Short Answer Type Questions – II

[3 marks]

Que 1. In Fig. 10.34, ABCD is a cyclic quadrilateral in which AB || CD. If \angle = 65°, then find other angles.

Que 2. In Fig. 10.35, $\angle OAB = 30^{\circ}$ and $\angle OCB = 57^{\circ}$. Find $\angle BOC$ and $\angle AOC$.

Sol. Since,OC = OB (Radii of the same circle) \therefore $\angle OBC = \angle OCB$

$$\Rightarrow \angle OBC = 57^{\circ}$$
In $\triangle OBC$, we have
 $\angle OBC + \angle BOC + \angle OCB = 180^{\circ}$
 $57^{\circ} + \angle BOC + 57^{\circ} = 180^{\circ}$
 $\Rightarrow \angle BOC = 66^{\circ}$
In $\triangle OAB$, we have
 $\angle OAB + \angle OBA + \angle AOB = 180^{\circ}$ ($\because AO = OB \therefore \angle OAB = \angle OBA$)
 $30^{\circ} + 30^{\circ} + \angle AOB = 180^{\circ}$
 $\Rightarrow \angle AOB = 180^{\circ} - 60^{\circ}$
 $\Rightarrow \angle AOC = 120^{\circ}$
 $\angle AOC = \angle AOB - \angle BOC$
 $= 120^{\circ} - 66^{\circ} = 54^{\circ}$

Que 3. In Fig. 10.36, AD is a diameter of the circle. If $\angle BCD = 150^{\circ}$, calculate (i) $\angle BAD$ (ii) $\angle ADB$

Sol. Join BD Now, ABCD is a cyclic quadrilateral $\therefore \angle BAD + \angle BCD = 180^{\circ}$ (Opposite angles of a cyclin quadrilateral) $\Rightarrow \angle BAD + 150^{\circ} = 180^{\circ}$ $\Rightarrow \angle BAD = 180^{\circ} - 150^{\circ} = 30^{\circ}$ (ii) $\angle ABD = 90^{\circ}$ (Angle in a semi-circle) Now, in $\triangle ABD$, we have $\angle ABD + \angle BAD + \angle ADB = 180^{\circ}$ $90^{\circ} + 30^{\circ} + \angle ADB = 180^{\circ}$ $\Rightarrow \angle ADB = 180^{\circ} - 120^{\circ} = 60^{\circ}$ Que 4. In Fig. 10.37, RS is diameter of the circle, PM is parallel to RS and \angle MRS = 29°, find \angle RPM.

Sol. In the given figure $\angle RMS = 90^{\circ}$ (Angles in the semi-circle as RS is diameter) $\therefore \qquad \angle RSM = 180^{\circ} - (30^{\circ} + 90^{\circ}) = 60^{\circ}$ $\angle RPM + \angle RSM = 180^{\circ}$ (Opposite angles of cyclin quadrilateral are supplementary) $\angle RPM + 60^{\circ} = 180^{\circ}$ $\Rightarrow \qquad \angle RPM = 120^{\circ}$

Que 5. If circle are drawn talking two sides of a triangle as diameter, prove that the point of intersection of these circles lie on the third side.

Sol. Given: Two circles are drawn on sides AB and AC of a \triangle ABC as diameters. The circles intersects at D.

To prove: D lies on BC **Construction:** Join A and D **Proof:** $\angle ADB = 90^{\circ}$ (Angles in the semi-circle)(i) and $\angle ADC = 90^{\circ}$ (Angles in the semi-circle)(ii) Adding (i) and (ii), we get $\angle ADB + \angle ADC = 90^{\circ} + 90^{\circ}$ $\Rightarrow \angle ADB + \angle ADC = 180^{\circ}$ \Rightarrow BDC is a straight line. Hence, D lies on third side BC. Que 6. In Fig. 10.39, O is the circumcenter of the triangle ABC and D is the midpoint of the base BC. Prove that $\angle BOD = \angle A$.

Sol. As line drawn through the centre of a circle bisecting a chord is perpendicular to the chord.

 \therefore OD \perp BC

In the right triangles OBD and OCD, We have

	OB = OC (Radii of the same circle)
	OD = OD (Common)
	∠ODB = ∠ODC	(Each 90°)
. .	$\triangle OBD \cong \triangle OCD$	(By RHS congruence criterion)
⇒	∠BOD = ∠COD	0 (CPCT)
⇒	$\angle BOD = \frac{1}{2} \angle BO$	C(i)

Also,

 $\angle A = \frac{1}{2} \angle BOC$ (ii)

From (i) and (ii), we have

∴ ∠BOD = ∠A

Que 7. ABCD is a parallelogram. The circle through A, B and C intersect CD (Produce if necessary) at E. Prove that AE = AD.

Sol. $\angle ABC + \angle AEC = 180^{\circ}$ (Opposite angles of cyclin quadrilateral)(i) $\angle ADE + \angle ADC = 180^{\circ}$ (Linear Pair) But $\angle ADC = \angle ABC$ (Opposite angles of ||^{gm}) $\therefore \ \angle ADE + \angle ABC = 180^{\circ}$ From equations (i) and (ii), we have $\angle ABC + \angle AEC = \angle ADE + \angle ABC$ $\Rightarrow \qquad \angle AEC = \angle ADE + \angle ABC$ $\Rightarrow \qquad \angle AEC = \angle ADE$ $\Rightarrow \qquad AD = AE$ (Sides opposite to equal angles)

Que 8. If diagonals of a cyclin quadrilateral are diameter of the circle through the vertices of the quadrilateral, prove that it is a rectangle.

Sol. Let, ABCD be a cyclin quadrilateral such that its diagonal AC and BD are the diameters of the circle through the vertices A, B, C and D.

As angle in a semi-circle is 90°

 $\therefore \quad \angle ABC = 90^{\circ} \text{ and } \angle ADC = 90^{\circ}$ $\angle DAB = 90^{\circ} \text{ and } \angle BCD = 90^{\circ}$

So, $\angle ABC = \angle BCD = \angle CDA = \angle DAB = 90^{\circ}$ Hence, ABCD is a rectangle.

Que 9. In Fig. 10.42, AB is a diameter of the circle, CD is a chord equal to the radius of the circle. AC and BD when extended intersect at point E. Prove that

Sol. Join OC, OD and BC In $\triangle OCD$, we have OC = OD = CD (Each equal to radius) $\therefore \Delta ODC$ is an equilateral triangle. $\angle COD = 60^{\circ}$ ⇒ $\angle COD = 2 \angle CBD$ Also, 60° = 2 ∠CBD ⇒ $\angle CBD = 30^{\circ}$ \Rightarrow Since $\angle ACB$ is angle in a semi-circle. $\angle ACB = 90^{\circ}$ ∠BCE = 180° - ∠ACB = 180° - 90° = 90° \Rightarrow Thus, in $\triangle BCE$, we have \angle BCE = 90° and \angle CBE = 30° $\angle BCE + \angle CEB + \angle CBE = 180^{\circ}$:. $90^{\circ} + \angle CEB + 30^{\circ} = 180^{\circ} \Rightarrow \angle CEB = 60^{\circ}$ ⇒ $\angle AEB = \angle CEB = 60^{\circ}$ Hence,

Que 10. In Fig. 10.43 two circles intersect at two points B and C. Through B, two line segments ABD and PBQ are drawn to intersect the circles at A, D and P, Q respectively. Prove that $\angle ACP = \angle QCD$.

Sol. As angles in the same segment of circle are equal

 $\angle ABP = \angle ACP \qquad \dots \dots (i)$ $\angle ABP = \angle QBD \qquad (Vertically opposite angles)$ $\angle QCD = \angle QBD \qquad (Angles in the same segment)$

Also,

 $\therefore \qquad \angle ABP = \angle QCD \qquad \dots \dots (ii)$ From (i) and (ii), we have $\angle ACP = \angle QCD$

Que 11. A circle has radius $\sqrt{2}$ cm. It is divided into two segment by a chord of length 2 cm. Prove that the angle subtended by chord a point in major segment is 45°.

Sol. Given: A chord AB of length 2 cm and radius of the circle is $\sqrt{2}$ cm **Proof:** In $\triangle AOB$,

OA² + OB² = $(\sqrt{2})^2$ + $(\sqrt{2})^2$ = 2 + 2 = 4 = AB² ⇒ ∆AOB is a right triangle right angled at O.

i.e. $\angle AOB = 90^{\circ}$

As the angle subtended by an arc at the centre is double the angle subtended by it at remaining part of the circle.

∴ ∠AOB = 2∠ACB

 $\Rightarrow \angle ACB = \frac{1}{2} \times 90^\circ = 45^\circ$

Que 12. Two congruent circles intersect each other at point A and B. Through A any line segment PAQ is drawn so that P, Q lie on the two circles. Prove that

Sol. Let, O and O' be the centres of two congruent circles. As, AB is the common chord of these circles.

 \therefore ACB = ADB

As congruent arcs subtend equal angles at the centre.

∠AOB = ∠AO'B

 $\Rightarrow \qquad \frac{1}{2} \angle AOB = \frac{1}{2} \angle AO'B$

⇒ ∠BPA = ∠BQA

 \Rightarrow BP = BQ (Sides opposite to equal angles)

Que 13. Two circles with centre O and O' intersect at two points A and B. A line PQ is drawn parallel to OO' through B intersecting the circles at P and Q. Prove that PQ = 200'.

Sol. Construction: Draw two circles having centres O and O' intersecting at point A and B. Draw a parallel line PQ to OO'

Join OO', OP, O'Q, OM and O,N

PQ = 200'	
In ∆OPB	
MP	(i)
m the centre to the circle bisects	the chord)
arly in ∆O, BQ	
NQ	(ii)
1	PQ = 200' In ΔOPB MP m the centre to the circle bisects rly in ΔO , BQ NQ

 $(\perp$ from the centre to the circle bisects the chord)

Adding (i) and (ii), BM + BN = PM + NQAdding BM + BN to both the sides BM + BN + BM + BN = BM + PM + NQ + BN 2BM + 2BN = PQ2(BM + BN) = PQ(iii)

Again,

OO' = MN [As OO' NM is a rectangle](iv) \Rightarrow 2OO' = PQ Hence Proved.

Que 14. The circumcenter of the $\triangle ABC$ is O. Prove that $\angle OBC + \angle BAC = 90^{\circ}$

Sol.

O is the centre of circumscribed circle.

OB = OC = radii $\Rightarrow \ \angle OBC = \angle OCB = x$ $\therefore x + x + \angle BOC = 180^{\circ} \quad (Angle sum property of \Delta OBC)$ $2x + \angle BOC = 180^{\circ}$ $\angle BOC = 180^{\circ} - 2x$ $Also, \quad \angle BOC = 2\angle BAC$ $180 - 2x = 2\angle BAC$ $180 - 2x = 2\angle BAC$ $\Rightarrow \quad 90 - x = \angle BAC$ $\Rightarrow \quad 90 - x = \angle BAC$ $\therefore \angle BAC + \angle OBC = (90 - x) + x$ $\angle BAC + \angle OBC = 90^{\circ}$