CBSE Test Paper 03 CH-05 Complex & Quadratic

- 1. If $x=\omega^2-\omega-3,\omega$ being a non real cube root of unity , then the value of $x^4+6x^3+10x^2-12x-19$ is
 - a. 5
 - b. none of these
 - c. 19
 - d. 12
- 2. Find the Amplitude of -i
 - a. $-\frac{\pi}{2}$ b. $\frac{\pi}{2}$
 - с. *π*
 - d. none of these
- 3. The number of solutions of the equation $Im\left(z^2
 ight)=0, |z|=2$ is
 - a. 1
 - b. 4
 - c. 2
 - d. 3
- 4. Square roots of i are

a. $\pm \frac{1}{\sqrt{2}}(1+i)$

b. none of these

- c. ± 1
- d. $\pm \frac{1}{\sqrt{2}}(1-i)$
- 5. Find the Amplitude of -1 i
 - a. -3 $\pi/4$
 - b. $3\pi/4$
 - c. $\pi/4$
 - d. none of these
- 6. Fill in the blanks:

The complex number (sin135^o - i sin135^o) is written in polar form as ______.

7. Fill in the blanks:

The conjugate of complex number 3 + i is _____.

- 8. Express $\left(\frac{1}{2} + \frac{5}{2}i\right) \frac{3}{2}i + \left(\frac{-5}{2} i\right)$ in the form of a + ib.
- 9. Express the complex number $\sin 50^{\circ} + i \cos 50^{\circ}$ in the polar form.
- 10. Find the product of complex number (- 5 + 7i), (- 13 3i).
- 11. If $z_1 = 3 + 2i$ and $z_2 = 2 i$, then verify that $\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$
- 12. Simplify the following complex number $\overline{9-i}+\overline{6+i^3}-\overline{9+i^2}$
- 13. Find the value of $(4 + 3\sqrt{-20})^{1/2} + (4 3\sqrt{-20})^{1/2}$.
- 14. If $x+iy=rac{(a+i)^2}{2a-i}$, show that $x^2+y^2=rac{(a^2+1)^2}{4a^2+1}$.
- 15. Write the complex number $z = \frac{i-1}{\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}}$ in the polar form.

CBSE Test Paper 03 CH-05 Complex & Quadratic

Solution

1. (a) 5

Explanation:

$$\begin{array}{l} x = \omega^2 - \omega - 3 \\ \Rightarrow x + 3 = \omega^2 - \omega \\ \Rightarrow x^2 + 6x + 9 = \omega^4 - 2\omega^3 + \omega^2 = \omega - 2 + \omega^2 = -3 \\ \Rightarrow x^2 + 6x + 12 = 0 \\ \operatorname{Now} x^4 + 6x^3 + 10x^2 - 12x - 19 = (x^2 - 2)(x^2 + 6x + 12) + 5 \\ = (x^2 - 2) \times 0 + 5 = 5 \end{array}$$
2. (a)- $\frac{\pi}{2}$

Explanation: Let $Z = -i = r(cos\theta + isin\theta)$

Then comparing the real and imaginary parts ,we get

$$egin{aligned} r\cos heta &= 0 \quad ext{and} \quad r\sin heta &= -1 \ dots & r^2\left(\cos^2 heta + \sin^2 heta
ight) &= 1 \ &\Rightarrow r^2 &= 1 \Rightarrow r = 1 \ dots & \cos heta &= 0 \quad and \quad sin heta &= -1 \ egin{aligned} &dots & \cos heta &= 0 \ & sinegin{aligned} &dots & dots &dots &$$

[Format of amplitude is $-\theta$ in the fourth quadrant]

Since θ lies in the fourth quadrant, we have the principal value of the argument (Amplitude) = $-\frac{\pi}{2}$

3. (b) 4

Explanation:

$$(x^2 - y^2)^2 = (x^2 + y^2)^2 - 4x^2 \cdot y^2$$

 $\Rightarrow (x^2 - y^2)^2 = 16$
 $\Rightarrow x^2 - y^2 = \pm 4 \dots (iii)$
When $x^2 - y^2 = 4$ from (ii) and (iii) we get $2x^2 = 8 \Rightarrow x^2 = 4 \Rightarrow x = \pm 2$
Now from (i) we get y=0
Hence $z = \pm 2$
Now when $x^2 - y^2 = -4$ from (ii) and (iii) we get $2y^2 = 8 \Rightarrow y^2 = 4 \Rightarrow y = \pm 2$
Now from (i) we get x=0
Hence $z = \pm 2i$
Therefore the solutions of the equation $Im(z^2) = 0, |z| = 2$ are $z = \pm 2i$ and $z = \pm 2$ and so number of solutions=4.

4. (a)
$$\pm rac{1}{\sqrt{2}}(1+i)$$

Explanation:

Let $\sqrt{i} = x + iy$ Squaring both sides ,we get $i = (x + iy)^2 = x^2 - y^2 + 2xyi$ Subtracting (i) from (iii), we get $2y^2 = 1 \Rightarrow y^2 = \frac{1}{2} \Rightarrow y = \pm \frac{1}{\sqrt{2}}$

Comparing real and imaginary parts , we get $x^2 - y^2 = 0$(i) and 2xy = 1.....(ii) We have $(x^2 - y^2)^2 = (x^2 + y^2)^2 - 4x^2 \cdot y^2$ $\Rightarrow 0 = (x^2 + y^2)^2 - (2xy)^2 = (x^2 + y^2)^2 - 1$ $\Rightarrow (x^2 + y^2)^2 = 1$ $\Rightarrow x^2 + y^2 = 1$ (iii) Adding (i) and (iii) we get $2x^2 = 1 \Rightarrow x^2 = \frac{1}{2} \Rightarrow x = \pm \frac{1}{\sqrt{2}}$ Hence $\sqrt{i} = x + iy = \pm \frac{1}{\sqrt{2}}(1 + i)$ 5. (a) -3

Explanation:

Let $Z = -1 - i = r (cos \theta + i sin \theta)$

Then comparing the real and imaginary parts ,we get $r \cos \theta = -1$ and $r \sin \theta = -1$ $\therefore r^2 (\cos^2 \theta + \sin^2 \theta) = 2$ $\Rightarrow r^2 = 2 \Rightarrow r = \sqrt{2}$ $\therefore \sqrt{2} \cos \theta = -1$ and $\sqrt{2} \sin \theta = -1$ $\Rightarrow \cos \theta = \frac{-1}{\sqrt{2}}$ and $\sin \theta = \frac{-1}{\sqrt{2}}$ $\left[\cos\left(\frac{\Pi}{4}\right) = \sin\left(\frac{\Pi}{4}\right) = \frac{1}{\sqrt{2}}\right]$

Since both $sin\theta$ and $cos\theta$ are negative and we have $sin\theta$ and $cos\theta$ are negative in the third quardrant,

the principal value of the argument (Amplitude) = $-\left(\Pi-rac{\Pi}{4}
ight)=-rac{3\Pi}{4}$

- 6. 1 ($\cos 45^{\circ} + i \sin 45^{\circ}$)
- 7. 3-i

8. We have,
$$\left(\frac{1}{2} + \frac{5}{2}i\right) - \frac{3}{2}i + \left(\frac{-5}{2} - i\right)$$

= $\frac{1}{2} - \frac{5}{2} + i\left(\frac{5}{2} - \frac{3}{2} - 1\right)$
= $\frac{-4}{2} + i(1-1) = -2 + i(0) = -2 + 0i$

9. Suppose, $z = sin50^{o} + i cos50^{o}$ = $sin(90^{o} - 40^{o}) + i cos(90^{o} - 40^{o})$ = $cos 40^{o}$ + i sin 40^o

10.
$$(-5+7i)$$
. $(-13-3i) = (-5)(-13) + (-5)(-3i) + (7i)(-13) + (7i)(-3i)$

= 65 + 15i - 91i - 21i² = 65 - 76i + 21 [∵ i² = - 1]
=
$$86 - 76i$$

11. Now,
$$z_1 z_2 = (3 + 2i) (2 - i)$$

= 6 - 3i + 4i - 2i² = 6 + i - 2 (- 1) = 8 + i
 $\Rightarrow \overline{z_1 z_2} = \overline{8 + i} = 8 - i \dots (i)$
and $\overline{z_1} \overline{z_2} = (3 - 2i) (2 + i) = 6 + 3i - 4i - 2i^2$
= 6 - i - 2 (- 1) = 8 - i ...(ii)
Form Eqs. (i) and (ii), we get
 $\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$
Hence verified.

12. We have,
$$\overline{9 - i} + \overline{6 + i^3} - \overline{9 + i^2}$$

= (9 + i) + (6 + i^3) - (9 + i^2)
= 9 + i + 6 + i - 9 + 1 [$:: i^3 = i, i^2 = -1$]
= 7 + 2i

13. Given that,
$$(4 + 3\sqrt{-20})^{1/2} + (4 - 3\sqrt{-20})^{1/2}$$

$$= \sqrt{4 + i3\sqrt{20}} + \sqrt{4 - 3i\sqrt{20}}$$

$$= \sqrt{4 + i6\sqrt{5}} + \sqrt{4 - 6i\sqrt{5}}$$
Using, $[\sqrt{a + ib} + \sqrt{a - ib} = \sqrt{2(\sqrt{a^2 + b^2} + a)}]$

$$= \sqrt{2(\sqrt{4})^2 + (6\sqrt{5})^2} + 4} = \sqrt{2(\sqrt{16 + 180} + 4)}$$

$$= \sqrt{2(14 + 4)}$$

$$= \sqrt{36} = \pm 6$$

_

14. Here
$$x+iy=rac{(a+i)^2}{2a-i}$$
, (i)
Taking conjugate on both sides, we have

$$\overline{x+iy}=rac{\overline{(a+i)}^2}{\overline{2a-i}} \Rightarrow x-iy=rac{(a-i)^2}{2a+i} \dots$$
 (ii)

Multiplying (i) and (ii), we have

$$egin{aligned} &(x+iy)(x-iy)=rac{(a+i)^2}{2a-i} imesrac{(a-i)^2}{2a+i}\ &\Rightarrow x^2-i^2y^2=rac{(a+i)^2(a-i)^2}{4a^2-i^2}\ &\Rightarrow x^2+y^2=rac{(a^2-i^2)^2}{4a^2+1}[\because i^2=-1]\ &=rac{(a^2+1)^2}{4a^2+1} \end{aligned}$$

15. We have, $z = \frac{i-1}{\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}}$ Let, $-1 + i = r(\cos\theta + i\sin\theta)$ \Rightarrow r cos θ = -1 ...(i) and $r \sin \theta = 1$...(ii) On squaring and adding Eqs. (i) and (ii), we get $r^2 \left(\cos^2\theta + \sin^2\theta\right) = 1 + 1$ \Rightarrow r² = 2 \therefore r = $\sqrt{2}$ [taking positive square root] On putting the value of r in Eqs. (i) and (ii), we get $\cos\theta = \frac{-1}{\sqrt{2}}$ and $\sin\theta = \frac{1}{\sqrt{2}}$ Since, $\sin\theta$ is positive and $\cos\theta$ is negative. So, θ lies in II quadrant. $\therefore \theta = \left(\pi - \frac{\pi}{4}\right) = \frac{3\pi}{4}$ $r \Rightarrow$ i - 1 = $\sqrt{2}\left(\cosrac{3\pi}{4} + i\sinrac{3\pi}{4}
ight)$ $\therefore z = \frac{i-1}{\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)} = \frac{\sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)}{\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)}$ $= \frac{\sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)}{\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)} \times \frac{\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)}{\left(\cos\frac{\pi}{2} - i\sin\frac{\pi}{3}\right)}$ [multiplying numerator and denominator by $\int \cos \frac{\pi}{2} - i \sin \frac{\pi}{2}$

$$\begin{aligned} &\left(\cos\frac{3}{3} - i\sin\frac{\pi}{3}\right)^{1} \\ &= \frac{\sqrt{2}\left[\left(\cos\frac{3\pi}{4} \cdot \cos\frac{\pi}{3} + \sin\frac{3\pi}{4} \cdot \sin\frac{\pi}{3}\right) + i\left(\sin\frac{3\pi}{4} \cdot \cos\frac{\pi}{3} - \cos\frac{3\pi}{4} \cdot \sin\frac{\pi}{3}\right)\right]}{\left(\cos^{2}\frac{\pi}{3} + \sin^{2}\frac{\pi}{3}\right)} \\ &= \frac{\sqrt{2}\left[\cos\left(\frac{3\pi}{4} - \frac{\pi}{3}\right) + i\sin\left(\frac{3\pi}{4} - \frac{\pi}{3}\right)\right]}{1} \\ &= \sqrt{2}\left[\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12}\right] \end{aligned}$$