UNIT - IV PLANTS AND HUMAN WELFARE

4.1. CROP IMPROVEMENT

SYNOPSIS

- The process of bringing wild species under human management is referred to as domestication.
- Plant breeding began when man first chose certain plants for cultivation.
- Plant breeding developed as a science only after the rediscovery of Mendel's laws of heredity.
- Application of knowledge acquired in the fields of molecular genetics & cytogenetics helped breeders to achieve wonderful results in a short time.

Aims and Objectives

- Incorporation of as many desirable qualities as possible into a single variety, so as to make it superior to the existing varieities is the main objective of plant breeding.
 - 1. To increase the yield of grains, fodder, fibre, oil and other plant products.
 - 2. To improve the quality of crops with regard to size, colour, shape, taste, nutritional value, storage ability of grains, vegetables, fruits etc. and many special qualities like high sugar content in sugar crops, high protein content in pulses, long and fine fibres in fibre crops, large size fruits in fruit crops etc.
 - 3. To develop varieties that are resistant to diseases, insects, drought, frost, floods, alkaline and saline conditions.
 - 4. To produce early maturing varieties for crop rotation purposes.
 - 5. To change the growth habits and agronomic characteristics of plants and to produce dwarf varieties, plants with profuse branching or more tillering, tolerance to moisture stress and salts.
 - 6. Suitability for easy harvesting, adaptability to wide regions are some of the other objectives.

• Methods of Plant breeding

The methods of plant breeding are dependent on the type of reproduction and pollination mechanisms in plants. Different methods of plant breeding are

A) Plant introduction

B) SelectionD) Mutation breeding

C) Hybridization E) Polyploidy breeding

Plant Introduction

Plant introduction is a process of introducing plants into a new locality with different climate from their natural growing places.

- 1. It is the simplest & easiest method. No scientific knowledge is necessary and only some amount of skill is required.
- 2. Introduced varieties can be directly used in agriculture & horticulture.
- 3. They serve as germplasm banks for crop improvement.

The sum total of genes in a plant species is referred to as germ plasm.

The germ plasm is stored in the form of seeds, pollen etc.

• Achievements

Ex: Sonora 63,64, varieties of wheat from Mexico. I R 8 variety of rice from philippines.

Selection

Selection is the basis for crop improvement

Mass selection

This is the oldest known method of selection and is useful in cross pollinated crops.

Mass selection is utilised to improve the yield and quality of the crop.

Best results are obtained based on the heterozygosity within the crop varieties.

About 8 years time is taken for production of a variety by this method.

• Advantages

- 1. It is the easiest method of selection. No scientific knowledge is required except some amount of skill. It is, therefore, said that the mass selection is more of an art than a science.
- 2. This is the only method of selection in wild or local crop varieties of cross pollinated plants.

• Achievements

Many of the existing crops are products of mass selection only. They are

- a) Cotton : Many of the Indian commercial varieties like Dharwar American, Dodahattilocal, Cambodias etc.
- b) Bajra : Pusa Moti.

• Pure-line selection

The progeny of a single, self-pollinated, homozygous plant is known as 'pure line. The method of production of a variety from the pure line is known as "**Pure line selection**".

W.L Johannsen, a Denmark scientist proposed pure line selection method for crop improvement. He conducted selection experiments on 'princess variety' of bean (*Phaseolus vulgaris*) This method is employed only for **self-pollinated crops**. By this process for about **10 years**, a new variety is produced.

• Advantages

- 1. It is the only method to improve the local varieties of self-pollinated crops.
- 2. Pure line selection increases homozygosity and consequently all the progeny developed by this method are phenotypically and genotypically uniform
- Achievements : Some examples of crop plants developed through pure line selection are
 - a) Groundnut : TMV 3 and RSB 17
 - **b) Rice** : CO 4, 6, 10, 14 varieties

• Clonal selection

A group of plants obtained vegetatively from a single plant is known as 'clone' and the method of developing varieties from the clones is known as 'clonal selection'.

All the plants in a clone are phenotypically and genotypically similar. Like pure line selection, their characters remain constant.

However, in the vegetatively propagated plant, the characters are in heterozygous state, and they remain the same throughout the breeding.

Many vegetative parts such as setts (sugarcane), cuttings (roses), tubers (Potato), bulbs (onion), suckers (banana) etc. are the units of clonal selection. Selection is effective when it is **between clones but not within a clone**, because all the individuals within a clone have the same genotype.

Selection within a clone seems to be effective only when a mutation intervenes.

Generally, it takes **nine years** to produce superior variety.

• Advantages

The progeny of clonal selection remain stable for any number of generations. If they possess hybrid vigour, the character can be exploited for many generations.

• Achievement

Many crop plants have been developed through clonal selection. Some examples are

a) Potato : Kufri red and kufri safed varieties.b) Mango : Mundapa pedda neelam.

• Hybridization

Hybridization is the **most important method** of plant breeding. Either in introduction or in selection there is no scope of incorporating new desired characters, but it is possible through hybridization. **Hybridization can be defined as the method** of producing new crop varieties by crossing two genetically different parents. The plant breeder always aims to incorporate as many desirable qualities from various varieties into a single variety.

In nature, cross pollination occurs in many plants leading to hybridization.

In hybridization genetic recombination occurs.

Hence great amount of genetic variability results in the offspring, which are utilized for crop improvement.

• Hybridization procedure

Crossing two plants of different genotypes involves the following procedure.

• Selection of parents : The foremost aspect of hybridization is to select homozygous plants with desirable characters as parents.

Heterozygous plants can be converted into homozygous plants by repeated selfing (inbreeding).

• Emasculation : Removal of anthers from bisexual flowers of female parents, when the flowers are still in bud condition is c a l l e d 'emasculation'.

It prevents self pollination.

In case of large flower buds, emasculation is easily performed by opening the flower buds by means of sterilized forceps and fine needle and then removing anthers without causing injury to other floral parts.

In case of small flowers, which are crowded in dense inflorescences as in bajra, jowar etc. the whole inflorescence is dipped in hot water at $45-50^{\circ}C$

or different periods of 1-10 minutes.

The gynoecium can withstand higher temperatures but anthers get killed.

Some plants are male sterile, i.e., in them although bisexual flowers have stamens, they do not possess active and fertile pollen.

Male sterile plants can be used directly as female parents without emasculation.

• **Bagging :** After emasculation is done, the female flower is enclosed in a polythene bag to prevent any other pollen grains falling on the stigmatic surface. Thus bagging prevents the undesired cross pollination.

Thus bagging prevents the undestred cross pollination.

• Artificial cross pollination : Pollen grains are collected from the male parent with the help of a brush or blotting paper and these are transferred carefully to the surface of the stigma and thus cross pollination is affected artificially.

The flowers are immediately enclosed in polythene bags.

Seeds and fruits are formed after fertilization.

Self pollination occurs in F_1 plants and plants of

 F_2 generation develop.

The plants possessing desirable characters are selected and developed by different methods. Seeds are multiplied and finally released to farmers for cultivation.

• Advantages : New genetic recombinations can be created by hybridization. Many hybrids exhibit hybrid vigour. A large number of desirable characters can be incorporated into a single variety.

• Hybrid vigour or Heterosis

The F_1 hybrids, as a rule in majority of the cases are more vigorous (taller, sturdier and more productive) than the parents.

> The superiority of the hybrids over the parents in terms of size and vigour is known as hybrid vigour or **heterosis**

Although **Koelreuter** identified hybrid vigour, he could not understand the reasons. **G.H. Shull** an American Scientist introduced the term 'Heterosis'.

He found that in maize, constant self pollination (inbreeding) produced a considerable loss of vigour (inbreeding depression) and when the weak progenies were crossed, the resulting hybrids exhibited the hybrid vigour.

Hybrid vigour is caused due to the presence of **more number of dominant genes** in a hybrid than its parents or due to its **heterozygosity** unlike its parents.

• Mutation breeding

Mutations are sudden heritable changes in the genotype of an organism.

Hugo de Vries for the first time used the term 'mutation' for the appearance of new types in the evening primrose plant (Oenothera).

Induction of desirable mutations in plants and their utilization for the production of new superior varieties is called 'Mutation breeding'.

It is an efficient method of plant breeding. The ingenious experiments of **Muller** and **Stadler** laid the foundation for Mutation breeding. According to their origin, mutations are classified into two types.

i. Spontaneous Mutations ii. Induced Mutations

• Spontaneous mutations

These mutations arise automatically in nature. Their frequency is extremely low.

They are caused due to the action of naturally occurring aspects like electric currents, atomic rays and particles, temperature variations etc. *Oenothera gigas* (large sized plants) and *O. nanella* (dwarf plants) are few examples of spontaneous mutations.

• Induced mutations

H.J. Muller induced mutations in *Drosophila* for the first time using X-rays, while **L.J. Stadler** induced mutations in barley in 1928.

Genetic variations required for crop improvement are induced in large numbers in relatively short period. Substances which induce mutations are called **'mutagens'**.

These are of two types.

- 1. Physical mutagens and
- 2. Chemical mutagens

All ionizing radiations (X-rays, α -rays, β -rays, γ -rays) and non-ionizing radiations like ultraviolet rays are powerful physical mutagens.

The seeds, seedlings, buds and flowers are subjected to irradiation leading to the production of large number of mutations.

Chemical mutagens are colchicine, formaldehyde, ethyl methane sulphonate (EMS),malic hydrazide etc. Mostly they cause gene mutations.

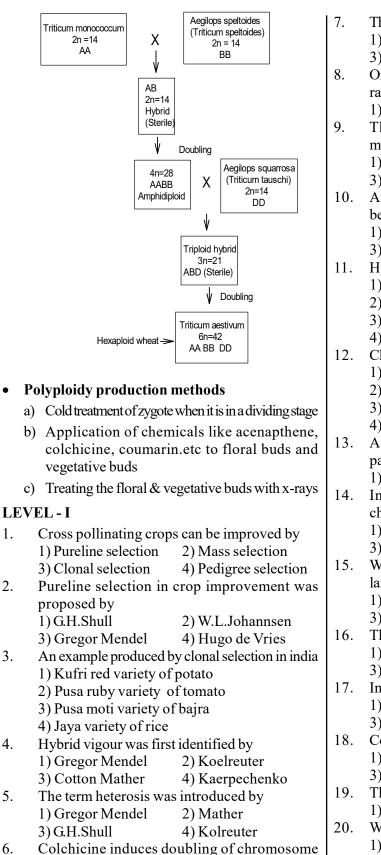
Mutation breeding is a quick method to induce genetic variability in many crops.

• Achievements

- a) By mutation breeding, disease resistance is incorporated into IR-8 rice
- b) The sweedish variety of barley with hardinessc) Aruna variety of castor

• Polyploidy breeding

In nature, sexually reproducing organisms are in diploid condition. In them two sets of chromosomes are present.


However, many plants, especially grasses are either triploids (3x), tetraploids (4x), hexaploids (6x) or octaploids (8x).

Such plants having more than two sets of chromosomes are termed as **polyploids.**

The utilization of polyploidy for the improvement of crops is called '**polyploidy breeding**'.

• Hexaploids

The commercial bread wheat (*Triticum aestivum*) is a classic example for an allohexaploid. The origin of bread wheat is schematically described in following figure.

- Colchicine induces doubling of chromosome 6. number by
 - 1) Promoting DNA replication

1.

2.

3.

4.

5.

- 2) Promoting spindle formation
- 3) Splitting the chromosome into chromatids
- 4) Suppressing the spindle formation

	UNIT - IV ::	CROP IMPROVEMENT
7.	The first induced mutation	n in plants was obtained by
		2) H.J.Muller
	3) Hugo de Vries	4) Karpechenko
8.		non-ionizing mutagenic
	radiation	
	1) Alfa-rays 2) UV-rays	3)X-rays 4)Gama-rays
9.	The rice variety, whi	ich was improved by
	mutation breeding techn	nique is
	1)Aruna	2) Sharbati sonora
	3) Disease resistant IR-	
10.	A process which is esse	-
	before performing hybri	
		2) Removal of stamens
	3) Removal of petals	4) Removal of sepals
11.	Hybridization results in	•.
	1) Increase of homozyg	
	2) Increase of heterozyg	
	3) Doubling of chromos	some number
10	4) Decrease of vigour	
12.	Chemical mutagens cau 1) Gene mutations	ise
	2) Destruction of cell m	etabolism
	3) Destruction of cell w	
	4) No change in the gen	
13.		uned from the vegetative
10.	parts is	
	1) Pureline 2) Hybrid	3) Mutant 4) Clone
14.		gree of variability of
	characters is less becau	
	1) Compatibility	2) Incompatability
	3) Heterozygosity	4) Homozygosity
15.	Which one of the follow	
	large amount of genetic	
	1) Vegetative propagati	· -
	3) Induced mutations	
16.	The chief cause of varia	-
	1) Mass selection	2) Pureline selection
17		4) Natural hybridization
17.	In potato new varieties	
	1) Pureline selection	·
18.	3)Natural selection Colchicine is	4) Clonal selection
10.	1) An enzyme	2) a glucoside
	3) an alkaloid	4) a protein
19.	The term mutation was	× 1
17.		3) Stadler 4) Mendel
20.	Which of the following	
		thylemethane sulphonate
	3) Indole acetic Acid	
21.		eeding useful in crop
	improvement is	<i>c</i> r
	1) Protoplast fusion	2) Transgenesis

3) Gene slicing

4) Mass selection

22.	Which of the followiong is genetically	pure &	35.	The metho
	produced by self pollination?	-		dependent o
	1) Clone 2) Hybrid 3) Pureline 4) M			1) Rate of gr
23.	The plant used by Johannsen for propos	ing the		2) No. of fru
	concept of pureline was			3) Method o
	1) Taichung native 1 variety of rice			4) Methods
	2) Swedish variety of barley		36.	Theory of na
	3) TV-29 variety of tea			1) G.J. Meno
	4) Princess variety of Phaselous vulgaris			3) Linnaeus
24.	Bagging prevents undesired		37.	Better results
	1) Self pollination 2) Autogamy		57.	1) Genetic v
	3) Cleastogamy 4) Allogamy			3) Phenotyp
25.	The part of the flowers that can with stand	higher	38.	
	temperatures is		30.	Adaptability
	1) Anther 2) Gynoecium			selection is p
	3) Microsporophyll 4) Calyx			1)Heterozyg
26.	Groundnut variety produced by pur	e line		3) Superiorit
	selection is		39.	The advanta
	1) CO-4 2) IR-8 3) RSB-17 4) A	runa		and selection
27.	In Bajra & Jowar emasculation is done			1) Improvin
	1) with the help of forceps			2) Improving
	2) by Hot water treatment			3) Making p
	3) By chemical treatment			4) Incorpora
	4) By harmonal treatment		40.	Large num
28.	The external observable characteristics of	ofan		incorporated
20.	organism is known as	or un		1) Mutation
	1) Phenotype 2) Karyotype			3) Hybridiza
	3) Hetrosis 4) Genotype		41.	In the proce
29.	Which of the following character is induced	ced by	41.	
2).	mutations in swedish barely	ceuby		flowers on the
	1) Disease resistance 2) Flood resistan	nce		1) Only befo
	3) Hardiness 4) High yield	lice		2) Only befo
30.	Classical example for an allohexa ploid i	c		3) Only after
50.	1) Barely 2) CO-h	.5		4) Before and
	· · ·		42.	Labels carry
21				crossing etc.
31.	F_2 generation developed in hybridi	zation		1) Male flow
	technique is as a result of			2) Female fl
	1) Cross pollination 2) Self pollination	n		3) Emascula
	3) Vegetative reproduction			<i>,</i>
	4) Asexual reproduction		10	4) Plants of p
32.	The process of bringing wild species under	human	43.	A hybrid is g
	management is called			the parents.
	1) Domestication 2) Taming			1) Homozyg
	3) Socialization 4) Naturalization			3) Fusion of
33.	Plant breeding is			4) Superior
	1) An applied branch of botany 2) A pure	science	44.	Inbreeding
	3) An applied branch of Biology			-
				1) Mutation
2.4	4) An art than science	1.		2) Vegetative
34.	The new variety can directly be used in agri			3) Cross poll
	or horticulture in this method of crop improv	vement	45.	It is a sponta
	1) Plant introduction 2) Selection			1) Oenother
	3) Polyploidy breeding 4) Mutation breed	ding		3) O-gigas
				-) - 0-0-00

	•••••						
5.	The methods of plan	t breeding are largely					
	dependent on	dependent on					
	1) Rate of growth of the	plant					
	2) No. of fruits produced on each season						
	3) Method of germinatio	on of the seeds					
	4) Methods of reproduct	tion					
6.	Theory of natural selection						
	1) G.J. Mendel	2) Charles Darwin					
	3) Linnaeus	4) Johanssen					
7.		is possible due to greater					
		2)Homozygosity					
	3) Phenotype	4) Genotype					
8.	· · ·	ty developed by pureline					
	selection is poor due to	· · · · · · · · · · · · · · · · · · ·					
	1) Heterozygosity	2)Homozygosity					
	3) Superiority	4) High specificity					
9.		ization over introduction					
-	and selection types of cro						
	1) Improving homozygo						
	2) Improving heterozygosity						
	3) Making plants disease resistant						
	4) Incorporation of new						
0.	· -	able characters can be					
	incorporated into a single						
	1) Mutation breeding						
	3) Hybridization	4) Pure line selection					
1.		dization, bagging of the					
	flowers on the female plant should be done						
	1) Only before carrying c						
	2) Only before the anthe	_					
	3) Only after carrying out						
	4) Before and after carryin	ng out artificial pollination					
2.	Labels carrying the deta	ils of the parents, date of					
	crossing etc., are tagged	_					
	1) Male flowers of male	parent					
	2) Female flowers of male parents						
	3) Emasculated flowers after crossing						
	4) Plants of pure line	C					
3.	· •	re vigorous than either of					
5.	the parents. This is due t	-					
	1) Homozygosity	2)Heterozygosity					
	,	f male an female gametes					
	4) Superior genes in the	-					
4.	/	•					
4.	Inbreeding depression is	due to					
	1) Mutation						
	2) Vegetative propagatio						
_	3) Cross pollination	· -					
5.	It is a spontaneous mutar	•					
	1) Oenothera nanella	2) Sharbati Sonora					

4) Both 1 & 3

46.	Mutagenic effect of X-rays was discovered by					
	1) T.H. Morgan 2)) H.J. Muller				
	3) Beadle 4)) Hugode Vries				
47.	L.J. Stadler induced mutati	ons for the first time in				
	this plant					
	1) Wheat 2) Rice 3)) Mango 4) Barley				
48.	Who among the following	ng laid foundation to				
	mutation breeding?	-				
	1) Hugo de Vries 2)) Karpenchenko				
	3) Muller and Stadler 4)) M.S. Swaminathan				
49.	The original I.R-8 of paddy	y is susceptible to				
	1) Leaf spot 2)) Blast				
	3) Blight 4))All of them				
50.	Most common method of in	nducing polyploidy				
	1) Cold treatment 2)) Using X-rays				
	3) Colchicine treatment					
	4) Acenaphthene treatment	t				
51.	EMS is used as					
	1) Pesticide 2)) Fungicide				
	· · · · · · · · · · · · · · · · · · ·) Chemical fertilizer				
52.	The first to observe hybrid	vigour was				
	1) Knight 2)) G.H. Shull				
	3) Koelreuter 4)) Thomas Fair child				
LEV	EL-II					
53.	Identify the correct statem	nent				
	1)Mass selection is based of					
	i jiilass selection is casea of	n genotypic characters				
	2) Mass selection is us	• • • •				
		• • • •				
	2) Mass selection is us pollinating crops3) Mass selection increase	sed to improve self es heterozygosity				
	2) Mass selection is us pollinating crops3) Mass selection increase4) Mass selection increase	sed to improve self es heterozygosity es homozygosity				
54.	 2) Mass selection is us pollinating crops 3) Mass selection increase 4) Mass selection increase Which of the following mediate 	sed to improve self es heterozygosity es homozygosity				
54.	 2) Mass selection is us pollinating crops 3) Mass selection increase 4) Mass selection increase Which of the following me inducing polyploidy 	sed to improve self es heterozygosity es homozygosity ethods is not useful in				
54.	 2) Mass selection is us pollinating crops 3) Mass selection increase 4) Mass selection increase Which of the following me inducing polyploidy 1) Giving cold treatment t 	sed to improve self es heterozygosity es homozygosity ethods is not useful in to zygote				
54.	 2) Mass selection is us pollinating crops 3) Mass selection increase 4) Mass selection increase Which of the following mainducing polyploidy 1) Giving cold treatment t 2) Treating floral buds with 	sed to improve self es heterozygosity es homozygosity ethods is not useful in to zygote th Acenapthene				
54.	 2) Mass selection is us pollinating crops 3) Mass selection increase 4) Mass selection increase Which of the following mean inducing polyploidy 1) Giving cold treatment t 2) Treating floral buds witt 3) Treating the vegetative 	sed to improve self es heterozygosity es homozygosity ethods is not useful in to zygote th Acenapthene buds with X-rays				
	 2) Mass selection is us pollinating crops 3) Mass selection increase 4) Mass selection increase Which of the following mainducing polyploidy 1) Giving cold treatment t 2) Treating floral buds witt 3) Treating the vegetative 4) Treating the seeds with 	sed to improve self es heterozygosity es homozygosity ethods is not useful in to zygote th Acenapthene buds with X-rays IAA				
54.	 2) Mass selection is us pollinating crops 3) Mass selection increase 4) Mass selection increase Which of the following mainducing polyploidy 1) Giving cold treatment t 2) Treating floral buds witt 3) Treating the vegetative 4) Treating the seeds with Which statement is not 	sed to improve self es heterozygosity es homozygosity ethods is not useful in to zygote th Acenapthene buds with X-rays IAA				
	 2) Mass selection is us pollinating crops 3) Mass selection increase 4) Mass selection increase Which of the following mean inducing polyploidy 1) Giving cold treatment t 2) Treating floral buds witt 3) Treating the vegetative 4) Treating the seeds with Which statement is not selection 	sed to improve self es heterozygosity es homozygosity ethods is not useful in to zygote th Acenapthene buds with X-rays IAA related to pureline				
	 2) Mass selection is us pollinating crops 3) Mass selection increase 4) Mass selection increase Which of the following mainducing polyploidy 1) Giving cold treatment t 2) Treating floral buds witt 3) Treating the vegetative 4) Treating the seeds with Which statement is not selection 1) New characters cannot 	sed to improve self es heterozygosity es homozygosity ethods is not useful in to zygote th Acenapthene buds with X-rays IAA related to pureline				
	 2) Mass selection is us pollinating crops 3) Mass selection increase 4) Mass selection increase Which of the following mainducing polyploidy 1) Giving cold treatment t 2) Treating floral buds witt 3) Treating the vegetative 4) Treating the seeds with Which statement is not selection 1) New characters cannot the population 	sed to improve self es heterozygosity es homozygosity ethods is not useful in to zygote th Acenapthene buds with X-rays IAA related to pureline t be incorporated in				
	 2) Mass selection is us pollinating crops 3) Mass selection increase 4) Mass selection increase Which of the following mainducing polyploidy 1) Giving cold treatment t 2) Treating floral buds witt 3) Treating the vegetative 4) Treating the seeds with Which statement is not selection 1) New characters cannot 	sed to improve self es heterozygosity es homozygosity ethods is not useful in to zygote th Acenapthene buds with X-rays IAA related to pureline t be incorporated in rops				
	 2) Mass selection is us pollinating crops 3) Mass selection increase 4) Mass selection increase Which of the following mainducing polyploidy 1) Giving cold treatment t 2) Treating floral buds witt 3) Treating the vegetative 4) Treating the seeds with Which statement is not selection 1) New characters cannot the population 2) It is for self pollinated crossing the seed of the selection 	sed to improve self es heterozygosity es homozygosity ethods is not useful in to zygote th Acenapthene buds with X-rays IAA related to pureline t be incorporated in rops pility is poor				
	 Mass selection is us pollinating crops Mass selection increase Mass selection increase Mass selection increase Which of the following mainducing polyploidy Giving cold treatment t Treating floral buds witt Treating the vegetative Treating the vegetative Treating the seeds with Which statement is not selection New characters cannot the population It is for self pollinated cr Multilocational adaptate 	sed to improve self es heterozygosity es homozygosity ethods is not useful in to zygote th Acenapthene buds with X-rays IAA related to pureline t be incorporated in rops pility is poor re not stable				
55.	 Mass selection is us pollinating crops Mass selection increase Mass selection increase Mass selection increase Which of the following me inducing polyploidy Giving cold treatment t Treating floral buds witt Treating the vegetative Treating the vegetative Treating the seeds with Which statement is not selection New characters cannot the population It is for self pollinated cr Multilocational adaptat Desirable characters an A common feature bety pureline is 	sed to improve self es heterozygosity es homozygosity ethods is not useful in to zygote th Acenapthene buds with X-rays IAA related to pureline t be incorporated in rops bility is poor re not stable ween a clone and a				
55.	 Mass selection is us pollinating crops Mass selection increase Mass selection increase Mass selection increase Mass selection increase Mich of the following mainducing polyploidy Giving cold treatment t Treating floral buds witt Treating the vegetative Treating the vegetative Treating the seeds with Which statement is not selection New characters cannot the population It is for self pollinated cr Multilocational adaptate Desirable characters and A common feature betw pureline is Both can be obtained b 	sed to improve self es heterozygosity es homozygosity ethods is not useful in to zygote th Acenapthene buds with X-rays IAA related to pureline t be incorporated in rops bility is poor re not stable ween a clone and a by repeated selfing				
55.	 Mass selection is us pollinating crops Mass selection increase Mass selection increase Mass selection increase Mass selection increase Which of the following mainducing polyploidy Giving cold treatment t Treating floral buds witt Treating the vegetative Treating the vegetative Treating the seeds with Which statement is not selection New characters cannot the population It is for self pollinated cr Multilocational adaptat Desirable characters at A common feature betw pureline is Both can be obtained b Both show high degree 	sed to improve self es heterozygosity es homozygosity ethods is not useful in to zygote th Acenapthene buds with X-rays IAA related to pureline t be incorporated in rops bility is poor re not stable ween a clone and a by repeated selfing of heterozygosity				
55.	 Mass selection is us pollinating crops Mass selection increase Mass selection increase Mass selection increase Mass selection increase Which of the following me inducing polyploidy Giving cold treatment t Treating floral buds witt Treating the vegetative Treating the vegetative Treating the seeds with Which statement is not selection New characters cannot the population It is for self pollinated cr Multilocational adaptat Desirable characters and A common feature betw pureline is Both can be obtained b Both show high degree Both are phenotypically 	sed to improve self es heterozygosity es homozygosity ethods is not useful in to zygote th Acenapthene buds with X-rays IAA related to pureline t be incorporated in rops bility is poor re not stable ween a clone and a by repeated selfing of heterozygosity				
55.	 Mass selection is us pollinating crops Mass selection increase Mass selection increase Mass selection increase Mass selection increase Which of the following mainducing polyploidy Giving cold treatment t Treating floral buds witt Treating the vegetative Treating the vegetative Treating the seeds with Which statement is not selection New characters cannot the population It is for self pollinated cr Multilocational adaptat Desirable characters at A common feature betw pureline is Both can be obtained b Both show high degree 	sed to improve self es heterozygosity es homozygosity ethods is not useful in to zygote th Acenapthene buds with X-rays IAA related to pureline t be incorporated in rops bility is poor re not stable ween a clone and a by repeated selfing of heterozygosity				

57.	Application of knowledge acquired in which of
	the following fields help breeders to achieve
	wonderful results in a short time
	I) Molecular genetics II) Cytology
	III) Cytogenetics IV) Taxonomy
	1) I, II 2) II, IV 3) I, III 4) All
Note	: For all Assertion (A) and Reason (R)
	Questions, identify the correct answer from
	the choices given below.
	1. A and R are correct and R is the correct
	explanation of A
	2. A and R are correct but R is not the
	correct explanation of A
	3. A is true but R is false
	4. A is false but R is true
58.	Assertion (A): Cultivated crop plants are the result
	of domestication
	Reason (R): The process of bringing wild species
	into cultivation is referred to as domestication
59.	Assertion (A): With the beginning of civilization
	man started domesticating plants
	Reason (R): Domestication refers to identification
	of plants found growing in wild places
60.	Assertion (A): Man is mostly dependent on plants
	for his necessities.
	Reason (R): Plants are major sources of man's
(1	needs like food, fuel, medicines
61.	Assertion (A) : Early maturing varieties are
	produced through plant breeding
	Reason (R): Early maturing variety is not useful in
62.	crop rotation A scarting (A) : Some total of genes in a plant
02.	Assertion (A): Some total of genes in a plant
	species is referred to as germplasm. Reason (R): The germ plasm is stored in the form
	of seeds, pollen etc
63.	Assertion (A): Introduction is the simplest and
05.	easiest method of plant breeding
	Reason (R): No scientific knowledge is necessary
	for introducing plants
64.	Assertion (A) : All rice varieties cultivated in our
0.11	country were introduced from Philippines.
	Reason (R): I.R-8 variety of rice was introduced
	into India from Philippines.
65	Dead the following statements and find out the

65. Read the following statements and find out the incorrect ones

I) Selection is oldest breeding method

II) Mass selection is oldest selection method

III) Pure line selection is one of an art more than science IV) In nature cross pollination occurs in many plants leading to hybridization

1) I & II 2) II & III 3) IV only 4) III only

66.	Which of the following statements is true ? 1) Dodahatti local of cotton is a product of selection	75.	having mixed populations and uncontrol			
	2) Androecium withstands high temperature		pollination is			
	3) Self pollination increases heterozygosity		1) Mass selection	2) Pure line selection		
	4) Inbreeding depression is due to allogamy		3) Clonal selection	4) Mutation breeding		
67.	The development of improved varieties of	76.	1 0	hod which involves only		
	economically important plants is mainly due to		-	n of best genotypes already		
	1) Judicious combination of selection, introduction		present in the population			
	and hybridization of different varieties		1) Introduction	2) Mutation breeding		
	2) Introduction of varieties of crops under different		3) Polyploidy breeding			
	conditions	77.	1	ot one of the following are		
	3) The scientific improvement of cultivated plants		true for mass selection.			
	4) Selection of seeds from healthier plants.		· •	able characters are chosen		
68.	Assertion (A) : Dwarf Mexican wheat cultivar		on the basis of pheno	• •		
	Sonara-64 was introduced in India.		2) This method is practiced for homozygous plants			
	Reason (R) : Dwarfness increases disease		which are self pollina			
	susceptibility		2 · · · · · · · · · · · · · · · · · · ·	suitable in case of cross		
69.	Identify the odd crop variety from the following in		pollinated crops			
	relation to the method of production			on of plants with desirable		
	1) Sonora 64 2) IR-8			ued upto six generations		
	3) Dodahatti local 4) Sonora -63	-	successively			
70.	Choose the correct statement	78.		ection is oldest method of		
	1) Homozygosity is the basis for mass selection		selection.			
	2) Mass selection is the easiest and fastest method			ection is useful in cross		
	of crop improvement	70	pollinated crops.	1		
	3) Varieties obtained by pureline selection show	79.	than science.	election is more of an art		
	high adaptability to wide areas			fic knowledge is required		
	4) Hybrid vigour can be exploited for many years		except some amount of s			
	by pure line selection	80.	_	ng is the result of pure line		
71.	If a plant breeder has to evolve a disease resistant	00.	selection?	ing is the result of pure line		
	strain, then the first step that he has to take is		I. Loss of adaptability of	f the crop		
	1) to start with hybridization		II. Loss of heterozygosit	*		
	2) to select the parents			op in both phenotype and		
	3) to go to the field to find out such plants		genotype	op in complicitotype and		
	4) to go to the library in search of book on the subject		1) I only 2) I & II	3) III only 4) I, II & III		
72.	Assertion (A): Selection is the oldest breeding method	81.	The method of mass sel	· · · ·		
	Reason (R): Many of the existing crops are		1) Phenotype of the parental plants			
	obtained by selection		2) Phenotypes of the fem	-		
73.	Assertion (A): Selection is the basis for crop		3) Genotype of the male			
	improvement		· · ·	type of the female parent		
	Reason (R) : The greater the genetic variability in	82.	, , , ,	od that may cause loss of		
	a population, better are the results of selection		vigour if continued for lo	•		
74.	Which one of the following is wrong statement		1)Heterosis	2) Hybridization		
	regarding the aims of plant breeding?		3) Mass selection	4) Pure line selection		
	1) To produce early maturing variety	83.	· ·	Johanssen conducted		
	2) Suitability for easy harvesting		experiments belongs to			
	3) Adaptability to a particular region		1)Asteraceae	2) Fabaceae		
	4) Increase yield of crop plants		3) Solanaceae	4) Apiceae		

Arrange the following steps of hybridization 84. Assertion (A): Progeny developed by pureline 95. selection are phenotypically and genotypically procedure in a sequence uniform I. Artificial cross pollination II. Selection of parents Reason (R): Pure line selection is applicable for **IV. Emasculation** III. Bagging cross pollinated crops 1) III, I, II, IV 2) II, IV, III, I 85. Assertion (A): All the progeny developed by pure 3) IV, II, I, III 4) II, I, IV, III line selection are genotypically uniform. Assertion (A): Great amount of genetic variability 96. Reason (R): Pureline selection increases results in the off spring obtained through homozygosity. hybridization 86. Assertion (A): Pure line selection is the only method Reason (R) : Recombinants are formed in to improve the local varieties of self pollinated crops hybridization leading to variability Reason (R): It takes 10 years to produce a new 97. Assertion (A): Emasculation of bisexual flowers variety through pure line selection of female parent is a pre-requisite for artificial 87. Assertion (A): Pure line selection method for crop improvement was proposed by W.L. Johannsen. crossing. Reason (R): W.L. Johannsen conducted Reason (R): There is a possibility of self pollination experiments on evening primrose in bisexual flowers, which must be avoided by the 88. The propogule in kufrired is removing of stamens. 1) Bulb 2) Cutting 3) Stem tuber 4) Ear 98. Assertion (A): Dense inflorescence of bajra, is 89. Taking it for granted that mutation has not dipped in hot water to kill the anthers, before intervened, then during clonal selection, it is always carrying out crossing, instead of using forceps advisable to do selection between the individuals Reason (R): Emasculation by forceps is difficult in of different clones, but not within a clone. The bajra as the flowers are minute logical explanation is 99. Assertion (A): Flowers of Bajra and Jowar are 1) Individuals of the same clone do not have good dipped in hot water at 45 -50°C for emasculation adaptive value Reason (R): Gynoecium can withstand higher 2) Individuals of the same clone have the same temperature than androecium genotypical constitution 3) In individuals of the same clone yield is less 100. Emasculation is not needed for 4)In individuals of the same clone hybrid vigour is less A) Bisexual Flowers B)Unisexual flowers Assertion (A): The progeny obtained by clonal 90. C) Male sterile plants selection is both phenotypically and genotypically 1) A&B 2) B&C 3) A & C 4) C alone similar. 101. Assertion (A): Emasculation is not required in male Reason (R): They are obtained through vegetative sterile plants. propagation. Reason (R): Self pollination is not possible due to Assertion (A): Clonal selection is a method of 91. the absence of fertile pollen breeding in sugar cane 102. Assertion (A) : G.H. Shull introduced the term Reason(R): Sugarcane is propagated through heterosis stolons 92. Assertion (A): Pusa Moti is a variety obtained Reason (R): He found that inbreeding in maize through clonal selection. resulted in loss of vigour Reason (R): A group of plants obtained by 103. Assertion (A): A hybrid can exhibit superiority over vegetative propagation from a single plant is called its parents in terms of size and vigour clone Reason (R) : The total number of favourable 93. Assertion (A): The progeny of clonal selection dominant genes are more in the hybrid plant than remain stable for any number of generations. its parents. Reason (R): All the individuals within a clone show 104. Assertion (A): The mutations that arise automaticsame genotype. ally in nature are described as spontaneous. Assertion (A): Emasculation is removal of male parts. 94. Reason (R): Oenothera gigas is an example of Reason (R): Bagging is not required for emasculated spontaneous mutation. flowers.

				UNIT -			
105. Identify wrong statement	1		Ι	II	III	IV	7
1) Muller and Stadler laid foundation for mutation		1)	С	А	D	В	
breeding		2)	В	D	А	С	
2) Hugo deVries for the 1 st time used the term		3)	А	D	В	С	
		4)	В	Ċ	D	Ā	
mutation for the appearance of new types in	114	/					t plants are
princess variety of beans							ing breeding
3) Oenothera nanella is an example for		meth		a mito a p	iani Oy	10110 **	ing breeding
spontaneous mutation				zation	2)	Selection	
4) Stadler induced mutation in Barley		, .					
106. Assertion(A): Malic hydrazide is a chemical mutagen.	115		trodu			willand	on breeding
Reason (R): Malic hydrazide is a chemical that	115.			following		~4 II	
brings sudden heritable change in the genotype of		List				st - II	1
an organism.				atti local			e selection
-		,		papedda	11)	Introdu	iction
107. Identify the correct statement :			elum				
1) Sweedish variety of Barley with disease		/	MV -				selection
resistance was developed by mutation breeding		D) S	onora			/	al selection
2) Muller for the 1 st time used the term mutation			Α	В	С	D	
3) Aruna variety of wheat was developed by		1)	Π	III	Ι	IV	Ţ
mutation breeding		2)	III	IV	Ι	Π	
4) Ethyl methane sulphonate is chemical mutagen		3)	Π	Ι	IV	II	
108. Number of chromosomes belonging to the genus-		4)	Ι	II	III	IV	7
Aegilops in fertile commercial bread wheat is	116.	Mate	ch the	following	5		
1) 7 2) 14 3) 28 4) 42		List	- I			st -II	
		A) S	ugarc	ane	I) I	Bulb	
109. One of the following is not a parent of Triticum		B) R	oses		II)	Sucker	r
aestivum		C) Banana III) Setts					
1) Triticum monococcum 2) Aegilops speltoides		D) O	nion		IV) Tuber	S
3) Aegilops squarrosa 4) Secale cereal		E) Pe	otato		(V)	Stem c	uttings
110. The number of genomes of Aegilops speltoides			А	В	С	D	E
present in the egg cell of Triticum aestivum		1)	III	V	Π	Ι	IV
1) Seven 2) Fourteen 3) Two 4) One		2)	IV	Ι	Π	V	III
111. Identify wrong statement		3)	III	IV	Π	Ι	V
1) Aegilops squarrosa is also called Triticum tauschi		4)	II	Ι	IV	V	III
2) Triticum speltiodes is also called Aegilops	117.	Find	out in	correct sta	atement	:	
speltoides		1) TN	MV-3	is ground	nut var	iety	
3) Aegilops squarrosa is an amphidiploid		2) Ca	amboo	lias is cott	on vari	ety	
		3) Se	electio	n is the ba	sis for c	rop im	provement
4) In Triticum speltoides $2n = 14$,					edinagriculture
112. A chemical substance that can induce mutations as	118.	/		smatch am		•	•
well as polyploidy is	1101		•	lation -Pro	•		U U
1) Formaldehyde 2) Malic hydrazide		,		Ieterosis		- p - m	
3) Colchicine 4) Nitrogen mustard gas		/		ine -Chen	nicalm	itagen	
LEVEL - III		,		nizing-Be		lagen	
113. Match the following with respect to plant breeding	110	,		e incorrect	•	ant	
List-I List-II	119.		•				alaata nlanta
I. Simplest& easiest A) Selection method		,		-			selects plants
II. Oldest method B) Hybridization		,		-	-	v varie	ty scientific
III.Quick method to				edge is req	-	1	1 1 . 10
induce genetic variability C) Introduction		,			on is er	nployed	d only in self
IV. Most important method		-		ted crops			
to create genetic		,		•		is an ac	hievement of
recombinations D) Mutation breeding		n	nutatic	on breeding	g		
Tecomoniations D) withauon breeding	I						

120. Select the wrong pair 2) I.R.8 -Rice 1) Aruna- Castor 3) Princess vareity - Maize 4) Sonora - Wheat 121. Find out the miss match : 2) Muller - Drosophila 1) Triticum-Aegilops 3) Shull-Heterosis 4) Charles Darwin - Artificial selection 122. Find out wrong combination : 1) CO-14 -Rice variety 2) TMV-3 -Ground nut 3) Kufri red -Bajra 4) Doda hatti local - Cotton 123. Read the following statements : Choose the true statement 1) Hybridization is easiest method of plant breeding 2) New genotypes arise during clonal selection 3) Mass selection is a science 4) Pure line selection method is more laborious than mass selection method 124. Assertion (A): In pure lines, characters remain stable for several generations. Reason (R) : Pure lines are obtained from homozygous parents by self fertilization 125. Assertion (A): Pure line selection is more of science than an art. Reason (R) : Knowledge of pollination and techniques of field designs are required for testing the progeny in pureline selection. 126. Assertion (A): There is no scope of incorporating new characters in introduction, clonal selection and pure line selection Reason (R) : New characters are incorporated through hybridization 127. The similarity between a clone and pureline is that both 1) are hybrids 2) Can be obtained by repeated crossing 3) Exhibit high degree of heterozygosity 4) Are phenotypically and genotypically uniform 128. Identify incorrect statement 1) Introduced new varieties can be directly used in agriculture and horticulture 2) Pure line selection increases homozygosity 3) Kufrired is a variety in potato 4) Many of the existing crops are the products of pure line selection 129. Assertion (A): The majority of crop plants have unisexual flowers.

Reason (R): For making crosses in normally self pollinated crops emasculation is a prerequisite

- 130. Assertion (A): Many hybrids exhibit hybrid vigour. Reason (R): Hybridization increase heterozygosity.
- 131. Identify true statement among the following :
 - 1) The Australian variety of barley with hardiness was produced through mutation breeding
 - 2) Muller and Standler laid the foundation of mutation breeding
 - 3) Constant self pollination generally leads to increase in vigour in many crop plant
 - 4) Hybrid vigour is caused due to less number dominant genes
- 132. Identify wrong statement:
 - 1) Colchicine is an alkaloid obtained from flower of colchicum
 - 2) Inbreeding refers to breeding between genetically related individuals of species by self pollination
 - 3) Progeny of single plant obtained by vegetative propagation is called clone
 - 4) Polyploids can be produced artificially through cold treatment of zygote.
- 133. Find out the incorrect statement
 - 1) Triticum aestivum is popularly known as commercial bread wheat
 - 2) Plants having more than two sets of chromosomes are called polyploids
 - 3) Oenothera nanella is dwarf variety
 - 4) Stadler induced mutation in Drosophila
- 134. Greater genetic variability can be created in the plants through
 - 1) Mass selection and clonal selection
 - 2) Pure line selection and clonal selection
 - 3) Pure line selection and mass selection
 - 4) Hybridization and mutation breeding
- 135. Identify the incorrect combination :
 - 1) Charles Darwin Natural selection
 - 2) Hugo de Vries Polyploidy breeding
 - 3) Triticum monococcum 2n=14
 - 4) Ionizing radiation Gamma rays
- 136. Identify the wrong statement
 - 1) Clonal selection is employed only for self pollination crops
 - 2) In sugarcane setts or stem cuttings are the units of clonal selections
 - The progeny obtained by pure line selection method are phenotypically and genotypically uniform
 - 4) Johannsen conducted experiment on Phaseolus vulgaris.

W	vheat?	-	s not applicable to bread	141.	Study the follow combinations	ving lists and ide	ntify the correct	
	/	llohexaploid			List - I			
	/		riticum aestivum		A)Clonal selec	tion		
	· · · · · · · · · · · · · · · · · · ·	ses and two do d in its formati	publings of chromosomes		B)Hybridizatio	n		
			ists of 21 chromosomes		C) Mutation bi	reeding		
	/	ted by Aegilo			D)Heterosis			
		following:			List - II			
Li	st – I		List – II		I) Increases hon	nozvgositv		
A)Muller		I) Mutation		<i>,</i>	main stable for a	anv	
B)) deVries		II)Hybrid vigour		number of g		ully	
C))Shull		III) Mutation breeding			per of dominant	genes	
D)Johannse	en	IV)Artificial hybrid			on of new chara		
			V) Pureline		ý 1			
	/	-I, C-II, D-V			1) A-I, B-IV, C-	new character	S	
	/ /	I, C-III, D-IV	7		2) A-II, B-IV, C			
	/	III, C-II, D-I			3) A-II, B-IV, C			
	/	III, C-IV, D-			4) A-III, B-II, C			
	ombinatio	-	e and identify the correct	142.	Find the true m	atch		
	List - I	115.			List - I			
		ntroduction			A)Colchicine			
	,				B)Bread wheat	;		
B)Clonal selection			C) Barley	C) Barley				
C) Mass selection				D)Cambodias				
D) Pure line selection				List - II				
	List - II				I) Polyploidy b	reeding		
]	I) TMV	3 variety of g	round nut		II) Mutation breeding			
Ι	I) Pusa m	oti variety o	f Bajra		III) Mass selection IV) Production of artificial polyploids			
Ι	II)IR-8 va	ariety of rice						
Γ	V) Kufri s	safed variety	of potato		<i>,</i>	1	• •	
V	/)Bread v	vheat			V) Seed germination inhibitor1) A-IV,B-I, C-II, D-III2) A-I, B-II, C-III, D-IV			
1) A-III, B-	-IV, C-II, D-I	2) A-III, B-IV, C-V, D-I			-II, D-III 2) A-I, I		
	· · · · ·		4)A-III, B-II, C-IV, D-V	143.	, , ,	ring table and ide		
			and identify the correct		combinations:	8	5	
	ombinatio				Scientist	Experimetnal	Contribution	
Crop		Variety	Mode of production		Sciencise	organism	Contribution	
I)Rice		Sonora 64	Introduced from		I) G.H.Shull	Maize	Heterosis	
			Mexico to India		<i>,</i>			
II)Grou	und nut	Cambodias	Mass selection		II)Stadler	Barley	Induced	
III) Ma	ngo	Mundapa	Clonal selection				mutations	
		pedda neelan	1		III)HugodeVries		Polyploidy	
IV)Ba	rley	Sweedish	Mutation breeding		IV)Muller	Drosophila	Discovery of	
<i>,</i>	•	2)11 0-117	C				mutations	
1)I & III	2)II & IV	3)II & III 4)III & IV		1)I & II 2)II an	d III 3)III and I	V 4)II and IV	

144. Study the fo	llowing lists .		147	Study the fo				
List - I	mowing ists.		Plan	•	Variety	Crop impr	ovement	
	on breeding		1 1411	t	variety	method	ovement	
B) Selection	e e		I) Gr	ound nut	TMV-3	Clonal sele	ction	
/			II)Co		Cambodias	Mass selec	tion	
C) Hybridi			III) B	Bajra	Pusa rubi	Mass select	tion	
D) Introdu	ction		IV) R	Rice	CO – 4	Pure line se	lection	
List - II			The	correct com	binations are	;		
I) Labori	ous and expensive j	process to		1) I & II	/	3) I & III 4	4) II & IV	
obtain	variations		148.	Match the f	ollowing:			
II) Hybrid	l vigour can be main	ntained		List – I		List – II		
for sev	reral generations			A)Sonora		I) Potato		
III)Simple	st and easiest met	hod		B)Cambo		II)Tomato		
of plan	t improvement			C)Kufri s	afed	III) Bean		
IV) Oldest	breeding method			D) Princes	SS	IV)Cotton		
,	method to obtain g	ene				V) Wheat		
variati	e	ene		· · · · ·	I, C-III, D-IV			
	t combination is		140		V, C-II, D-III correct state		C-III, D-I	
	IV, C-I, D-II 2)A-V	/, B-IV, C-I, D-III	149.		gosity is the b		selection	
	-II, C-III, D-I 4)A-I			· ·	ection is the e			
,	following table and			of crop improvement				
combination	-			3) Varieties obtained by pureline selection show				
Crop	Selection metho	d Variety		high hetero				
Crop	Selection metho	developed		· •	vigour can be e	exploited for r	nany years	
D.C. maying diag	t Duralina Salaatia	-	150	by pure line Emasculat	ion is concer	ned with		
<i>,</i>	t Pureline Selectio		100.	Linusediat			ET - 1994)	
II) Cotton	Mass selection	Pusa moti				2) Double cr		
III) Potato	Mass selection	Kufri safed		/		4) Mass sele	ction	
IV)Rice	Purlineselection	CO-4,6	151.	Hybrid vig	our can be in		ET - 1994)	
1)I & II	2) II & III 3) I &	IV 4) III & IV		1) Crossing	g single point	· ·		
146. Study the f	ollowing table and ic	lentify the correct		3) Clonal selection 4) None of the above				
combinatio	ns		152.		ariety of		T - 1994)	
Breeding	Type of crops	Improved	1.72		Sorghum 3)			
method	can be improved	variety	153.		gour is mostly gosity of pure		M - 1998)	
I) Mass	Cross pollinated	CO variety		2) Heteroz		enaracters		
selection	crops	ofrice		/	up of cytoplas	sm of the mal	e with that	
II)Pureline	Self pollinated	TMV-3 variety		of female e	•	4) No		
selection	crops	of ground nut	154.		ist who first c		*	
III)Clonal	Vegetatively pro –	Kufrired variety			vigour in maiz 2) Shull 3) J			
selection	• • • •	•	155.	· ·	ion means	· · · · · · · · · · · · · · · · · · ·	ET - 1996)	
	pagated crops	of potato			al of sepals			
IV)Hybridizatoin	-	Cambodias variety		3) Removal of stamens 4) Removal of carpels . Who introduced the term 'Heterosis'				
	crops only	of cotton	136.	w no intro	uuced the teri		ET - 2001)	
1) I & II	2) II & III 3) I &	IV 4) III & IV		1) Koelreu	ter 2) Shull 3	· ·		
		18	2	,	,	,	, U	
		18	5					