Power and Exponent

• Let us remember :

Dear friends, in earlier classes we have studied that multiplication is recurring addition. So, let us recall the knowledge.

$$4 + 4 + 4 + 4 + 4 = 20$$

Here, 4 is added five times.

It is written as 4×5 in short.

See the following Table, understand it and complete it:

Recurring addition	Meanings	Multiplicative form
5 + 5 + 5	Addition of 5, three times	5 × 3
3 + 3 + 3 + 3 + 3	Addition of 3, five times	3 × 5
7 + 7 + 7 + 7	Addition of 7, four times	7 ×
8 + 8 + 8 + 8 + 8 + 8 + 8	•••••	×7
	Addition of 1, ten times	×
9+9+9+9+9+9		×

Thus, addition of a number with same number is called recurring addition. Recurring addition of numbers means multiplication.

• Let us learn new:

Form of Power:

As recurring addition is called multiplication, same way recurring multiplication is called exponent form.

$$4 = 2 \times 2 = 2^2$$

$$8 = 2 \times 2 \times 2 = 2^3$$

$$16 = 2 \times 2 \times 2 \times 2 = 2^4$$

$$32 = 2 \times 2 \times 2 \times 2 \times 2 = 2^5$$

5: Power and Exponent

The number, which multiplies many times is written as base and the number multiply how many times is written as its power.

e.g. $32 = 2 \times 2 \times 2 \times 2 \times 2$ is written in power form as 2^5 . where,

 2^5 is a form of power, where 2 is base and 5 is exponent. (Read : Two raised to five) e.g. $10^2 \rightarrow$ Ten raised to two or Ten square.

 5^3 \rightarrow Five raised to three or five cube.

Thus, recurring multiplication of a number with same number is called form of power. If a number repeats only one time then its exponent is not written.

e.g.
$$5 = 5^1 = 5$$

Table 1: Read, understand and complete:

Recurring multiplication	Form of power	Base	Exponent	Read as
$3 \times 3 \times 3 \times 3$	3 ⁴	3	4	Three raised to 4
$5 \times 5 \times 5 \times 5 \times 5 \times 5$	56	•••••	•••••	Five raised to 6
	6 ⁵		•••••	•••••
		7	6	
$1 \times 1 \times 1 \times 1 \times 1$		•••••	•••••	

Illustration 1 : Convert into form of power : $2 \times 2 \times 2 \times 5 \times 5$

$$\frac{2 \times 2 \times 2}{= 2^3 \times 5^2}$$

Illustration 2 : Convert into form of power : $2 \times 2 \times 3 \times 3 \times 7 \times 7 \times 2 \times 7 \times 7$

- 1. Write the following recurring multiplication into form of power:
 - $(1) \quad 2 \times 2 \times 5 \times 5 \times 12 \times 12$
 - (2) $5 \times 5 \times 5 \times 14 \times 14 \times 14 \times 3 \times 3 \times 3$
 - (3) $4 \times 4 \times 6 \times 6 \times 6 \times 7 \times 7 \times 7 \times 7$
 - $(4) \quad 3 \times 3 \times 5 \times 3 \times 5 \times 3$
- 2. Fill in the blanks, to make the statement correct:
 - (1) $8 \times 8 \times 8 \times 8 \times 8 \times 8 \times 8$ is written as in form of power.
 - (2) In 5^9 , base is and exponent is
 - (3) 'Ten raised to four' is written as in form of power.

To find the value of the form of power:

We have seen that, how recurring multiplication is written in the form of power. Now, we have to find the value of the form of power.

Illustration 1: Find the value of 4^3 .

$$4^3 = 4 \times 4 \times 4$$
$$= 16 \times 4$$
$$= 64$$

Same way, we have to find the value of the form of power:

Illustration 2: Find the value of 10^3 .

$$10^3 = 10 \times 10 \times 10$$

= 100×10
= 1000

Illustration 3: Find the value of 1⁴.

$$1^4 = 1 \times 1 \times 1 \times 1$$
$$= 1$$

Illustration 4: Find the value of 1^{10} .

Illustration 5: Find the value of 1^{100} .

$$1^{100} = 1 \times 1 \times 1...$$
 hundred times

Thus, if base is 1 and for any number in exponent, the answer is always 1.

Find mistake

Tick mark ✓ against the right sum and tick mark × against the wrong sum :

(1)
$$2^3 = 2 \times 3 = 6$$

$$2^3 = 2 \times 2 \times 2$$
$$= 8$$

(2)
$$1^{5} = 1 \times 1 \times 1 \times 1 \times 1 = 1$$

$$1^5 = 1 \times 5$$
$$= 5$$

(3)
$$3^3 = 9$$

$$3^3 = 27$$

Illustration: Find the value of following form of power:

(1)
$$4^2 \times 2^2$$

= $4 \times 4 \times 2 \times 2$
= 16×4
= 64

(2)
$$3^4 \times 5^2$$

= $3 \times 3 \times 3 \times 3 \times 5 \times 5$
= 81×25
= 2025

(3)
$$2^3 \times 3^2$$

= $2 \times 2 \times 2 \times 3 \times 3$
= 8×9
= 72

(4)
$$2^3 \times 9^2$$

= $2 \times 2 \times 2 \times 9 \times 9$
= 8×81
= 648

Find value:

- 1.

- (1) 3^4 (2) 10^3 (3) 11×9^2 (4) $1^5 \times 4^3 \times 5$ (5) 6^3
- (6) $7^2 \times 3^4$ (7) $2^4 \times 3^2$ (8) $8^3 \times 6^2$ (9) $2^3 \times 4^3$ (10) $2^5 \times 4$

Practice 2

5: Power and Exponent

2. (1)
$$2^4 \times 3^2$$

(2)
$$3^2 \times 7^2$$

$$(3) 2^2 \times 3^2 \times 4^2$$

(4)
$$1^7 \times 5^2 \times 6$$

$$(5) 2^2 \times 3^4 \times 4^2$$

(6)
$$3^2 \times 5^3 \times 6^2$$

Know these :

Here, some figures are given differently in the form of power:

(1)
$$64 = 8 \times 8 = 8^2$$

$$64 = 4 \times 4 \times 4 = 4^3$$

$$64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 2^{6}$$

(2)
$$16 = 4 \times 4 = 4^2$$

$$16 = 2 \times 2 \times 2 \times 2 = 2^4$$

(3)
$$125 = 5 \times 5 \times 5 = 5^3$$

(4)
$$216 = 6 \times 6 \times 6 = 6^3$$

$$216 = 2 \times 3 \times 2 \times 3 \times 2 \times 3 = 2^3 \times 3^3$$

(5)
$$343 = 7 \times 7 \times 7 = 7^3$$

(6) Show 81 in different ways as form of power:

$$81 = \dots \times \dots = \dots^2$$

Dear friends, think about more than 7 number.

When recurring multiplication is written in short, then it is called form of power.

1. Write the following recurring multiplication into the form of power:

(1)
$$13 \times 13 \times 13 \times 13 \times 13 \times 13 \times 13$$

(2)
$$27 \times 27 \times 27 \times 27 \times 27 \times 27 \times 27 \times 27$$

(3)
$$11 \times 11 \times 6 \times 6 \times 6 \times 11 \times 7 \times 7 \times 7$$

2. Find value:

- (1) 4^4
- $(2) 6^3 \times 1^6$
- (3) $2^3 \times 8^2$ (4) $2^5 \times 3^2 \times 5$

- (5) $2^4 \times 5^2$ (6) $7^2 \times 5^2$ (7) $8^2 \times 9^2$ (8) $5^3 \times 2^4$ (9) $3^3 \times 5^3$ (10) $6^3 \times 3^2$ (11) $3^3 \times 2^4 \times 5^2$ (12) $3^2 \times 6^2 \times 5^2$

Answers

Practice 1

- (1) $2^2 \times 5^2 \times 12^2$ (2) $5^3 \times 14^3 \times 3^3$ (3) $4^2 \times 6^3 \times 7^4$ (4) $3^4 \times 5^2$ 1.

 $(1) 8^6$ 2.

- (2) 5, 9
- $(3) 10^4$

Practice 2

- (1) 81 (2) 1000 (3) 891 (4) 320 (5) 128 (6) 144 (7) 216 (8) 512 (9) 3969 (10) 18432 1.
- 1.

- (1) 144 (2) 441 (3) 576 (4) 150 (5) 5184 (6) 40500

Exercise

 $(1) 13^7$ 1.

- $(2) 27^8$
- (3) $11^3 \times 6^3 \times 7^3$
- **2.** (1) 256 (2) 216 (3) 512 (4) 1440 (5) 400 (6) 1225

- (7) 5184 (8) 2000 (9) 3375 (10) 1944 (11) 10800 (12) 8100

Extra knowledge:

If difference between two consecutive numbers is same, then to know addition of those numbers:

(First number + Last number) × Total numbers

e.g., Find sum of 3 + 6 + 9 + ... + 90:

As per formula:

$$= \frac{(3+90)\times 30}{2}$$

$$= \frac{93\times 30}{2}$$

$$= 1395$$

 $= \frac{(3+90)\times 30}{2}$ Total numbers = $\frac{\text{Difference between two numbers}}{\text{Difference between two numbers}}$ Last number

Think... with the help of this formula, sum of consecutive numbers, consecutive odd numbers and consecutive even numbers is possible?