System become lesser stable.
- 8. It allows to pass low frequencies and attenuates the high frequencies.
- 9. Decreases the phase shift.

Lead-LAG/LAG-Lead Compensator

$$\frac{V_o(s)}{V_i(s)} = \frac{\alpha(1 + T_1 s) (1 + T_2 s)}{(1 + \alpha T_1 s) (1 + \beta T_2 s)}$$

where,

$$T_1 = R_1 C_1$$
 and $T_2 = R_2 C_2$

$$\alpha = \frac{R_2}{R_1 + R_2} \quad \text{and} \quad \boxed{\beta = \frac{R_1 + R_2}{R_2}}$$

Effect of lead-lag/lag-lead compensator

Lead-Lag network improves both steady state and transient response of the system.