OPERATORS AND

CHAPTER - 8 EXPRESSIONS IN C

OBJECTIVES OF THIS CHAPTER

8.1 Introduction

8.2 Concept of Operator and Operand

8.3 Expressions

8.4 Types of Operators according to number of Operands
8.5 General Classification of Operators

8.6 Type Conversion

8.7 Precedence of Operators

8.1 INTRODUCTION

In the previous chapter, we have studied that variables and constants are used to store
values in the program. To manipulate the data stored in these program elements, we have (o use
operators. In order to perform different types of operations on the data. C provides many types
of operators, An operator shows that what type of operation will be performed on the data. C
supports a rich set of built-in operators. We have already used some operators such as =, +, -
etc, in the previous chapter. In this chapter, we are going to have a detailed discussion about
various types of operators that are available in C. We ghall also discuss the method of using
these operators, their order of evaluation in expressions etc.

8.2 CONCEPT OF OPERATOR AND OPERAND

Operators are the symbols which are used to perform some specific type of operation on
data. For example: + symbol is used to perform addition, * is used to perform multiplication,
== 1is used to perform comparison etc. Here +, * and >= are the operators to perform different
types of operations. After performing the operations, all operators produce a value.

To perform any type of operation, we require Operands. Operands are the data items on
which operators can perform operations, These operands can be either variables or constamt
values. Consider the following example:

a+5*10

In this example, + and * are the operators which perform the operation on variable 'a’ and
constant values 3 and 10. Here the variable 'a' and constant values 5 and 10 are called the
Operands.

Opepators avDd Exrressions m C 129

8.3 EXPRESSION

An expression is like a formula in mathematics. An expression can be any valid combination
of operators and operands. A valid combination is such a combination that confirms to the
syntax rules of C language. A valid expression 12 also known as well-formed-expression. An
expression after evaluation always returns a single value. This result can be used in the C
programs. Expressions can be as simple as a single value and as complex as a large calculation.
Consider the following examples:

x=2.9;

It is a simple expressionwhere = operator is used with operands x and 2.9

x=29*%y+36>z-(34/z);

It is a somewhat complex expression which consists of many operators and operands.
Here, =, *, +, =, - and [are the operators and x, 2.9, v, 3.6, 3.4 and z are the operands.

Now, consider the following combination of operators and operands which do not form a
valid combination to be an expression:

X+y=2;

The above combination of operators and operands do not form a valid expression, although
we are using valid operators and operands in the above example. But this combination of
operators and operands do not follow the syntax rules of C language to be a valid expression.
Lelt stde of = operator must represent a valid memory location (1dentifier) to store value of z.
Here, x+y cannot be a valid identifier, because a valid identifier cannot have special character
other than underscore (as we leamt in the previous chapter).

All C expressions can be categorized into following two types:

8.3.1 Numerical Expressions
These expressions are used to perform numerical calculations. These expressions always
return a numerical value after evaluating operators and operands. Consider the following
examples:
4+3
3.2-7.8

After evaluation above numerical expression, a numerical value 7 and -4.6 will be produced.

8.3.2 Logical or Conditional Expressions
These expressions are used to perform logical or conditional operations. These expressions
always return one of two possible values: either true (1) or false (0). Consider the following
examples:
14 =6
15<=6
After evaluating above conditional expressions, we receive true (1) for the first expression
while false (0) for the second expression.

130 CoMruTER SCIENCE

8.4 TYPES OF OPERATORS ACCORDING TO NUMBER OF OPERANDS
C providesa rich set of built-in operators. All these operalors can be broadly divided into
following three categories according to number of operands used by the operators:

Types of
Operators
| l 1
Unary Binary Ternary
44 — | ~ ete. + - /> < = &% ete. T

Fig. 8.1 Types of Operators according to number ol operands

8.4.1 Unary operators

An operator which requires only one operand to perform its operation is called Unary
operator. Common example of unary operator is unary minus. Any positive operand associated
with unary minus gets its value changed. Consider the following example:

x=10;
y =15;
z =XH-v);

Here, z will be considered as z = 10+ (-13) which produce a result -3.

Since y is initially a positive integer variable, when operated by unary minus, gets its value
changed. It will become negative. Some other examples of unary operators are: ++, --, ! and ~
operators.

8.4.2 Binary operators
An operator which requires two operands to perform its operation is calledBinary operator.
Mozt of the operators in C language are of binary type. The syntax for using binary operators
is given below:
Operand! Operator Operand2
To use any binary operator, it must be put in between the operands. Consider the following
examples:
a+b
a=bh
a=h
In these examples, + > and = are the examples of binary operators which are placed in
between two operands: a and b.

Orerarors avy Exrrzssions mw C 131

8.4.3 Ternary Operator
This operator 15 also known as Conditional Operator. An operator which requires three
operands to perform its operation is calledternary operator. There is only one temary operator
in C, Ternary operator in C is represented using ? : symbols. The syntax for using this operator
is given below:
expl ? exp2 ;exp3;
Here, expl must be a conditional expression which produces a result either true (1) or false

(D). If the value of expl iz true then the exp2 will perform its function otherwise exp3 will
perform its function. Consider the following example:

a=3;
b=10;
c=a>b ? a: b;
Here, the expression a>b will produce false (0) result (Operand1/expl). therefore value of
b (Operand3/exp3) will be stored in variable ¢. Variable a (Operand2/exp2) will not do any
function because it will perform its function only if expl is true (1).

8.5 GENERAL CLASSIFICATION OF OPERATORS
All C operators can be generally categorized into following categories:
Arithmetic Operators
Relational Operators
Logical Operators
Assignment Operators
Bitwise Operators
Increment & Decrement Operators
Conditional Operators
Additional Operators

Bk g B e RR ba o

General Classification of C Operators

I !
Arithmetic Logical Bitwise Conditional |
Operators Operators Operators Operator |
[+*/%]|t — 7:]

Relational Assignment. increment & Decrement ADDITIONAL
Operators Operators Operators Operators

pre= Lfe=wf% " -

Fig. 8.2 General Classification of Operators in C

Bitwise operators are used for very low level operations i.e. for machine level programming
or for performing bit level operations.

8.5.1 Arithmetic Operators

Arithmetic operators are used to perform arithmetic operations such as: addition, subtraction,
raultiplication, division ete. There are five arithmetic operators in 'C'. All these operators are
binary operators because all these operators require two operands to perform their operations.
Following table shows the list and working of all these operators:

Name Operator | Description Examples

Add + Used to perform Addition 44— 6 2.0+4.0 = 6.0
of numbers.

Subtract - Used to perform subtraction or 62— 4 6.0-4.0 — 2.0

used as any unary minus.

Multiply * Used to perform multiplication T*2 =14 [1.0*2.0—= 140

of numbers.

Divide f Used to perform division of 5(2—=2 50/20— 25
numbers. Integer division| Real Division

Modulus % Used to get remainder value T%4 — 3 5.0%2.0
after division of numbers. Mot allowed

Table: 8.1 Arithmetic Operators

For arithmetic operators, operands can be integer values, floating-point values or character
values. The modulus operator requires that both operands be integers & the second operand be
nonzero. Similarly, the division operator (/) requires that the second operand be nonzero,
though the operands need not to be integers. Division of one integer by another is referred to as
integer division. With this division the decimal portion of the quotient will be dropped. If
division operation is carried out with two floating- point numbers or with one floating-point
nuriber and one integer, the result will be a floating-point quotient.

If one or both operands represent negative values, then the addition, subtraction,
multiplication and division operations will result in values whose signs are determined by the
usual rules of algebra. The interpretation of remainder operation is unclear when one of the
operands is negative. Following programs show how to use arithmetic operators in C
programming:

Opepators avDd Exrressions m C 133

Program 8.1: Program in C to lind sum

B 1 - L - m
e L8 s wsan fugan)] y—a B -~ -
T & [AT X B
|#x = - L [}
o Em fslnclude<stdio.n>

2| woid main(]

3

4 int a, b, sum;

g a=20;

& b=15;

7 sum=a+h;

a printf ("Sum=%d", sum) ;

10

Program: 8.1

of 1wo numbers:

Output of Program 8.1

Program 8.2: A program in C Language to find thedifference of two numbers

Start here | X | Ungdledl.c =

1
2
3
4
5
&
-

L)

i
|

]

void main()

int a,b,diff;

a=20;
b=15;
diff=a-b;

printf("Difference=%d", diff):

Program: 8.2

Al l)al O C\Users maan' Snelrive’, Dis

Outpul of Program 8.2

Program 8.3: A program in C Language to find product and division of two numbers:

A i s Bz 1
[REmEis s A L RTar b0 s R a1 e < o % i u
T A ey L - L= -
1| #include<stdio. h>
2 | void main()
3 ki
4 int a;, b, pro; div;
5 am20;
6 b=}
T proma*h;
g printf{"Product=%d",proj};
G div=a/b;
10 printf({"\nDivision=%d" div};
11 ||}
Program 8.3
134

Qutput of Program 8.3

CoMPUTER SCIENCE

8.5.2. Relational operators

Relational operators are also called companson operators. These operators are used to test
the relationship between operands. In other words, these operators are used to compare values.
After comparison, these operators return either true (1) or false (0) value. All the relational
operators present in C language are of binary fype. It means these operators require two
operands to perform their operation. There are 6 relational operators in C which are given
below 1n the table with examples:

Name Operator | Description Example | Result
Equals to == Used to check whether two values are 4==5 False
equal 3==3 True

Mot Equal to I= Used to check whether two values are 41 =5 True
not equal 4] =4 False

Greater than > Used to check whether the first value 13 4=5 False
greater than second S True

Less than < Uzed to check whether the first value is 45 True
less than second 5<4 False

Greater than = Used to check whether first value is A==5 True
or equal to greater than or equal to second value 6>=8§ False
10==5 True

Less than or = Used to check whether first value is d=5 True
equal to lesser than or equal to second value dur=2 Falze
dr=df True

Table 8.2 Relational Operators

These relational operators are used to form logical expression repregenting condition. The
resulting expression will be of type integer, since true 18 represented by the integer value 1 and
false is represented by the value 0.

Program 8.4: A Program which shows the use of Relational Operators

1
2 void main ()
3 |
4 int a, b, resultl,resulil:
5 a=20;
6 b=15;

resulcl=a<h;
B printf("reaultl=%d4", resultl):
g resulEZ=a>b;
14 | printf("\nresultc2=id", resultl); Output of Program 8.4
11 i

Program 8.4

Opepators avDd Exrressions m C 135

In the program 8.4 in the line 7, the statement a<b returns 0 as the result 1s false because
20 < 15. Therefore, in line § it shows result1=0. Similarly, m line 9, the statement a>b returns
1 as the result is true because 2(k=15, Therefore, in line 10 it shows result?=1.

8.5.3 Logical operators

Logical operators are also called Boolean Operators. These operators are used to make
compound relational expressions. In other words, we can say that these operators are used
when we want to test more than one condition at a time, There are 3 Logical operators in C
Language: Logical AND', Logical OR' and TLogical NOT', Here, Togical AND' and Logical
OR' are the binary operators whereas 'Logical NOT' is unary operator. Two operands are
required for "Logical AND' and Logical OR' to perform their operations while one operand is
required for 'Logical NOT' to perform its operation.

All Logical Operators also return either true or false value. The result of a logical AND
operator will return true only if both operands are true, whereas the result of a logical OR
operator will be true if either operand is true or if both operands are true. Logical NOT operator
returns true only when its operand i3 false. Following table shows the list and working of all
Logical Operators used in C language with suitable examples:

Name | Operator | Description Example Explanation and Result

AND && Returns true only if | 3>5 && 4>5 | False && False — False
both ﬂpﬂﬁmdl“ e | 3»5 && 4<5 | False && True — False
true otherwise it 3¢5 && 455 | True && False — False
returns false

35 && 4<5 True && True — True

OR I Returns true il al | 3.5 455 False || False — False
least one of its

. 3=3 I 4<5 False || True — True

operand is true

RBEiEE AL Tetars 3<3 1 4=5 True || False — True

false 3<5 Il 4<5 True |l True — True
NOT ! Returns true only 1(3<5) I(True) — False

ookl Gl 1(355) I(False) — True

false otherwise it

retumns false

Table 8.3 Logical Operators

136 CoMpUTER SCIENCE

Program 8.5 A program in C Language to show the working of logical operators:

r nl.nl'ﬂ.‘ I- L
2 wold main ()
3
4 int a,b,c,d,reaultl, resultcd, resultl;
& 1; b !} e=13; 4
E resultl=({a<b && c>d);
T printf ("resulcl=%d", resultcl);
a rasulr?=[(a>b el
g printf ("\nresult2=%d", result?);
10 resultid=! [(a>b) ;
11 peintf ("\nresultI=Rd", resultl); Output of Program 8.5
12
Program 8.5

In the above program:
In line 6 — result] = false && false and it will produce resultl= false (0)
In line 8 — result2 = true || true and it will produce resultZ=true (1)

In line 10 — result3 = !(true) and it will produce result3=false ()

8.5.4 Assignment operators

These Operators are used to assign or store values in variables etc. The symbel of
assignrent operator i3 =. Consider the following examples which show how to use assignment
operator in C programs:

a=-2: /[assigns -ve value (-2) to the variable.

b=35: // assigns value (5) to the variable.

c=at+h // assigns the result of expression to the variable.
a=a+ 1 /f self-assignment of a variable.

Assignment operators can also be used as shorthand operators. Shorthand assignment
operators are useful mn self-assignment staterments. Following table shows the examples of
shorthand assignment operators used m C:

Let's assume int a=5;

Shorthand Example for Equivalent Result
Operator Shorthand Assignment Self-Assignment

+= at+ =2 a=a+2 a=
= a- =2 a=a-2 a=3
o ax =2 fi=:a"32 a=l1i
2 a /=2 a=a/2 a=2
To= a%o=2 a=a%2 a=1

Table 8.4: Shorthand Assignment Operators

Opepators avDd Exrressions m C 137

Assignment operator = and the equality (equal to) operator = both are different types of
operators. The assignment operator 15 used to assign a value to an identifier, whereas the
equality operator is used to determine if two operands have the same value. These two
operators cannot be used in place of one another.

If the two operands in an assignment expression are of different data tvpes, then the value
of the expression on the right will automatically be converted to the type of the identifier on the
left. For example:

int a=3.5;

Here, float value 3.5 will automatically be converted to type integer, 1.¢. value of variable

a will become 3

8.5.5 Bitwise Operators

Bitwise operators are used for very low level operations, i.e. for machine level programming
or [or performing bit level operations. C provides the [ollowing operators for handling bitwise
operalions:

1. << Bitshift lefi (a specilied number or bil positions)

2. == Bil shift ight{a specified number of bil positions)
3. | Bitwise OR

4. & Biwise XOR

5. & Bitwise AND

6. ~ Bitwise one's complement

8.5.6 Increment and Decrement Operators

These are the unary operators. The symbol ++ is used for increment operator while symbol
- - used for decrement operator. The increment operator causes its operand Lo increase by one
whereas the decrement operator causes its operand to decrease by one. The operand used with
each of these operators must be a single variable. These operators cannot be applied directly on
the constant values.

For example:
mt x=10; (x i3 an integer variable that has been assigned a value of 10)
Following expression causes the value of x to be increased to 11
++x; {(which is equivalent to x= x+1)
Similarly, following expressioncauses the original value of x to be decreased to 9:
-=X, (which is equivalent to x=x-1)
If we use 104+ or 10, it will be a wrong statement as we have already studied that these
cannot be applied directly on the constant values.

The increment and decrement operators can each be utilized in two different ways. It
depends on whether the operator is written before or after the operand:

* Prefix increment and decrement
. Posthx increment and decrement

If the operator precedes the operand, then the value of operand will be altered before it is
used for its intended purpose within the program. This is called pre increment/decrement. If,
however the operator follows the operand then the value of the operand will be changed after
it 1% used. This is called post increment/ decrement.

For example:

Il the value of x 1s imiially 10, it can be increased by two methods:

¥y =X (pre increment)

Here. at first, the value of x will be incremented to 11 and then this incremented value of x

will be assigned to variable v, i.e. y will also get value 11 (i.e. x=11 and y=11)
Yy =Xx++; (post increment)

Here, at first, the value of x will be assigned to variable y (i.e. v will get value 10) then
value of x will be incremented to 11 (i.e. y=10 and x=11)

Similarly, decrement operator can be used. For example:

Y=l (pre decrement)

Here first of all, the value of x will be decremented to 9 and then this decremented value

of x will be assigned to variable y, i.e. y will also get value 9 (i.e. =9 and y=9%)
Y = X~ (post decrement)

Here, first of all, the value of x will be assigned to variable y (i.e. y will get value 10) then
value of x will be decremented to 9 (1.e. y=10 and x=9)

8.5.7 Conditional Operator (? :)

It is a ternary operator. There is one and only one ternary operator (? :) in 'C’ language.
An expression that makes use of the conditional operator is called a conditional expression.
This operator has already been defined in the section 8.4.3 of this chapter. Please refer to the
specified section for more details of this operator,

8.5.8 Additional Operators:

All the remaining operators that do not come under any above mentioned categories of
operators, can be considered as additional operators. Examples of such operators are: sizeof()
operator, pointer operators, member selection operators ete.

sizeof operator:

It is another unary operator. This operator returns the size of its operand, m bytes. This
operator always precedes ils operand. The operand may be an expression, or it may be a
variable or data type. Consider the following examples:

sizeof (x);

sizeof (float);

Orerarors avy Exrrzssions mw C 139

In first example, if x 18 of char type varable then it returns the result 1, while in example
second, we pass keyword for data type float which returns 4 as float data type occupies four
bytes in memory.

8.6 TYPE CONVERSION

The value of an expression can be converted to a different data type in C, if desired. When
value of one type is converted into some other type, it is called Type Conversion.Operands that
differ in type may undergo type conversion before the expression takes on its final value, There
are two ways of type conversions in C:

1. Implicit Conversion

2. Explicit Conversion

8.6.1 Implicit Conversion

This type of conversion 15 automatic. For this type of conversion, we use assignment (=)
operator. This type of conversion is used when operand having lower data type is converted
into higher data type. There is no loss of information in this type of conversion. Consider the
following example for automatic conversion:

float n;
n=35/2;

In this example, implicit conversion takes place, as integer type data, after integer division
of 5/2 will produce resuli in the form of integer value, i.e. 2 (but not 2.5). This result will
automatically be converted into [oat type value so that it can be stored in the float variable i.e.
value of variable n will become 2.000000

8.6.2 Explicit Conversion

This is forceful conversion. For this type of conversion, we use cast operator. There may or
may not be any loss of information in this type of conversion. This type of conversion is used
when operand of higher data type is converted into lower data type.

The syntax for this type of casting is:

(Desired data type) Expression

The name of data type into which the conversion is to be made is enclosed in parentheses
and placed direcily to the left of the value to be converted. The example of type casting is as
follows:

For example:

Tloat n;
n=(float)5/2;

The cast operator converts the value of 5 to its equivalent float representation (i.e. 5.0)
before the division by 2. Therefore, it will become float division and the result of division will
be 2.500000 which will be stored in the float variable n and hence the value of n will become
2.500000. The cast operator can be used on a constant or expression as well as on a variable,

140 CoMruTER SCIENCE

8.7 PRECEDENCE/ HIERARCHY OF OPERATORS

The operators within C are grouped hierarchically according to their order of evaluation,

known as precedence. Operators with a higher precedence are carried out before operators
having a lower precedence. In simple words, the sequence of evaluation of operators in which
they are applied on the operands in an expression is called the Precedence of Operators. The
natural order can be altered by making use of parentheses.

Precedence of commonly used operators in decreasing order is as follows:

- - - - Operators ! = sizeof (datatype)
/ o,

" Ao+
r &

I

W

W

I

& de
Il

7 .

Sl e B o L

Consider the following example which illustrates how arithmetic expressions are evaluated

using operators precedence:

I

‘:J'l

.

a=5%4/44+8-9/3; (* is evaluated)
a=20/4+8-9/3 {/ 1s evaluated)
a=5+8-9/3; {/ is evaluated)
a=5+8-3; (+ 1s evaluated)
a=13-3: (- 15 evaluated)
a=10; result of expression

“" Doimfs To Remember
O perators are the symbols which are used to perform some specific type of operation on
data.
Operands are the data items on which operators can perform operations.
An Expression is like a formula in mathematics which can be any valid combination of
operators and operands.
An operator which requires only one operand to perform its operation is calledUnary
operator.
An operator which requires two operands to perform its operation i2 calledBinary operator.
Ternary operator is also known as Conditional Operator which requires three operands
to perform its operation.

Orerarors avy Exrrzssions mw C 141

!,-.I'

"%’ operator is also known as modulus operator which works only on integer operands,
Relational operators are symbols that are used to test the relationship between two
variables..

There are three Logical operators in C language, they are and, or, not. They are represented
by &&, |l and | respectively

Assignment operators in C assign the value of an expression to an identifier and the
most commonly used assignment operator is =

The increment operator (++) canses its operand to be increased by one.
The decrement operator (- -) causes its operand to be decreased by one.
When value of one type is converted into some other type, it is called Type Conversion.

The sequence of evaluation of operators in which they are applied on the operands in an
expression is called the Precedence of Operators.

P
>

EXERCISELD
Part-A
Multiple Choice (Juestions

1. The symbols which are used to perform some specific type of operation on data are

called?
a. Operands b. Operators
c. Expressions d. Formulas

I. Which operator acts only on one operand?

a. Unary b. Binary

¢. Ternary d. Conditional
II. Which of the following is not a Logical Operator?

a. And (&&) b. ORIl

c. Equality (=) d. NOT ()
IV. Which symbol is used for Temary Operator?

g 37 b. :?

C. o d 7:
V. Which of the following cannot be considered as assignment operator?

a = | o P —

g += d %=

Fill in the Blanks:

1. are the data items on which operators can perform operations.
I. Unary operator acts on only operand.
M. _ arithmetic operator performs only on integer operand.

142 CoMruTER SCIENCE

IV. When value of one type is converted inte some other type. it is called
V. Ternary operator is also known as

Very Short Answer Type (Juesiions

I. ++Operator causes its operand to be increased by one.,

1. Arithmetic operators are used to test the relationship between two variables.
HI. Numberof Arithmetic Operators used in C programming are siX.

IV. Sizeof () operator returns the size of its operand, in bytes.

V. Type conversion is of two types.

V1. There six relational operators are present in C Language.
Part-B

Short Answer Type Questions. (Write the answers in 4-5 lines)

I Define Expression?

II. What 15 Operand?

III. What 15 Unary operaiocr?

IV. Define Conditional operator?

V. What is Type Conversion?

VI. What is an operator? Write the name of different types of operators?

VII. Write about increment and decrement operators?

Part-C

Long Answer Type Questions. (Write the answers in 10-15 lines)
I Explain the Anithmetic Operators? Write any program using Arithmetic Operators?
. What are Relational operators? Write any program of Relational operator?

Lab Activity

Write a C program to show the usage of Arithmetic operators

Write a C program to show the usage of conditional (ternary) operator
Write the C Programs to solve the following mathematical formulas:

. z=10(5+1)%2

. X=(347)=(84+9*2)

‘avrfa fanit, wifuarfaar w3 we fareat fegar dmme

Overarors avb Exprrssions m C 143

