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3 3

U = kT xN, = RT (13.27)

The molar specific heat at constant volume,
C,is

v

. dUu 3
C, (monatomic gas) = aT "9 RT (13.28)
For an ideal gas,
C -C, =R (13.29)

where C, is the molar specific heat at constant
pressure. Thus,
c,=2R
2

(13.30)

The ratio of specific heats y = % = (13.31)

v

Wl

13.6.2 Diatomic Gases

As explained earlier, a diatomic molecule treated
as a rigid rotator like a dumbbell has 5 degrees
of freedom : 3 translational and 2 rotational.
Using the law of equipartition of energy, the total
internal energy of a mole of such a gas is

UzngTxNAzgRT

(13.32)
The molar specific heats are then given by

7

C, (rigid diatomic) = ER, Cp =—R (13.33)
2 2

(13.34)

5
If the diatomic molecule is not rigid but has
in addition a vibrational mode

5 7
U =|=kpT+kpT [N, = —RT
2 2

7 9 9
C,=~R, C,=-R, y=—
nTgt Ty VTR

y (rigid diatomic) = 7

(13.35)

13.6.3 Polyatomic Gases

In general a polyatomic molecule has 3
translational, 3 rotational degrees of freedom
and a certain number ( f) of vibrational modes.
According to the law of equipartition of energy,
it is easily seen that one mole of such a gas has

U= K, T+ 3 k,T+[l,T) N,

2 2

ie.C,=B+f)R C,=@4+f) R

L)
(3+.f)

Note that C, - C, = Ris true for any ideal
gas, whether mono, di or polyatomic.

Table 13.1 summarises the theoretical
predictions for specific heats of gases ignoring
any vibrational modes of motion. The values are
in good agreement with experimental values of
specific heats of several gases given in Table 13.2.
Of course, there are discrepancies between
predicted and actual values of specific heats of
several other gases (not shown in the table), such
as Cl,, C,H, and many other polyatomic gases.
Usually, the experimental values for specific
heats of these gases are greater than the
predicted values given in Table13.1 suggesting
that the agreement can be improved by including
vibrational modes of motion in the calculation.
The law of equipartition of energy is thus well

(13.36)

Table 13.1 Predicted values of specific heat
capacities of gases (ignoring
vibrational modes),

Nature of C, (o8 C,-C,
1.67
1.40
1.33

Monatomic 12.5 20.8 8.31

Diatomic 20.8 29.1 8.31

Triatomic 24.93 33.24 8.31

Table13.2 Measured values of specific heat

capacities of some gases

Nature of C, C, C,-C, Y
gas @ mol” K | (I mol” K | (J mol" K)
He 12.5 20.8 8.30 1.66

Monatomic

Monatomic = Ne 12.7 20.8 8.12 1.64

Monatomic  Ar 12.5 20.8 8.30 1.67
Diatomic H, 20.4 28.8 8.45 1.41
Diatomic o, 21.0 29.3 8.32 1.40
Diatomic N, 20.8 29.1 8.32 1.40
Triatomic  H,O 27.0 35.4 8.35 1.31
Polyatomic ~~ CH,4 27.1 35.4 8.36 131
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verified experimentally at
temperatures.

ordinary

Example 13.8 A cylinder of fixed capacity
44 .8 litres contains helium gas at standard
temperature and pressure. What is the
amount of heat needed to raise the
temperature of the gas in the cylinder by
15.0°C ? (R=8.31 J mol ! K1).

Answer Using the gas law PV = URT, you can
easily show that 1 mol of any (ideal) gas at
standard temperature (273 K) and pressure
(1 atm = 1.01 x 10° Pa) occupies a volume of
22 .4 litres. This universal volume is called molar
volume. Thus the cylinder in this example
contains 2 mol of helium. Further, since helium
is monatomic, its predicted (and observed) molar
specific heat at constant volume, C, = (3/2) R,
and molar specific heat at constant pressure,
Cp =B/2) R+ R=(5/2) R. Since the volume of
the cylinder is fixed, the heat required is
determined by C . Therefore,
Heat required = no. of moles x molar specific
heat x rise in temperature
=2x15Rx15.0=45R

=45 x 8.31 =374 J. <

13.6.4 Specific Heat Capacity of Solids

We can use the law of equipartition of energy to
determine specific heats of solids. Consider a
solid of N atoms, each vibrating about its mean
position. An oscillation in one dimension has
average energy of 2 x Y2 kT = I;T . In three
dimensions, the average energy is 3 I,T. For a
mole of solid, N = N,, and the total
energy is

U= 3 I,T xN, =3 RT

Now at constant pressure AQ = AU + PAV
= AU, since for a solid AV is negligible. Hence,

AQ AU
AT AT (13.37)

Table 13.3 Specific Heat Capacity of some
solids at room temperature and
atmospheric pressure

Substance | Specific heat | Molar specific
J kg 'K") | Heat(J mol 'K )

Aluminium 900.0 24.4
Carbon 506.5 6.1

Copper 386.4 24.5
Lead 127.7 26.5
Silver 236.1 25.5
Tungsten 134.4 24.9

As Table 13.3 shows the prediction generally
agrees with experimental values at ordinary
temperature (Carbon is an exception).

13.6.5 Specific Heat Capacity of Water

We treat water like a solid. For each atom average
energy is 3, T. Water molecule has three atoms,
two hydrogen and one oxygen. So it has

U=3x3k,T xN, =9 RT

and C=AQ/ AT=AU/ AT =9R.

This is the value observed and the agreement
is very good. In the calorie, gram, degree units,
water is defined to have unit specific heat. As 1
calorie = 4.179 joules and one mole of water
is 18 grams, the heat capacity per mole is
~ 75 J mol! K! ~ 9R. However with more
complex molecules like alcohol or acetone the
arguments, based on degrees of freedom, become
more complicated.

Lastly, we should note an important aspect
of the predictions of specific heats, based on the
classical law of equipartition of energy. The
predicted specific heats are independent of
temperature. As we go to low temperatures,
however, there is a marked departure {from this
prediction. Specific heats of all substances
approach zero as T 0. This is related to the
fact that degrees of freedom get frozen and
ineffective at low temperatures. According to
classical physics degrees of freedom must
remain unchanged at all times. The behaviour
of specific heats at low temperatures shows the
inadequacy of classical physics and can be
explained only by invoking quantum
considerations, as was first shown by Einstein.
Quantum mechanics requires a minimum,
nonzero amount of energy before a degree of
freedom comes into play. This is also the reason
why vibrational degrees of freedom come into
play only in some cases.

13.7 MEAN FREE PATH

Molecules in a gas have rather large speeds of
the order of the speed of sound. Yet a gas leaking
from a cylinder in a kitchen takes considerable
time to diffuse to the other corners of the room.
The top of a cloud of smoke holds together for
hours. This happens because molecules in a gas
have a finite though small size, so they are bound
to undergo collisions. As a result, they cannot
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Seeing is Believing

Can one see atoms rushing about. Almost but not quite. One can see pollen grains of a flower being
pushed around by molecules of water. The size of the grain is ~ 10° m. In 1827, a Scottish botanist
Robert Brown, while examining, under a microscope, pollen grains of a flower suspended in water
noticed that they continuously moved about in a zigzag, random fashion.

Kinetic theory provides a simple explanation of the phenomenon. Any object suspended in water is
continuously bombarded from all sides by the water molecules. Since the motion of molecules is random,
the number of molecules hitting the object in any direction is about the same as the number hitting in
the opposite direction. The small difference between these molecular hits is negligible compared to the
total number of hits for an object of ordinary size, and we do not notice any movement of the object.

When the object is sufficiently small but still visible under a microscope, the difference in molecular
hits from different directions is not altogether negligible, i.e. the impulses and the torques given to the
suspended object through continuous bombardment by the molecules of the medium (water or some
other fluid) do not exactly sum to zero. There is a net impulse and torque in this or that direction. The
suspended object thus, moves about in a zigzag manner and tumbles about randomly. This motion
called now ‘Brownian motion’ is a visible proof of molecular activity. In the last 50 years or so molecules
have been seen by scanning tunneling and other special microscopes.

In 1987 Ahmed Zewail, an Egyptian scientist working in USA was able to observe not only the
molecules but also their detailed interactions. He did this by illuminating them with flashes of laser
light for very short durations, of the order of tens of femtoseconds and photographing them. ( 1 femto-
second = 10'° s ). One could study even the formation and breaking of chemical bonds. That is really

seeing !

move straight unhindered; their paths keep
getting incessantly deflected.

Fig. 13.7 The volume swept by a molecule in time At
in which any molecule will collide with it.

Suppose the molecules of a gas are spheres
of diameter d. Focus on a single molecule with
the average speed <v>. It will suffer collision with
any molecule that comes within a distance d
between the centres. In time At, it sweeps a
volume ncd? <v> At wherein any other molecule

will collide with it (see Fig. 13.7). If n is the
number of molecules per unit volume, the
molecule suffers nad? <v> At collisions in time
At. Thus the rate of collisions is nzd? <v> or the
time between two successive collisions is on the
average,

T =1/(nw<v> d?) (13.38)

The average distance between two successive
collisions, called the mean free path 1, is :

Il =<v>7=1/(nad?d (13.39)

In this derivation, we imagined the other
molecules to be at rest. But actually all molecules
are moving and the collision rate is determined
by the average relative velocity of the molecules.
Thus we need to replace <v> by <v > in Eq.
(13.38). A more exact treatment givesl

1=1/(V2 mrdz) (13.40)

Let us estimate land 7 for air molecules with
average speeds <v> = (485m/s). At STP

(0.02x10*)
"= (22.4x107)

=27%x10%®m 3
Taking, d=2 x 1071°m,
T=6.1x101%sg

and [=2.9 x 107 m = 1500d (13.41)
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As expected, the mean free path given by
Eq. (13.40) depends inversely on the number
density and the size of the molecules. In a highly
evacuated tube n is rather small and the mean
free path can be as large as the length of the
tube.

Example 13.9 Estimate the mean free path
for a water molecule in water vapour at 373 K.
Use information from Exercises 13.1 and
Eq. (13.41) above.

Answer The d for water vapour is same as that
of air. The number density is inversely
proportional to absolute temperature.

273
=2.7x10® x=2=2x10®m™>
So n 373 m

Hence, mean free path 1=4 x10"m <4

Note that the mean free path is 100 times the
interatomic distance ~ 40 A =4 x10m calculated
earlier. It is this large value of mean free path that
leads to the typical gaseous behaviour. Gases can
not be confined without a container.

Using, the kinetic theory of gases, the bulk
measurable properties like viscosity, heat
conductivity and diffusion can be related to the
microscopic parameters like molecular size. It
is through such relations that the molecular
sizes were first estimated.

SUMMARY

1. The ideal gas equation connecting pressure (P), volume (V) and absolute temperature

(T) is

PV = u RT =k, NT

where pis the number of moles and N is the number of molecules. Rand k, are universal

constants.

R
R=8.314 J mol! K},

= = o -23 il
i, =N, =138 x 102 J K

Real gases satisfy the ideal gas equation only approximately, more so at low pressures

and high temperatures.

2. Kinetic theory of an ideal gas gives the relation

1 R—
P=—nmv’
3

where n is number density of molecules, m the mass of the molecule and U_Z is the

mean of squared speed. Combined with the ideal gas equation it yields a kinetic

interpretation of temperature.

1
2

3
2
2 B '

-7

This tells us that the temperature of a gas is a measure of the average kinetic energy
of a molecule, independent of the nature of the gas or molecule. In a mixture of gases at
a fixed temperature the heavier molecule has the lower average speed.

3.  The translational kinetic energy
E = E I, NT.
2

This leads to a relation

PV=EE
3

4. The law of equipartition of energy states that if a system is in equilibrium at absolute
temperature 7T, the total energy is distributed equally in different energy modes of
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absorption, the energy in each mode being equal to 4 I, T. Each translational and
rotational degree of freedom corresponds to one energy mode of absorption and has
energy ¥ I, T. Each vibrational frequency has two modes of energy (kinetic and potential)
with corresponding energy equal to

2x Y k; T=kyT.

Using the law of equipartition of energy, the molar specific heats of gases can be
determined and the values are in agreement with the experimental values of specific
heats of several gases. The agreement can be improved by including vibrational modes
of motion.

The mean free path [ is the average distance covered by a molecule between two
successive collisions :

1
V2 nrd?

where n is the number density and d the diameter of the molecule.

=

1.

POINTS TO PONDER

Pressure of a fluid is not only exerted on the wall. Pressure exists everywhere in a fluid.
Any layer of gas inside the volume of a container is in equilibrium because the pressure
is the same on both sides of the layer.

We should not have an exaggerated idea of the intermolecular distance in a gas. At
ordinary pressures and temperatures, this is only 10 times or so the interatomic distance
in solids and liquids. What is different is the mean free path which in a gas is 100
times the interatomic distance and 1000 times the size of the molecule.

The law of equipartition of energy is stated thus: the energy for each degree of freedom
in thermal equilibrium is %2 kB T. Each quadratic term in the total energy expression of
a molecule is to be counted as a degree of freedom. Thus, each vibrational mode gives
2 (not 1) degrees of freedom (kinetic and potential energy modes), corresponding to the
energy 2 x % kB T= kB T.

Molecules of air in a room do not all fall and settle on the ground (due to gravity)
because of their high speeds and incessant collisions. In equilibrium, there is a very
slight increase in density at lower heights (like in the atmosphere). The effect is small
since the potential energy (mgh) for ordinary heights is much less than the average
kinetic energy % muv? of the molecules.

< 1? > is not always equal to ( < v>)?. The average of a squared quantity is not necessarily
the square of the average. Can you find examples for this statement.

13.1

13.2

13.3

EXERCISES

Estimate the fraction of molecular volume to the actual volume occupied by oxygen
gas at STP. Take the diameter of an oxygen molecule to be 3 A.

Molar volume is the volume occupied by 1 mol of any (ideal) gas at standard
temperature and pressure (STP : 1 atmospheric pressure, O °C). Show that it is 22.4
litres.

Figure 13.8 shows plot of PV/T versus P for 1.00x10°° kg of oxygen gas at two
different temperatures.
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v

P X
Fig. 13.8

(a) What does the dotted plot signify?

(b) Which is true: T, > T, or T| < T,,?

(c) What is the value of PV/T where the curves meet on the y-axis?

(d) If we obtained similar plots for 1.00x107° kg of hydrogen, would we get the same
value of PV/T at the point where the curves meet on the y-axis? If not, what mass
of hydrogen yields the same value of PV/T (for low pressurehigh temperature
region of the plot) ? (Molecular mass of H, = 2.02 u, of O, = 32.0 u,
R=8.31Jmol!'K!)

13.4  An oxygen cylinder of volume 30 litres has an initial gauge pressure of 15 atm and
a temperature of 27 °C. After some oxygen is withdrawn from the cylinder, the gauge
pressure drops to 11 atm and its temperature drops to 17 °C. Estimate the mass of
oxygen taken out of the cylinder (R =8.31 J mol! K'!, molecular mass of O, =32u).

13.5 An air bubble of volume 1.0 cm?® rises from the bottom of a lake 40 m deep at a
temperature of 12 °C. To what volume does it grow when it reaches the surface,
which is at a temperature of 35 °C ?

13.6 Estimate the total number of air molecules (inclusive of oxygen, nitrogen, water
vapour and other constituents) in a room of capacity 25.0 m® at a temperature of
27 °C and 1 atm pressure.

13.7 Estimate the average thermal energy of a helium atom at (i) room temperature
(27 °C), (ii) the temperature on the surface of the Sun (6000 K), (iii) the temperature
of 10 million kelvin (the typical core temperature in the case of a star).

13.8 Three vessels of equal capacity have gases at the same temperature and pressure.
The first vessel contains neon (monatomic), the second contains chlorine (diatomic),
and the third contains uranium hexafluoride (polyatomic). Do the vessels contain
equal number of respective molecules ? Is the root mean square speed of molecules
the same in the three cases? If not, in which case is v_ _ the largest ?

13.9 At what temperature is the root mean square speed of an atom in an argon gas
cylinder equal to the rms speed of a helium gas atom at — 20 °C ? (atomic mass of Ar
=39.9 u, of He = 4.0 u).

13.10 Estimate the mean free path and collision frequency of a nitrogen molecule in a
cylinder containing nitrogen at 2.0 atm and temperature 17 °C. Take the radius of a
nitrogen molecule to be roughly 1.0 A. Compare the collision time with the time the
molecule moves freely between two successive collisions (Molecular mass of N, =
28.0 u).
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Additional Exercises

13.11

13.12

13.13

13.14

A metre long narrow bore held horizontally (and closed at one end) contains a 76 cm
long mercury thread, which traps a 15 cm column of air. What happens if the tube
is held vertically with the open end at the bottom ?

From a certain apparatus, the diffusion rate of hydrogen has an average value of
28.7 cm?® sl. The diffusion of another gas under the same conditions is measured to
have an average rate of 7.2 cm?® s!. Identify the gas.

[Hint : Use Graham'’s law of diffusion: R,/R, = (M, /M, )¥/2 where R,, R, are diffusion
rates of gases 1 and 2, and M, and M, their respective molecular masses. The law is
a simple consequence of kinetic theory.]

A gas in equilibrium has uniform density and pressure throughout its volume. This
is strictly true only if there are no external influences. A gas column under gravity,
for example, does not have uniform density (and pressure). As you might expect, its
density decreases with height. The precise dependence is given by the so-called law
of atmospheres

n,=n, exp [ -mg (h, - h)/ k.T|

where n,, n, refer to number density at heights h, and h, respectively. Use this
relation to derive the equation for sedimentation equilibrium of a suspension in a
liquid column:

n, =n exp[-mgN, (p - P) (h,-h)/ (p RT)]
where pis the density of the suspended particle, and p’ that of surrounding medium.
[N, is Avogadro’s number, and R the universal gas constant.] [Hint : Use Archimedes

principle to find the apparent weight of the suspended particle.]

Given below are densities of some solids and liquids. Give rough estimates of the
size of their atoms :

Atomic Mass (u) Density (10° Kg m™)

Carbon (diamond) 12.01 2.22
Gold 197.00 19.32
Nitrogen (liquid) 14.01 1.00
Lithium 6.94 0.53
Fluorine (liquid) 19.00 1.14

[Hint : Assume the atoms to be ‘tightly packed’ in a solid or liquid phase, and use
the known value of Avogadro’s number. You should, however, not take the actual
numbers you obtain for various atomic sizes too literally. Because of the crudeness
of the tight packing approximation, the results only indicate that atomic sizes are in
the range of a few Al
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OSCILLATIONS

14.1 INTRODUCTION

In our daily life we come across various kinds of motions.
You have already learnt about some of them, e.g. rectilinear
motion and motion of a projectile. Both these motions are
non-repetitive. We have also learnt about uniform circular
motion and orbital motion of planets in the solar system. In
these cases, the motion is repeated after a certain interval of
time, that is, it is periodic. In your childhood you must have
enjoyed rocking in a cradle or swinging on a swing. Both
these motions are repetitive in nature but different from the
periodic motion of a planet. Here, the object moves to and fro
about a mean position. The pendulum of a wall clock executes
a similar motion. Examples of such periodic to and fro motion
abound : a boat tossing up and down in a river, the piston in
a steam engine going back and forth, etc. Such a motion is
termed as oscillatory motion. In this chapter we study this
motion.

The study of oscillatory motion is basic to physics; its
concepts are required for the understanding of many physical
phenomena. In musical instruments like the sitar, the guitar
or the violin, we come across vibrating strings that produce
pleasing sounds. The membranes in drums and diaphragms
in telephone and speaker systems vibrate to and fro about
their mean positions. The vibrations of air molecules make
the propagation of sound possible. In a solid, the atoms vibrate
about their equilibrium positions, the average energy of
vibrations being proportional to temperature. AC power
supply give voltage that oscillates alternately going positive
and negative about the mean value (zero).

The description of a periodic motion in general, and
oscillatory motion in particular, requires some fundamental
concepts like period, frequency, displacement, amplitude and
phase. These concepts are developed in the next section.
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14.2 PERIODIC AND OSCILLATORY MOTIONS

Fig. 14.1 shows some periodic motions. Suppose
an insect climbs up a ramp and falls down it
comes back to the initial point and repeats the
process identically. If you draw a graph of its
height above the ground versus time, it would
look something like Fig. 14.1 (a). If a child climbs
up a step, comes down, and repeats the process,
its height above the ground would look like that
in Fig. 14.1 (b). When you play the game of
bouncing a ball off the ground, between your
palm and the ground, its height versus time
graph would look like the one in Fig. 14.1 (c).
Note that both the curved parts in Fig. 14.1 (c)
are sections of a parabola given by the Newton’s
equation of motion (see section 3.6),

1
h=ut +§ gt2 for downward motion, and

1
h=ut ) gt® for upward motion,

with different values of u in each case. These
are examples of periodic motion. Thus, a motion
that repeats itself at regular intervals of time is
called periodic motion.

4
x(t)
()
——h ) >
N
x(t)

N
v

x(t)
(0) \ T

Fig. 14.1 Examples of periodic motion. The period T
is shown in each case.

Very often the body undergoing periodic
motion has an equilibrium position somewhere
inside its path. When the body is at this position
no net external force acts on it. Therefore, ifit is
left there at rest, it remains there forever. If the
body is given a small displacement from the
position, a force comes into play which tries to
bring the body back to the equilibrium point,
giving rise to oscillations or vibrations. For
example, a ball placed in a bowl will be in
equilibrium at the bottom. If displaced a little
from the point, it will perform oscillations in the
bowl. Every oscillatory motion is periodic, but
every periodic motion need not be oscillatory.
Circular motion is a periodic motion, but it is
not oscillatory.

There is no significant difference between
oscillations and vibrations. It seems that when
the frequency is small, we call it oscillation (like
the oscillation of a branch of a tree), while when
the frequency is high, we call it vibration (like
the vibration of a string of a musical instrument).

Simple harmonic motion is the simplest form
of oscillatory motion. This motion arises when
the force on the oscillating body is directly
proportional to its displacement from the mean
position, which is also the equilibrium position.
Further, at any point in its oscillation, this force
is directed towards the mean position.

In practice, oscillating bodies eventually
come to rest at their equilibrium positions,
because of the damping due to friction and other
dissipative causes. However, they can be forced
to remain oscillating by means of some external
periodic agency. We discuss the phenomena of
damped and forced oscillations later in the
chapter.

Any material medium can be pictured as a
collection of a large number of coupled
oscillators. The collective oscillations of the
constituents of a medium manifest themselves
as waves. Examples of waves include water
waves, seismic waves, electromagnetic waves.
We shall study the wave phenomenon in the next
chapter.

14.2.1 Period and frequency

We have seen that any motion that repeats itself
at regular intervals of time is called periodic
motion. The smallest interval of time after
which the motion is repeated is called its
period. Let us denote the period by the symbol
T. Its S.I. unit is second. For periodic motions,
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which are either too fast or too slow on the scale
of seconds, other convenient units of time are
used. The period of vibrations of a quartz crystal
is expressed in units of microseconds (10°s)
abbreviated as us. On the other hand, the orbital
period of the planet Mercury is 88 earth days.
The Halley’s comet appears after every 76 years.

The reciprocal of T gives the number of
repetitions that occur per unit time. This
quantity is called the frequency of the periodic
motion. It is represented by the symbol v. The
relation between vand T'is

v =1/T (14.1)

The unit of v is thus s . After the discoverer of
radio waves, Heinrich Rudolph Hertz (1857-1894),
a special name has been given to the unit of
frequency. It is called hertz (abbreviated as Hz).
Thus,

1 hertz =1 Hz =1 oscillation per second =1s!
(14.2)

Note, that the frequency, v, is not necessarily
an integer.

Example 14.1 On an average a human
heart is found to beat 75 times in a minute.
Calculate its frequency and period.

Answer The beat frequency of heart = 75/(1 min)
=75/(60 s)
=1.25s'!
=1.25 Hz
=1/(1.25s7)
=0.8s <

The time period T

14.2.2 Displacement

In section 4.2, we defined displacement of a
particle as the change in its position vector. In
this chapter, we use the term displacement
in a more general sense. It refers to change
with time of any physical property under
consideration. For example, in case of rectilinear
motion of a steel ball on a surface, the distance
from the starting point as a function of time is
its position displacement. The choice of origin
is a matter of convenience. Consider a block
attached to a spring, the other end of which is
fixed to a rigid wall [see Fig.14.2(a)]. Generally it
is convenient to measure displacement of the
body from its equilibrium position. For an
oscillating simple pendulum, the angle from the
vertical as a function of time may be regarded

as a displacement variable [see Fig.14.2(b)]. The
term displacement is not always to be referred

Fig. 14.2(a) A block attached to a spring, the other
end of which is fixed to a rigid wall. The
block mouves on a frictionless surface. The
motion of the block can be described in
terms of its distance or displacement x
Jfrom the wall.

Fig.14.2(b) An oscillating simple pendulum; its
motion can be described in terms of
angular displacement 0 from the vertical.

in the context of position only. There can be
many other kinds of displacement variables. The
voltage across a capacitor, changing with time
in an a.c. circuit, is also a displacement
variable. In the same way, pressure variations
in time in the propagation of sound wave, the
changing clectric and magnetic fields in a light
wave are examples of displacement in different
contexts. The displacement variable may take
both positive and negative values. In
experiments on oscillations, the displacement
is measured for different times.

The displacement can be represented by a
mathematical function of time. In case of periodic
motion, this function is periodic in time. One of
the simplest periodic functions is given by

J(t) =Acos ot (14.3a)

If the argument of this function, wt, is
increased by an integral multiple of 2z radians,
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the value of the function remains the same. The
function f(t) is then periodic and its period, T,
is given by

2
T==" (14.3b)
o
Thus, the function f(t) is periodic with period T,
SO =f{t+T)

The same result is obviously correct if we
consider a sine function, f(t) = A sin ot. Further,
a linear combination of sine and cosine functions
like,

S({t) = Asin ot + B cos ot (14.3¢c)
is also a periodic function with the same period
T. Taking,

A=Dcos ¢ and B =D sin ¢
Eq. (14.3c) can be written as,
Sf(® =Dsin (ot + ¢) ,

Here D and ¢ are constant given by

D=\/A>+ B’ and ¢= tan"! [g)

The great importance of periodic sine and
cosine functions is due to a remarkable result
proved by the French mathematician, Jean
Baptiste Joseph Fourier (1768-1830): Any
periodic function can be expressed as a
superposition of sine and cosine functions
of different time periods with suitable
coefficients.

(14.34d)

L Example 14.2 Which of the following
functions of time represent (a) periodic and
(b) non-periodic motion? Give the period for
each case of periodic motion [ is any
positive constant].

(i) sin ot+ cos ot

(i) sin wt+ cos 2 wt + sin 4 ot

iii) e

(iv) log (i)

—_

Answer

(i) sin ot + cos wtis a periodic function, it can
also be written as \/E sin (ot + ©/4).

Now+/2 sin (wt+n/4)=\/§ sin (ot + ©/4+2n)

= 42 sin o (t + 2n/w) + /4]
The periodic time of the function is 21/ ®.

(i) This is an example of a periodic motion. It
can be noted that each term represents a
periodic function with a different angular
frequency. Since period is the least interval
of time after which a function repeats its
value, sin ot has a period T=2n /o cos 2 wt
has a period n/® =To/2; and sin 4 ot has a
period 2n/4w=T,/4. The period of the first
term is a multiple of the periods of the last
two terms. Therefore, the smallest interval
of time after which the sum of the three
terms repeats is T, and thus the sum is a
periodic function with a period 2n/ .

(ii) The function e * is not periodic, it
decreases monotonically with increasing
time and tends to zero as t — « and thus,
never repeats its value.

(iv) The function log(wt) increases mono-
tonically with time t. It, therefore, never
repeats its value and is a non-periodic
function. It may be noted that as t — oo,
log(wt) diverges to . It, therefore, cannot
represent any kind of physical
displacement. <

14.3 SIMPLE HARMONIC MOTION

Consider a particle oscillating back and forth
about the origin of an x-axis between the limits
+A and -A as shown in Fig. 14.3. This oscillatory
motion is said to be simple harmonic if the

-A . +A

<G>

Fig. 14.3 A particle vibrating back and forth about
the origin of x-axis, between the limits +A
and —A.

displacement x of the particle from the origin
varies with time as :
x(=Acos(ot+ ¢)
where A, w and ¢ are constants.
Thus, simple harmonic motion (SHM) is not
any periodic motion but one in which
displacement is a sinusoidal function of time.
Fig. 14.4 shows what the positions of a particle
executing SHM are at discrete value of time, each
interval of time being T/4 where T'is the period

(14.4)
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@ @ @
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-A (@] A -A (6] A
t=T t=5T/4

Fig. 14.4 The location of the particle in SHM at the
discrete values t = 0, T/4, T/2, 3T/4, T,
5T/4. The time after which motion repeats
itself is T T will remain fixed, no matter
what location you choose as the initial (t =
0) location. The speed is maximum for zero
displacement (at x = 0) and zero at the
extremes of motion.

of motion. Fig. 14.5 plots the graph of xversus t,
which gives the values of displacement as a
continuous function of time. The quantities A,
o and ¢ which characterize a given SHM have
standard names, as summarised in Fig. 14.6.
Let us understand these quantities.

X

o/=>
D

N

Fig. 14.5 Displacement as a continuous function of
time for simple harmonic motion.

Displacement —»
>

x (9 : displacement x as a function of time t
A : amplitude
0] : angular frequency

ot + ¢ : phase (time-dependent)
[0) : phase constant

Fig. 14.6 The meaning of standard symbols
in Eq. (14.4)

The amplitutde A of SHM is the magnitude
of maximum displacement of the particle.
[Note, A can be taken to be positive without
any loss of generality]. As the cosine function
of time varies from +1 to -1, the displacement
varies between the extremes A and — A. Two
simple harmonic motions may have same o
and ¢ but different amplitudes A and B, as
shown in Fig. 14.7 (a).

A

Fig. 14.7 (a) A plot of displacement as a function of
time as obtained from Eq. (14.4) with
¢ = 0. The curves 1 and 2 are for two
different amplitudes A and B.

> W

t—>

0

Displacement —»

>
T

While the amplitude A is fixed for a given
SHM, the state of motion (position and velocity)
of the particle at any time t is determined by the
argument (ot + ¢) in the cosine function. This
time-dependent quantity, (ot + ¢) is called the
phase of the motion. The value of plase at t =0
is ¢ and is called the phase constant (or phase
angle). If the amplitude is known, ¢ can be
determined from the displacement at t = 0. Two
simple harmonic motions may have the same A
and o but different phase angle ¢, as shown in
Fig. 14.7 (b).

Displacement —
> o >
.
«gﬁi

t—>

Fig. 14.7 (b) A plot obtained from Eq. (14.4). The
curves 3 and 4 are for ¢ = O and -n/4
respectively. The amplitude A is same for
both the plots.
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Finally, the quantity o can be seen to be
related to the period of motion T. Taking, for
simplicity, ¢ = 0 in Eq. (14.4), we have

x(t) = A cos wt (14.5)

Since the motion has a period T, x (f) is equal to
x (t+ T). That is,

Acoswt=Acos w(t+T) (14.6)

Now the cosine function is periodic with period
2m, i.e., it first repeats itself when the argument
changes by 2r. Therefore,

ot +T)=owt+2r

thatis w=2n/ T (14.7)

o is called the angular frequency of SHM. Its
S.I. unit is radians per second. Since the
frequency of oscillations is simply 1/T, o is 2n
times the frequency of oscillation. Two simple
harmonic motions may have the same A and 0,
but different o, as seen in Fig. 14.8. In this plot
the curve (b) has half the period and twice the
frequency of the curve (a).

i
FNVAY/AN
NAV VARV
|

Fig. 14.8 Plots of Eq. (14.4) for ¢ =0 for two different
periods.

t—>

Displacement —»

P Example 14.3 Which of the following
functions of time represent (a) simple
harmonic motion and (b) periodic but not
simple harmonic? Give the period for each
case.

(1) sin wt-cos wt

(2) sin? ot

Answer

(a) sin wt-cos ot
= sin wt - sin (/2 — wt)
=2 cos (t/4) sin (ot -n/4)
=2 sin (ot - /4)

This function represents a simple harmonic
motion having a period T = 2n/w and a
phase angle (-n/4) or (7n/4)
(b) sin® wt
=V2-V5 cos 2 wt
The function is periodic having a period
T = n/w. It also represents a harmonic
motion with the point of equilibrium

occurring at 2 instead of zero. <

14.4 SIMPLE HARMONIC MOTION AND
UNIFORM CIRCULAR MOTION

In this section we show that the projection of
uniform circular motion on a diameter of the
circle follows simple harmonic motion. A
simple experiment (Fig. 14.9) helps us visualize
this connection. Tie a ball to the end of a string
and make it move in a horizontal plane about
a fixed point with a constant angular speed.
The ball would then perform a uniform circular
motion in the horizontal plane. Observe the
ball sideways or from the front, fixing your
attention in the plane of motion. The ball will
appear to execute to and fro motion along a
horizontal line with the point of rotation as
the midpoint. You could alternatively observe
the shadow of the ball on a wall which is
perpendicular to the plane of the circle. In this
process what we are observing is the motion
of the ball on a diameter of the circle normal
to the direction of viewing.

\

Fig. 14.9 Circular motion of a ball in a plane viewed
edge-on is SHM.

Fig. 14.10 describes the same situation
mathematically. Suppose a particle P is moving
uniformly on a circle of radius A with angular
speed o. The sense of rotation is anticlockwise.
The initial position vector of the particle, i.e.,

the vector Qp at t = 0 makes an angle of ¢ with
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Fig. 14.10

the positive direction of x-axis. In time ¢, it will
cover a further angle ot and its position vector
will make an angle of ot + ¢ with the +ve x-
axis. Next consider the projection of the
position vector OP on the x-axis. This will be
OP’. The position of P’ on the x-axis, as the
particle P moves on the circle, is given by

x(t) = Acos (ot + ¢)

which is the defining equation of SHM. This
shows that if P moves uniformly on a circle,
its projection P’ on a diameter of the circle
executes SHM. The particle P and the circle
on which it moves arc sometimes referred to
as the reference particle and the reference circle
respectively.

We can take projection of the motion of P on
any diameter, say the y-axis. In that case, the
displacement y(t) of P’ on the y-axis is given by

y = A sin (ot + ¢)

which is also an SHM of the same amplitude
as that of the projection on x-axis, but differing
by a phase of /2.

In spite of this connection between circular
motion and SHM, the force acting on a particle
in linear simple harmonic motion is very
different from the centripetal force needed to
keep a particle in uniform circular motion.

B Example 14.4 Fig. 14.10 depicts two
circular motions. The radius of the circle,
the period of revolution, the initial position
and the sense of revolution are indicated
on the figures. Obtain the simple harmonic
motions of the x-projection of the radius
vector of the rotating particle P in each
case.

Answer

(@) Att=0, OP makes an angle of 45° =n/4 rad
with the (positive direction of) x-axis. After

time t, it covers an angle 2_;% in the

anticlockwise sense, and makes an angle

of 2% . ™ with the x-axis.
T 4

The projection of OP on the x-axis at time t

is given by,

x () =Acos ( %“_E )
T 4

ForT=4s,

x(t) = A cos (%“_E)
4 4

which is a SHM of amplitude A, period 4 s,
and an initial phase* = 7 .
(b) In this case at t =0, OP makes an angle of

90° = * with the x-axis. After a time t, it
2

covers an angle of %t in the clockwise
T

* The natural unit of angle is radian, defined through the ratio of arc to radius. Angle is a dimensionless
quantity. Therefore it is not always necessary to mention the unit ‘radian’ when we use r, its multiples
or submultiples. The conversion between radian and degree is not similar to that between metre and
centimetre or mile. If the argument of a trigonometric _function is stated without units, it is understood
that the unit is radian. On the other hand, if degree is to be used as the unit of angle, then it must be
shown explicitly. For example, sin(15°) means sine of 15 degree, but sin(15) means sine of 15 radians.
Hereafter, we will often drop ‘rad’ as the unit, and it should be understood that whenever angle is
mentioned as a numerical value, without units, it is to be taken as radians.
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sense and makes an angle of (g _z_;tj

with the x-axis. The projection of OP on the
x-axis at time tis given by

x(t) = B cos (E_%tj
2 T

=Bsin(2_7rt)
T

For T=30s,

x(t) = Bsin (l tj
15

Writing this as x (t) = B cos (%t - gj , and
comparing with Eq. (14.4). We find that this
represents a SHM of amplitude B, period 30 s,

and an initial phase of —g. <

14.5 VELOCITY AND ACCELERATION IN
SIMPLE HARMONIC MOTION

The speed of a particle v in uniform circular
motion is its angular speed o times the radius
of the circle A.

v=wA (14.8)

The direction of velocity 3, at a time t is along

the tangent to the circle at the point where the
particle is located at that instant. From the
geometry of Fig. 14.11, it is clear that the velocity
of the projection particle P” at time t is

v(t) = —wA sin (ot + ¢) (14.9)

Fig. 14.11 The velocity, v (1), of the particle P’ is the
projection of the velocity p of the
reference particle, P.

where the negative sign shows that v (t) has a
direction opposite to the positive direction of
x-axis. Eq. (14.9) gives the instantaneous
velocity of a particle executing SHM, where
displacement is given by Eq. (14.4). We can, of
course, obtain this equation without using
geometrical argument, directly by differentiating
(Eq. 14.4) with respect of t:

d
= (14.10)
vt T x(t)

The method of reference circle can be similarly
used for obtaining instantaneous acceleration
of a particle undergoing SHM. We know that the
centripetal acceleration of a particle P in uniform
circular motion has a magnitude v?/A or ®w?A,
and it is directed towards the centre i.e., the
direction is along PO. The instantaneous
acceleration of the projection particle P’ is then
(See Fig. 14.12)

a(l) =-w?Acos (ot + ¢)

=-w’x (1) (14.11)

WA wt+d

v(t)

Fig. 14.12 The acceleration, a(t), of the particle P’is
the projection of the acceleration a of the
reference particle P.

Eq. (14.11) gives the acceleration of a particle
in SHM. The same equation can again be
obtained directly by differentiating velocity v(f)
given by Eq. (14.9) with respect to time:

-4d 14.12)
alt) = vl) (

We note from Eq. (14.11) the important
property that acceleration of a particle in SHM
is proportional to displacement. For x(f) > O, a(f)
<0 and for x(t) <0, a(f) > 0. Thus, whatever the
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value of x between -A and A, the acceleration
a(t) is always directed towards the centre.

For simplicity, let us put ¢ = O and write the
expression for x (t), v () and a(i)

x(f) = A cos ot, v(t) = - w Asin ot, a(t)=—w” A cos ot
The corresponding plots are shown in Fig. 14.13.
All quantitites vary sinusoidally with time; only
their maxima differ and the different plots differ
in phase. x varies between -A to A; v(t) varies
from —wA to wA and a(t) from -w’A to w?A. With
respect to displacement plot, velocity plot has a
phase difference of 7/2 and acceleration plot
has a phase difference of &.

X

+
S

Displacement —»
[«

>

;erA -
3 : i
5 0 s i 5 &
> . i

_wA -

(b)

ﬁ
=]
-9
=
5
©
3
<

Fig. 14.13 Displacement, velocity and acceleration of
a particle in simple harmonic motion have
the same period T, but they differ in phase

Example 14.5 Abody oscillates with SHM
according to the equation (in SI units),

x=5cos [2n t + T/4].

Att=1.5s, calculate the (a) displacement,
(b) speed and (c) acceleration of the body.

Answer The angular frequency o of the body
=2n s and its time period T=1 s.

Att=1.5s
(@) displacement = (5.0 m) cos [(27 s!) X
1.5s + /4]
= (5.0 m) cos [(B7 + n/4)]
=-5.0x 0.707 m
=-3.535m

(b) Using Eq. (14.9), the speed of the body
= - (5.0 m)(2r s) sin [(27 s} x1.5 s
+ /4]
=—(5.0m)2rs™) sin [(B7 + n/4)]
=107rx 0.707 m s
=22ms!
(¢) Using Eq.(14.10), the acceleration of the
body
=—(27 s1)? x displacement
=—-(27rsY)? x (-3.535 m)

=140 m s> |
14.6 FORCE LAW FOR SIMPLE HARMONIC
MOTION

Using Newton’s second law of motion, and the
expression for acceleration of a particle
undergoing SHM (Eq. 14.11), the force acting
on a particle of mass min SHM is

F(t) =ma
=-ma” x (t)
ie., F(t) =-kx(t) (14.13)
where I =maw? (14.14a)
or o = E (14.14b)
m

Like acceleration, force is always directed
towards the mean position - hence it is sometimes
called the restoring force in SHM. To summarize
the discussion so far, simple harmonic motion
can be defined in two equivalent ways, either by
Eq. (14.4) for displacement or by Eq. (14.13) that
gives its force law. Going from Eq. (14.4) to Eq.
(14.13) required us to differentiate two times.
Likewise by integrating the force law Eq. (14.13)
two times, we can get back Eq. (14.4).

Note that the force in Eq. (14.13) is linearly
proportional to x(f). A particle oscillating under
such a force is, therefore, calling a linear
harmonic oscillator. In the real world, the force
may contain small additional terms proportional
to x?, X3, etc. These then are called non-linear
oscillators.

P Example 14.6 Two identical springs of
spring constant k are attached to a block
of mass m and to fixed supports as shown
in Fig. 14.14. Show that when the mass is
displaced from its equilibrium position on
either side, it executes a simple harmonic
motion. Find the period of oscillations.
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Fig. 14.14

Answer Let the mass be displaced by a small
distance x to the right side of the equilibrium
position, as shown in Fig. 14.15. Under this
situation the spring on the left side gets

Fig. 14.15

elongated by a length equal to x and that on
the right side gets compressed by the same
length. The forces acting on the mass are
then,

F, = -k x (force exerted by the spring on

the left side, trying to pull the
mass towards the mean
position)

F, = -kx (force exerted by the spring on
the right side, trying to push the
mass towards the mean
position)

The net force, F, acting on the mass is then
given by,

F =-2kx

Hence the force acting on the mass is
proportional to the displacement and is directed
towards the mean position; therefore, the motion
executed by the mass is simple harmonic. The
time period of oscillations is,

/m
T=2n |— <
2k

14.7 ENERGY IN SIMPLE HARMONIC
MOTION

Both kinetic and potential energies of a particle
in SHM vary between zero and their maximum
values.

In section14.5 we have seen that the velocity
of a particle executing SHM, is a periodic
function of time. It is zero at the extreme positions
of displacement. Therefore, the kinetic energy (K)
of such a particle, which is defined as

=lmv2
2

= %m @’ A? sin®(wt + ¢)

=%kAzsin2(wt+¢) (14.15)
is also a periodic function of time, being zero
when the displacement is maximum and
maximum when the particle is at the mean
position. Note, since the sign of v is immaterial
in K, the period of Kis T/2.

What is the potential energy (U) of a particle
executing simple harmonic motion? In
Chapter 6, we have seen that the concept of
potential energy is possible only for conservative
forces. The spring force F =-kxis a conservative
force, with associated potential energy

U=lkx2
2

(14.16)
Hence the potential energy of a particle
executing simple harmonic motion is,

UW = Lk
5

=%kA200s2(a)t+¢)) (14.17)

Thus, the potential energy of a particle
executing simple harmonic motion is also
periodic, with period T/2, being zero at the mean
position and maximum at the extreme
displacements.
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It follows from Eqs. (14.15) and (14.17) that
the total energy, E, of the system is,

E =U+K

k A? cos®(wt + ¢) + % k A? sin®(wt + ¢)

N | —

1 .
=5 k A? [cosz(a)t + @) + sin’(wt + ¢)]

Using the familiar trigonometric identity, the
value of the expression in the brackets is unity.
Thus,

E=Llia? (14.18)
2
The total mechanical energy of a harmonic
oscillator is thus independent of time as expected
for motion under any conservative force. The
time and displacement dependence of the
potential and kinetic energies of a linear simple

harmonic oscillator are shown in
Fig. 14.16.
K E=k(t) + U(t)
E
Ut
>
o0
Q
b=
m
K(t) .
o T/2 T
(a)
K k(> + Uxg
E
Ux)

>

20

[}

b=

m

K(x)
-A 0 +A x
(b)

Fig. 14.16 Kinetic energy, potential energy and total
energy as a function of time [shown in (a)]
and displacement [shown in (b)] of a particle
in SHM. The kinetic energy and potential
energy both repeat after a period T/2. The
total energy remains constant at all t or x.

Observe that both kinetic energy and
potential energy in SHM are seen to be always
positive in Fig. 14.16. Kinetic energy can, of
course, be never negative, since it is
proportional to the square of speed. Potential
energy is positive by choice of the undermined
constant in potential energy. Both kinetic
energy and potential energy peak twice during
each period of SHM. For x = O, the energy is
kinetic; at the extremes x = +A4, it is all potential
energy. In the course of motion between these
limits, kinetic energy increases at the expense
of potential energy or vice-versa.

‘ Example 14.7 Ablock whose mass is 1 kg
is fastened to a spring. The spring has a
spring constant of 50 N m. The block is
pulled to a distance x = 10 cm from its
equilibrium position at x= 0 on a frictionless
surface from rest at t = 0. Calculate the
kinetic, potential and total energies of the
block when it is 5 cm away from the mean
position.

Answer The block executes SHM, its angular
frequency, as given by Eq. (14.14b), is

’ k
= J—
m

50 Nm™ |

lkg
=7.07 rad s™
Its displacement at any time t is then given by,
x(t) =0.1 cos (7.071)

Therefore, when the particle is 5 cm away from
the mean position, we have

0.05=0.1 cos (7.071)

Or cos (7.07t) = 0.5 and hence

3

sin (7.07t) =— =0.866
2
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Then, the velocity of the block at x=5 cm is
=0.1%x7.07x0.866m s
=0.61ms! k
Hence the K.E. of the block, m
:1mv2 | x
2
= 15[1kg x (0.6123 m s )? | A x=0 A
=0.19J Fig. 14.17 A linear simple harmonic oscillator

The P.E. of the block,
= l K x2
2

=»(BONmM'!x 0.05m x 0.05m)
=0.0625J
The total energy of the block at x=5 cm,

K.E. + P.E.
0.25dJ

we also know that at maximum displacement,
K.E. is zero and hence the total energy of the
system is equal to the P.E. Therefore, the total
energy of the system,

=1»bBONmM!'x 0.1 mx0.1m)

=0.25d
which is same as the sum of the two energies at
a displacement of 5 cm. This is in conformity
with the principle of conservation of energy. <«

14.8 SOME SYSTEMS EXECUTING SIMPLE
HARMONIC MOTION

There are no physical examples of absolutely
pure simple harmonic motion. In practice we
come across systems that execute simple
harmonic motion approximately under certain
conditions. In the subsequent part of this
section, we discuss the motion executed by some
such systems.

14.8.1 Oscillations due to a Spring

The simplest observable example of simple
harmonic motion is the small oscillations of a
block of mass m fixed to a spring, which in turn
is fixed to a rigid wall as shown in Fig. 14.17.
The block is placed on a frictionless horizontal
surface. If the block is pulled on one side and is
released, it then executes a to and fro motion
about a mean position. Let x = 0, indicate the
position of the centre of the block when the

consisting of a block of mass m attached
to a spring. The block moves over a
Jrictionless surface. The box, when pulled
or pushed and released, executes simple
harmonic motion.

spring is in equilibrium. The positions marked
as -A and +A indicate the maximum
displacements to the left and the right of the
mean position. We have already learnt that
springs have special properties, which were first
discovered by the English physicist Robert
Hooke. He had shown that such a system when
deformed, is subject to a restoring force, the
magnitude of which is proportional to the
deformation or the displacement and acts in
opposite direction. This is known as Hooke’s
law (Chapter 9). It holds good for displacements
small in comparison to the length of the spring.
At any time ¢, if the displacement of the block
from its mean position is x, the restoring force F
acting on the block is,

F( =-kx (14.19)

The constant of proportionality, Ik, is called
the spring constant, its value is governed by the
elastic properties of the spring. A stiff spring has
large Ic and a soft spring has small k. Equation
(14.19) is same as the force law for SHM and
therefore the system executes a simple harmonic
motion. From Eq. (14.14) we have,

k
W= [—
m
and the period, T, of the oscillator is given by,

T=27r\/E
k

Stiff springs have high value of k (spring
constant). A block of small mass m attached to
a stiff spring will have, according to Eq. (14.20),
large oscillation frequency, as expected
physically.

(14.20)

(14.21)
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‘ Example 14.8 A 5 kg collar is attached
to a spring of spring constant 500 N m!. It
slides without friction over a horizontal rod.
The collar is displaced from its equilibrium
position by 10.0 cm and released. Calculate
(a) the period of oscillation,

(b) the maximum speed and

(c) maximum acceleration of the collar.

Answer (a) The period of oscillation as given by
Eq. (14.21) is,

’ 5.0kg
m
= |22 =21

=(2#n/10) s
=0.63s
(b) The velocity of the collar executing SHM is
given by,
v(t) =-Aw sin (ot + ¢)
The maximum speed is given by,
v = Aw

,k
=0.1x |—
m
500N m !
=0.1 x 2>~~~
5 kg

=1lms!
and it occurs at x=0
(c) The acceleration of the collar at the
displacement x (t) from the equilibrium is
given by,
a(t) = -’ x(t)

k
= - x(t)
m

Therefore the maximum acceleration is,
a =whA

m

_ 500Nm !
5 kg
=10ms™?
and it occurs at the extremities. <

x0.1m

14.8.2 The Simple Pendulum

It is said that Galileo measured the periods of a
swinging chandelier in a church by his pulse
beats. He observed that the motion of the
chandelier was periodic. The system is a kind

of pendulum. You can also make your own
pendulum by tying a piece of stone to a long
unstretchable thread, approximately 100 cm
long. Suspend your pendulum from a suitable
support so that it is free to oscillate. Displace
the stone to one side by a small distance and
let it go. The stone executes a to and fro motion,
it is periodic with a period of about two seconds.

We shall show that this periodic motion is
simple harmonic for small displacements from
the mean position. Consider simple pendulum
—a small bob of mass mtied to an inextensible
mass less string of length L. The other end of
the string is fixed to a support in the ceiling.
The bob oscillates in a plane about the vertical
line through the support. Fig. 14.18(a) shows
this system. Fig. 14.18(b) is a kind of ‘free-body’
diagram of the simple pendulum showing the
forces acting on the bob.

Rigid Support

(b)

Fig. 14.18 (a) A bob oscillating about its mean
position. (b) The radial force T-mg cos6
provides centripetal force but no torque
about the support. The tangential force
mgsin® provides the restoring torque.
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