

	Contents
3.1	Equation of Pair of Straight lines
3.2	Angle between the Pair of Lines
3.3	Bisectors of the Angles between the Lines
3.4	Point of intersection of Lines represented by $ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$
3.5	Equation of the lines joining the origin to the points of intersection of a given line and a given curve
3.6	Removal of first degree terms
3.7	Removal of the term xy from
	$f(x, y) = ax^2 + 2hxy + by^2$ without changing the origin
3.8	Distance between the pair of parallel straight lines
3.9	Some important results
	Assignment (Basic and Advance Level)
	Answer Sheet of Assignment

The general equation of second degree $ax^2 + by^2 + 2gx + 2fy + c = 0$ represents pair of straight line; if $\Delta = 0$ and ab $h^2 \leq 0$

Clairaut (1729 A.D.) was the first to gave the distance formulae although in clumsy form. He also gave the intercept form of the linear equation.

In 1818, Gabriel Lame a civil engineer gave mE + mE' = 0 as the curve passing through the point of intersection of two loci E = 0 and E' = 0.

3.1 Equation of Pair of Straight lines

Let the equation of two lines be

a'x + b'y + c' = 0(i) and a''x + b''y + c'' = 0(ii)

Hence (a'x + b'y + c')(a''x + b''y + c'') = 0 is called the joint equation of lines (i) and (ii) and conversely, if joint equation of two lines be (a'x + b'y + c') (a''x + b''y + c'') = 0 then their separate equation will be a'x + b'y + c' = 0 and a''x + b''y + c'' = 0.

(1) Equation of a pair of straight lines passing through origin : The equation $ax^2 + 2hxy + by^2 = 0$ represents a pair of straight line passing through the origin where *a*, *h*, *b* are constants.

Let the lines represented by $ax^2 + 2hxy + by^2 = 0$ be $y - m_1x = 0$ and $y - m_2x = 0$

where,
$$m_1 = \frac{-h + \sqrt{h^2 - ab}}{b}$$
 and $m_2 = \frac{-h - \sqrt{h^2 - ab}}{b}$ then, $m_1 + m_2 = -\frac{2h}{b}$ and $m_1 m_2 = \frac{a}{b}$

Then, two straight lines represented by $ax^2 + 2hxy + by^2 = 0$ are $ax + hy + y\sqrt{h^2 - ab} = 0$ and $ax + hy - y\sqrt{h^2 - ab} = 0$.

Note : \Box The lines are real and distinct if $h^2 - ab > 0$

- **The lines are real and coincident if** $h^2 ab = 0$
- **D** The lines are imaginary if $h^2 ab < 0$
- □ If the pair of straight lines $ax^2 + 2hxy + by^2 = 0$ and $a'x^2 + 2h'xy + b'y^2 = 0$ should have one line common, then $(ab'-a'b)^2 = 4(ah'-a'h)(hb'-h'b)$.
- □ The equation of the pair of straight lines passing through origin and perpendicular to the pair of straight lines represented by $ax^2 + 2hxy + by^2 = 0$ is given by $bx^2 2hxy + ay^2 = 0$
- □ If the slope of one of the lines represented by the equation $ax^2 + 2hxy + by^2 = 0$ be the square of the other, then $a^2b + ab^2 6abh + 8h^3 = 0$.
- □ If the slope of one of the lines represented by the equation $ax^2 + 2hxy + by^2 = 0$ be λ times that of the other, then $4\lambda h^2 = ab(1 + \lambda)^2$.
- (2) General equation of a pair of straight lines : An equation of the form,

$$ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$$

where a, b, c, f, g, h are constants, is said to be a general equation of second degree in x and y.

[AIEEE 2004]

(d) 1

The necessary and sufficient condition for $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ to represent a pair of straight lines is that $abc + 2fgh - af^2 - bg^2 - ch^2 = 0$ or $\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0$

(3) **Separate equations from joint equation:** The general equation of second degree be $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$. To find the lines represented by this equation we proceed as follows :

Step I : Factorize the homogeneous part $ax^2 + 2hxy + by^2$ into two linear factors. Let the linear factors be a'x + b'y and a''x + b''y.

Step II: Add constants c' and c'' in the factors obtained in step I to obtain a'x + b'y + c' and a''x + b''y + c''. Let the lines be a'x + b'y + c' = 0 and a''x + b''y + c'' = 0.

Step III : Obtain the joint equation of the lines in step II and compare the coefficients of x, y and constant terms to obtain equations in c' and c''.

Step IV : Solve the equations in c' and c" to obtain the values of c' and c".

Step V : Substitute the values of *c*' and *c*" in lines in step II to obtain the required lines.

Example: 1 If the sum of the slopes of the lines given by $x^2 - 2cxy - 7y^2 = 0$ is four times their product. Then *c* has the value

(c) 2

Solution: (c) We know that, $m_1 + m_2 = \frac{-2h}{b}$ and $m_1m_2 = \frac{a}{b}$.

Given,
$$m_1 + m_2 = 4m_1m_2 \Rightarrow \frac{-2c}{7} = 4\left(\frac{1}{-7}\right) \Rightarrow c = 2$$

Example: 2 If one of the lines represented by the equation $ax^2 + 2hxy + by^2 = 0$ be y = mx, then (a) $bm^2 + 2hm + a = 0$ (b) $bm^2 + 2hm - a = 0$ (c) $am^2 + 2hm + b = 0$ (d) $bm^2 - 2hm + a = 0$ **Solution:** (a) Substituting the value of y in the equation $ax^2 + 2hxy + by^2 = 0$ $\Rightarrow ax^2 + 2hx(mx) + b(mx)^2 = 0 \Rightarrow a + 2hm + bm^2 = 0$

Example: 3 If the equation $12x^2 - 10xy + 2y^2 + 11x - 5y + K = 0$ represent two straight lines, then the value of K is [MP PET 20 (a) 1 (b) 2 (c) 0 (d) 3 **Solution:** (b) Condition for pair of lines, $abc + 2fgh - af^2 - bg^2 - ch^2 = 0$, Here

$$a = 12, h = -5, b = 2, g = 11/2, f = -5/2, c = K$$

Then,
$$12 \times 2 \times K + 2 \times \frac{-5}{2} \times \frac{11}{2} - 12 \times \left(\frac{-5}{2}\right)^2 - 2 \times \left(\frac{11}{2}\right)^2 - K(-5)^2 = 0$$
. On solving, we get $K = 2$.

3.2 Angle between the Pair of Lines

(1) The angle θ between the pair of lines represented by $ax^2 + 2hxy + by^2 = 0$ is given by $\tan \theta = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right|$

(i) The lines are coincident if the angle between them is zero.

- $\therefore \quad \text{Lines are coincident i.e., } \theta = 0 \Rightarrow \tan \theta = 0 \Rightarrow \frac{2\sqrt{h^2 ab}}{a + b} = 0 \Rightarrow h^2 ab = 0 \Rightarrow h^2 = ab$
- Hence, the lines represented by $ax^2 + 2hxy + by^2 = 0$ are coincident, *iff* $h^2 = ab$

(ii) The lines are perpendicular if the angle between them is $\pi/2$.

$$\therefore \quad \theta = \frac{\pi}{2} \implies \cot \theta = \cot \frac{\pi}{2} \implies \cot \theta = 0 \implies \frac{a+b}{2\sqrt{h^2 - ab}} = 0 \implies a+b=0 \implies \text{coeff. of } x^2 + \text{coeff. of}$$

Thus, the lines represented by $ax^2 + 2hxy + by^2 = 0$ are perpendicular *iff* a + b = 0 *i.e.*, coeff. of $x^2 + \text{coeff.}$ of $y^2 = 0$.

(2) The angle between the lines represented by $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ is given by $\tan \theta = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right| \implies \theta = \tan^{-1} \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right|$

(i) The lines are parallel if the angle between them is zero. Thus, the lines are parallel *iff*
$$\theta = 0 \Rightarrow \tan \theta = 0 \Rightarrow \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right| = 0 \Rightarrow h^2 = ab.$$

Hence, the lines represented by $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ are parallel *iff* $h^2 = ab$ and $af^2 = bg^2$ or $\frac{a}{h} = \frac{h}{b} = \frac{g}{f}$.

(ii) The lines are perpendicular if the angle between them is $\pi/2$.

Thus, the lines are perpendicular *i.e.*, $\theta = \pi/2 \Rightarrow \cot \theta = 0 \Rightarrow \frac{a+b}{2\sqrt{h^2 - ab}} = 0$

$$\Rightarrow a+b=0 \Rightarrow \text{coeff. of } x^2 + \text{coeff. of } y^2 = 0$$

Hence, the lines represented by $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ are perpendicular *iff* a + b = 0

i.e., coeff. of x^2 + coeff. of $y^2 = 0$.

(iii) The lines are coincident, if $g^2 = ac$.

Example: 4 The angle between the lines $x^2 - xy - 6y^2 - 7x + 31y - 18 = 0$ is [Karnataka CET 2003] (a) 45° (b) 60° (c) 90° (d) 30°

Solution: (b) Angle between the lines is
$$\theta = \tan^{-1} \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right| = \tan^{-1} \left| \frac{2\sqrt{\left(\frac{-1}{2}\right)^2 - 1 \times (-6)}}{1 + (-6)} \right| = \tan^{-1} \left| \frac{2\sqrt{\frac{1}{4} + 6}}{1 + (-6)} \right| = \tan^{-1} |-1| = \tan^{-1}(1) = \frac{\pi}{4}$$

 45°

Example: 5 If the angle between the pair of straight lines represented by the equation $x^2 - 3xy + \lambda y^2 + 3x - 5y + 2 = 0$ is $\tan^{-1}\left(\frac{1}{3}\right)$, where λ is a non-negative real number, then λ is

Solution: (a) Given that $\theta = \tan^{-1}\left(\frac{1}{3}\right) \Rightarrow \tan \theta = \frac{1}{3}$

Now, since
$$\tan \theta = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right| \Rightarrow \frac{1}{3} = \left| \frac{2\sqrt{\left(\frac{-3}{2}\right)^2 - \lambda}}{\lambda + 1} \right| \Rightarrow (\lambda + 1)^2 = 9(9 - 4\lambda) \Rightarrow \lambda^2 + 38\lambda - 80 = 0$$

 $\Rightarrow \lambda^2 + 40\lambda - 2\lambda - 80 = 0 \Rightarrow \lambda(\lambda + 40) - 2(\lambda + 40) = 0 \Rightarrow (\lambda - 2)(\lambda + 40) = 0 \Rightarrow \lambda = 2 \text{ or } -40, \text{ but } \lambda \text{ is a non-}$ negative real number. Hence $\lambda = 2$.

The angle between the pair of straight lines represented by $2x^2 - 7xy + 3y^2 = 0$ is Example: 6 [Kurukshetra CEE 2002]

(a)
$$60^{\circ}$$
 (b) 45° (c) $\tan^{-1}(7/6)$ (d) 30°
Solution: (b) Angle between the lines is , $\theta = \tan^{-1} \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right| = \tan^{-1} \left| \frac{2\sqrt{\left(-\frac{7}{2}\right)^2 - (2)(3)}}{2 + 3} \right| \Rightarrow \theta = \tan^{-1} \left(\frac{2}{5} \cdot \frac{5}{2}\right) = \tan^{-1}(1) \Rightarrow$

 $\theta = 45^{\circ}$

3.3 Bisectors of the Angles between the Lines

(1) The joint equation of the bisectors of the angles between the lines represented by the equation $ax^{2} + 2hxy + by^{2} = 0$ is $\frac{x^{2} - y^{2}}{a - b} = \frac{xy}{b}$(i)

 $\Rightarrow hx^2 - (a-b)xy - hy^2 = 0$

Here, coefficient of x^2 + coefficient of $y^2 = 0$. Hence, the bisectors of the angles between the lines are perpendicular to each other. The bisector lines will pass through origin also.

Note : 🗆 If a = b, the bisectors are $x^2 - y^2 = 0$ *i.e.*, x - y = 0, x + y = 0

- \Box If h = 0, the bisectors are xy = 0 i.e., x = 0, y = 0.
- \Box If bisectors of the angles between lines represented by $ax^2 + 2hxy + by^2 = 0$ and $a'x^{2} + 2h'xy + b'y^{2} = 0$ are same, then $\frac{h'}{h} = \frac{a'-b'}{a-h}$.
- \Box If the equation $ax^2 + 2hxy + by^2 = 0$ has one line as the bisector of the angle between the coordinate axes, then $4h^2 = (a+b)^2$.

(2) The equation of the bisectors of the angles between the lines represented by $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ are given by $\frac{(x-\alpha)^2 - (y-\beta)^2}{a-b} = \frac{(x-\alpha)(y-\beta)}{h}$, where α , β is the point of intersection of the lines represented by the given equation.

The equation of the bisectors of the angles between the lines represented by $x^2 + 2xy \cot \theta + y^2 = 0$ is Example: 7 (b) $x^2 - y^2 = xy$ (a) $x^2 - y^2 = 0$ (c) $(x^2 - y^2)\cot \theta = 2xy$ (d) None of these **Solution:** (a) Equation of bisectors is given by $\frac{x^2 - y^2}{a - b} = \frac{xy}{h}$ or $\frac{x^2 - y^2}{0} = \frac{xy}{\cot \theta} \implies x^2 - y^2 = 0$

If the bisectors of the lines $x^2 - 2pxy - y^2 = 0$ be $x^2 - 2qxy - y^2 = 0$, then Example: 8 [MP PET 1993; DCE 1999; Rajasthan PET 2003; AIEEE 2003] (b) pq-1=0 (c) p+q=0(a) pq + 1 = 0(d) p - q = 0**Solution:** (a) Bisectors of the angle between the lines $x^2 - 2pxy - y^2 = 0$ is $\frac{x^2 - y^2}{xy} = \frac{1 - (-1)}{-p} \Rightarrow px^2 + 2xy - py^2 = 0$ But it is represented by $x^2 - 2qxy - y^2 = 0$. Therefore $\frac{p}{1} = \frac{2}{-2q} \Rightarrow pq = -1 \Rightarrow pq + 1 = 0$ 3.4 Point of Intersection of Lines represented by $ax^2+2hxy+by^2+2gx+2fy+c=0$ Let $\phi = ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ $\frac{\partial \phi}{\partial r} = 2ax + 2hy + 2g = 0$ (Keeping y as constant) $\frac{\partial \phi}{\partial y} = 2hx + 2by + 2f = 0$ (Keeping *x* as constant) and For point of intersection $\frac{\partial \phi}{\partial u} = 0$ and $\frac{\partial \phi}{\partial u} = 0$ We obtain, ax + hy + g = 0 and hx + by + f = 0On solving these equations, we get $\frac{x}{fh-bg} = \frac{y}{gh-af} = \frac{1}{ah-h^2}$ i.e. $(x,y) = \left(\frac{bg-fh}{h^2-ah}, \frac{af-gh}{h^2-ah}\right)$ Also, since $\Delta = \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix}$, from first two rows a h q \Rightarrow ax + hy + g = 0 and *h b* $f \Rightarrow hx + by + f = 0$ and then solve, we get the point of intersection. Note : \Box The point of intersection of lines represented by $ax^2 + 2hxy + by^2 = 0$ is (0, 0). The point of intersection of the lines represented by the equation $2x^2 + 3y^2 + 7xy + 8x + 14y + 8 = 0$ is Example: 9 (c) (-2,0) (a) (0,2) (b) (1,2) (d) (-2,1)Let $\phi = 2x^2 + 3y^2 + 7xy + 8x + 14y + 8 = 0$ **Solution:** (c) $\frac{\partial \phi}{\partial x} = 4x + 7y + 8 = 0$ and $\frac{\partial \phi}{\partial y} = 6y + 7x + 14 = 0$ On solving these equations, we get x = -2, y = 0**Trick :** If the equation is $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ The points of intersection are given by $\left\{\frac{hf-bg}{ab-h^2}, \frac{hg-af}{ab-h^2}\right\}$. Hence point is (- 2, 0) If the pair of straight lines xy - x - y + 1 = 0 and line ax + 2y - 3 = 0 are concurrent, then a = 0Example: 10 (a) - 1 (b) o (d) 1 (c) 3 Given that equation of pair of straight lines xy - x - y + 1 = 0Solution: (d)

 \Rightarrow $(x-1)(y-1) = 0 \Rightarrow x-1 = 0$ or y-1 = 0

The intersection point of x - 1 = 0, y - 1 = 0 is (1,1)

- \therefore Lines x 1 = 0, y 1 = 0 and ax + 2y 3 = 0 are concurrent.
- \therefore The intersecting points of first two lines satisfy the third line.

Hence, $a+2-3=0 \Rightarrow a=1$

3.5 Equation of the Lines joining the Origin to the Points of Intersection of a given Line and a given Curve

The equation of the lines which joins origin to the point of intersection of the line lx + my + n = 0 and curve $ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$, can be obtained by making the curve homogeneous with the help of line lx + my + n = 0,which is $ax^{2} + 2hxy + by^{2} + 2(gx + fy)\left(\frac{lx + my}{-n}\right) + c\left(\frac{lx + my}{-n}\right)^{2} = 0$ We have $ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$(i) lx + mv + n = 0.....(ii) and

Suppose the line (ii) intersects the curve (i) at two points *A* and *B*. We wish to find the combined equation of the straight lines *OA* and *OB*. Clearly *OA* and *OB* pass through the origin, so their joint equation is a homogeneous $A = \frac{1}{2} \frac{1}{A} \frac{1$

equation of second degree in x and y.

From equation (ii), $lx + my = -n \implies \frac{lx + my}{-n} = 1$

.....(iii)

Now, consider the equation

$$ax^{2} + 2hxy + by^{2} + 2gx\left(\frac{lx + my}{-n}\right) + 2fy\left(\frac{lx + my}{-n}\right) + c\left(\frac{lx + my}{-n}\right)^{2} = 0 \dots (i$$

v)

Clearly, this equation is a homogeneous equation of second degree. So, it represents a pair of straight lines passing through the origin. Moreover, it is satisfied by the points *A* and *B*.

Hence (iv) represents a pair of straight lines OA and OB through the origin O and the points A and B which are points of intersection of (i) and (ii).

Example: 11 The lines joining the origin to the point of intersection of the circle $x^2 + y^2 = 3$ and the line x + y = 2 are

(a)
$$y - (3 + 2\sqrt{2})x = 0$$
 (b) $x - (3 + 2\sqrt{2})y = 0$ (c) $x - (3 - 2\sqrt{2})y = 0$ (d) $y - (3 - 2\sqrt{2})x = 0$

Solution: (a,b,c,d) Make homogenous the equation of circle, we get $x^2 - 6xy + y^2 = 0$

$$\Rightarrow x = \frac{6y \pm \sqrt{(36-4)y^2}}{2} = \frac{6y \pm 4\sqrt{2}y}{2} = 3y \pm 2\sqrt{2}y$$

Hence, the equation are $x = (3 + 2\sqrt{2})y$ and $x = (3 - 2\sqrt{2})y$

Also after rationalizing these equations becomes $y - (3 + 2\sqrt{2})x = 0$ and $y - (3 - 2\sqrt{2})x = 0$.

Example: 12 The pair of straight lines joining the origin to the points of intersection of the line $y = 2\sqrt{2}x + c$ and the circle $x^2 + y^2 = 2$ are at right angles, if [MP PET 1996] (a) $c^2 - 4 = 0$ (b) $c^2 - 8 = 0$ (c) $c^2 - 9 = 0$ (d) $c^2 - 10 = 0$

Solution: (c) Pair of straight lines joining the origin to the points of intersection of the line $y = 2\sqrt{2}x + c$ and the circle $x^2 + y^2 = 2$ are

$$\Rightarrow x^{2} + y^{2} + (-2)\left(\frac{2\sqrt{2}x - y}{-c}\right)^{2} = 0 \Rightarrow x^{2} + y^{2} - \frac{2}{c^{2}}\left(8x^{2} + y^{2} - 4\sqrt{2}xy\right) = 0 \Rightarrow x^{2}\left(1 - \frac{16}{c^{2}}\right) + y^{2}\left(1 - \frac{2}{c^{2}}\right) + \frac{8\sqrt{2}xy}{c^{2}} = 0$$

If these lines are perpendicular, $1 - \frac{16}{c^2} + 1 - \frac{2}{c^2} = 0$

$$\Rightarrow \frac{2c^2 - 18}{c^2} = 0 \implies c^2 - 9 = 0.$$

3.6 Removal of First degree Terms

Let point of intersection of lines represented by $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ (i) is (α, β) .

Here $(\alpha, \beta) = \left(\frac{bg - fh}{h^2 - ab}, \frac{af - gh}{h^2 - ab}\right)$

For removal of first degree terms, shift the origin to (α, β) *i.e.*, replacing *x* by $(X + \alpha)$ and *y* be $(Y + \beta)$ in (i).

Alternative Method : Direct equation after removal of first degree terms is $aX^2 + 2hXY + bY^2 + (g\alpha + f\beta + c) = 0$

$$aX^{2} + 2hXY + bY^{2} + (g\alpha + f\beta + c)$$

Where $\alpha = \frac{bg - fh}{h^{2} - ab}$ and $\beta = \frac{af - gh}{h^{2} - ab}$

3.7 Removal of the Term xy from $f(x, y) = ax^2 + 2hxy + by^2$ without changing the Origin

Clearly, $h \neq 0$. Rotating the axes through an angle θ , we have,

 $x = X \cos \theta - Y \sin \theta$ and $y = X \sin \theta + Y \cos \theta$

 $\therefore \quad f(x,y) = ax^2 + 2hxy + by^2$

After rotation, new equation is $F(X, Y) = (a\cos^2\theta + 2h\cos\theta\sin\theta + b\sin^2\theta)X^2$

$$+2\{(b-a)\cos\theta\sin\theta+h(\cos^2\theta-\sin^2\theta)XY$$

$$(a\sin^2\theta - 2h\cos\theta\sin\theta + b\cos^2\theta)Y^2$$

Now coefficient of *XY* = 0. Then we get $\cot 2\theta = \frac{a-b}{2h}$

Note : Usually, we use the formula, $\tan 2\theta = \frac{2h}{a-b}$ for finding the angle of rotation, θ . However, if a = b, we use $\cot 2\theta = \frac{a-b}{2h}$ as in this case $\tan 2\theta$ is not defined.

Example: 13 The new equation of curve $12x^2 + 7xy - 12y^2 - 17x - 31y - 7 = 0$ after removing the first degree terms (a) $12X^2 - 7XY - 12Y^2 = 0$ (b) $12X^2 + 7XY + 12Y^2 = 0$

(c)
$$12X^2 + 7XY - 12Y^2 = 0$$
 (d) None of these
Solution: (c) Let $\phi = 12x^2 + 7xy - 12y^2 - 17x - 31y - 7 = 0$ (i)
 $\therefore \frac{\phi}{\partial x} = 24x + 7y - 17 - 0$ and $\frac{\phi}{\partial y} = 7x - 24y - 31 = 0$
Their point of intersection is $(x,y) = (1,-1)$
Here $\alpha = 1, \beta = -1$
Shift the origin to $(1, -1)$ then replacing $x = X + 1$ and $y = Y - 1$ in (i), the required equation is
 $12(X + 1)^2 + 7(X + 1)(Y - 1) - 12(Y - 1)^2 - 17(X + 1) - 31(Y - 1) - 7 = 0$ (*e.*, $12X^2 + 7XY - 12Y^2 = 0$
Alternative Method : Here $\alpha = 1$ and $\beta = -1$ and $g = -17/2, f = -31/2, c = -7$
 $\therefore ga + 1\beta + c = \frac{17}{2} \times 1 - \frac{31}{2} \times -1 - 7 = 0$
 \therefore Removed equation is $ax^2 + 2AXY + bY^2 + (gg + 1\beta) + c) = 0$
 $[.e., 12X^2 + 7XY - 12Y^2 + 0 = 0 = 12X^3 + 7XY - 12Y^3 = 0$.
Example: 14 Mixed term xy is to be removed from the general equation $ax^2 + by^2 + 2by + 2gx + 2fy + c = 0$, one should rotate the axes through an angle θ given by $ua 2\theta = (a) \frac{a-b}{2h}$ (d) $\frac{2h}{a-b}$
Solution: (d) Let (x, y) be the coordinates on new axes, then put $x = x' \cos \theta - y' \sin \theta$, $y = x' \sin \theta + y' \cos \theta$ in the equation, then the coefficient of xy in the transformed equation is o.
So, $2\theta - a$) sin $\theta \cos \theta + 2h \cos 2\theta = 0 \Rightarrow \tan 2\theta = \frac{2h}{a-b}$
3.8 Distance between the Pair of parallel Straight lines
If $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represent a pair of parallel straight lines, then the distance between the pair of lines represented by the equation $x^2 - 6xy + 9x^3 + 3x - 9y - 4 = 0$ (Kerala (Eng.) as $(x^3 - 4x) + 2y + 2y + 2y + 2y + c = 0$ is $2(\sqrt{\frac{2^2 - ax}{2(a+b)})}, 4y + 3y^2 - 3x - 3\sqrt{3y} - 4 = 0$ (Kerala (Eng.) as $(x^3 - \frac{2x}{a(a+b)}), 4y + y^3 + 3y^2 - 3x - 3\sqrt{3y} - 4 = 0$ is (Borotee 1989]
(a) $5/2$ (b) $5/4$ (c) 5 (d) 5
Example: 16 Distance between the pair of straight lines given by
 $a^2 + 2bxy + by^2 + 2gx + 2fy + c = 0$ is $2(\sqrt{\frac{2^2 - ax}{a(a+b)}}, 4y - 6x - 2x + \frac{2^3 - 2x}{3x} + \frac{2^3 - 2x}{3x}$

(1) The lines joining the origin to the points of intersection of the curves $ax^2 + 2hxy + by^2 + 2gx = 0$ and $a'x^2 + 2h'xy + b'y^2 + 2g'x = 0$ will be mutually perpendicular, if g(a'+b') = g'(a+b).

(2) If the equation hxy + gx + fy + c = 0 represents a pair of straight lines, then fg = ch.

(3) The pair of lines $(a^2 - 3b^2)x^2 + 8abxy + (b^2 - 3a^2)y^2 = 0$ with the line ax + by + c = 0 form an equilateral triangle.

(4) The area of a triangle formed by the lines $ax^2 + 2hxy + by^2 = 0$ and lx + my + n = 0 is given by $n^2\sqrt{h^2 - ab}$

$$am^2 - 2hlm + bl^2$$

(5) The lines joining the origin to the points of intersection of line y = mx + c and the circle $x^2 + y^2 = a^2$ will be mutually perpendicular, if $a^2(m^2 + 1) = 2c^2$.

(6) If the distance of two lines passing through origin from the point (x_1, y_1) is *d*, then the equation of lines is $(xy_1 - yx_1)^2 = d^2(x^2 + y^2)$

(7) The lines represented by the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ will be equidistant from the origin, if $f^4 - g^4 = c(bf^2 - ag^2)$

(8) The product of the perpendiculars drawn from (x_1, y_1) on the lines $ax^2 + 2hxy + by^2 = 0$ is given by

$$\frac{ax_1^2 + 2hx_1y_1 + by_1^2}{\sqrt{(a-b)^2 + 4h^2}}$$

(9) The product of the perpendiculars drawn from origin on the lines $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ is

$$\frac{c}{\sqrt{\left(a-b\right)^2+4h^2}}$$

(10) If the lines represented by the general equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ are perpendicular, then the square of distance between the point of intersection and origin is $\frac{f^2 + g^2}{h^2 + b^2}$

(11) The square of distance between the point of intersection of the lines represented by the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ and origin is $\frac{c(a+b) - f^2 - g^2}{ab - h^2}$

Example: 17 The area of the triangle formed by the lines $4x^2 - 9xy - 9y^2 = 0$ and x = 2 is

[Roorkee 2000]

(a) 2 (b) 3 (c)
$$\frac{10}{3}$$
 (d) $\frac{20}{3}$

Solution: (c) The area of triangle formed by the lines $ax^2 + 2hxy + by^2 = 0$ and lx + my + n = 0 is given by $\boxed{n^2\sqrt{h^2 - ab}}$

$$am^2 - 2hlm + bl^2$$

Here $a = 4, b = -9, h = -\frac{9}{2}, l = 1, m = 0, n = -2$, then area of triangle

Example: 18 The orthocentre of the triangle formed by the lines xy = 0 and x + y = 1 is [IIT 1995]

(a) (0, 0) (b)
$$\left(\frac{1}{2}, \frac{1}{2}\right)$$
 (c) $\left(\frac{1}{3}, \frac{1}{3}\right)$ (d) $\left(\frac{1}{4}, \frac{1}{4}\right)$

Solution: (a) Lines represented by xy = 0 is x = 0, y = 0. Then the triangle formed is right angled triangle at O(0, 0), therefore O(0, 0) is its or v

Example: 19 If the pair of straight lines given by $Ax^2 + 2Hxy + By^2 = 0$, $(H^2 > AB)$ forms an equilateral triangle with line ax + by + c = 0 then (A + 3B)(3A + B) is [EAMCET 2003]

(a)
$$H^2$$
 (b) $-H$ (c) $2H^2$ (d) $4H^2$

Solution: (d) We know that the pair of lines $(a^2 - 3b^2)x^2 + 8abxy + (b^2 - 3a^2)y^2 = 0$ with the line ax + by + c = 0 form an equilateral triangle. Hence comparing with $Ax^2 + 2Hxy + By^2 = 0$ then $A = a^2 - 3b^2$, $B = b^2 - 3a^2$, 2H = 8ab

Now $(A+3B)(3A+B) = (-8a^2)(-8b^2) \implies (8ab)^2 = (2H)^2 = 4H^2$.

			Equation	of Pair of Straight	t lines					
		Basi	ic Level							
1.	The values of <i>h</i> for wh	ich the equation $3x^2 + 2hxy - 3$	$3y^2 - 40x + 30y - 75 = 0$ represent	ts a pair of straight li	nes, are[MP					
	(a) 4, 4	(b) 4, 6	(c) 4, -4	(d) 0, 4						
2.	Which of the following	g second degree equation rep	resents a pair of straight lines	[MP F	PET 1990]					
	(a) $x^2 - xy - y^2 = 1$	(b) $-x^2 + xy - y^2 = 1$	(c) $4x^2 - 4xy + y^2 = 4$	(d) $x^2 + y^2 = 4$						
•	The equation $2y^2 - xy$ -	$-x^2 + 6x - 8 = 0$ represents		[MP F	PET 1992]					
	(a) A pair of straight l	ines (b)	A circle	(c) An ellipse	(d)					
•	One of the lines repres	ented by the equation $x^2 + 6x$	xy = 0 is							
	(a) Parallel to <i>x</i> -axis	(b) Parallel to y-axis	(c) <i>x</i> -axis	(d) y-axis						
•	The equation $x^2 - 7xy$ -	$+12y^2 = 0$ represents a		[Ranchi	BIT 1991]					
	(a) Circle		(b) Pair of parallel straig	ht lines						
	(c) Pair of perpendicu lines	lar straight lines	(d) Pair of non-perpen	dicular intersecting	straight					
•	The equation $y^2 - x^2 +$	2x - 1 = 0 represents		[M	INR 1991]					
	(a) A pair of straight l	ines (b)	A circle	(c) A parabola	(d)					
•	If the equation $\lambda x^2 + 2y^2 - 5xy + 5x - 7y + 3 = 0$ represents two straight lines, then the value of λ will be									
	(a) 3	(b) 2	(c) 8	(d) - 8						
•	The joint equation of the straight lines $x + y = 1$ and $x - y = 4$ is									
	(a) $x^2 - y^2 = -4$	(b) $x^2 - y^2 = 4$	(c) $(x+y-1)(x-y-4) = 0$	(d) $(x + y + 1)(x - $	(4) = 0					
•	The value of λ for which	ch the equation $x^2 - \lambda xy + 2y^2$	+3x-5y+2=0 may represent a	a pair of straight line	s is					
				[Kurukshetra C	CEE 1996]					
	(a) 2	(b) 3	(c) 4	(d) 1						
0.	$2x^2 + 7xy + 3y^2 + 8x + 14$	$y + \lambda = 0$ will represent a pair	of straight lines, when $\lambda =$	[MP F	PET 1996]					
	(a) 2	(b) 4	(c) 6	(d) 8						
1.	If $Lx^2 - 10xy + 12y^2 + 5x$	x - 16y - 3 = 0 represents a pair	r of straight line, then <i>L</i> is	[MP F	PET 2001]					
	(a) 1	(b) 2	(c) 3	(d) -1						
2.	Separate equations of	lines, for a pair of lines, who	se equation is $x^2 + xy - 12y^2 = 0$,	are						
	(a) $x + 4y = 0$ and $x + 3$	y = 0	(b) $2x - 3y = 0$ and $x - 4y = 0$							
	(c) $x - 6y = 0$ and $x - 3$	y = 0	(d) $x + 4y = 0$ and $x - 3y =$	0						
3.	If the equation $2x^2 + 7$.	$xy + 3y^2 - 9x - 7y + k = 0$ repres	ents a pair of lines, then k is ea	qual to						
	(a) 4	(b) 2	(c) 1	(d) - 4						
4.	If equation $3x^2 + xy - y$	$x^2 - 3x + 6y + k = 0$ represents a	pair of lines, then k is equal to	[Karnataka C	ET 2002]					
	(a) 9	(b) 1	(c) 0	(d) – 9						

15.	Equation $3x^2 + 7xy + 2y^2$	$x^2 + 5x + 3y + 2 = 0$ represents		[UPSEAT 2002]
	(a) Pair of straight line	s (b) Ellipse	(c) Hyperbola	(d) None of these
16.	For what value of $'p'$, y	$y^{2} + xy + px^{2} - x - 2y = 0$ represent	ts two straight lines	[UPSEAT 2002]
	(a) 2	(b) $\frac{1}{2}$	(c) $\frac{1}{1}$	(d) $\frac{1}{1}$
		3	4	2
17.	If $6x^2 + 11xy - 10y^2 + x + $	31y + k = 0 represents a pair of s	straight lines, then $k =$	[MP PET 1991]
_	(a) -15	(b) 6	(c) -10	(d) -4
18.	If the equation $x^2 + y^2 + y^2$	-2gx + 2fy + 1 = 0 represents a pair	ir of lines, then	[Karnataka CET 1999]
	(a) $g^2 - f^2 = 1$	(b) $f^2 - g^2 = 1$	(c) $g^2 + f^2 = 1$	(d) $f^2 + g^2 = 1/2$
19.	The equation $x^2 + kxy + kxy$	$y^2 - 5x - 7y + 6 = 0$ represents a	pair of straight lines, then h	k is
	(a) $\frac{5}{2}$	(b) $\frac{10}{2}$	(c) $\frac{3}{2}$	(d) $\frac{3}{12}$
	3	3	2	10
20.	The equation $2x^2 + 4xy$	$-ky^2 + 4x + 2y - 1 = 0$ represents a	a pair of lines. The value of	K 1S
	(a) $-\frac{5}{3}$	(b) $\frac{5}{3}$	(c) $\frac{1}{3}$	(d) $-\frac{1}{3}$
21.	The equation $4x^2 - 24xy$	$v + 11v^2 = 0$ represents		[Orissa JEE 2003]
	(a) Two parallel lines	(b) Two perpendicular lines	(c) Two lines through the	origin(d) A circle
22.	The value of <i>k</i> so that the	ne equation $2x^2 + 5xy + 3y^2 + 6x - 6x^2 + 5xy + 3y^2 + 6x^2 +$	+7y + k = 0 represents a pair	of straight lines, is
	(a) 4	(b) 6	(c) 0	(d) 8
23.	The equation to the	pair of straight lines throug	gh the origin which are	perpendicular to the lines
	$2x^2 - 5xy + y^2 = 0$, is	[MP PET 1990]		
	(a) $2x^2 + 5xy + y^2 = 0$	(b) $x^2 + 2y^2 + 5xy = 0$	(c) $x^2 - 5xy + 2y^2 = 0$	(d) $2x^2 + y^2 - 5xy = 0$
24.	The equation $xy + a^2 = a$	(x + y) represents		[MP PET 1991]
	(a) A parabola lines	(b) A pair of straight lines	(c) An ellipse	(d) Two parallel straight
25.	If the equation $Ax^2 + 2B$	$Bxy + Cy^2 + Dx + Ey + F = 0$ represe	ents a pair of straight lines,	then $B^2 - AC$
	(a) < 0	(b) = 0	(c) > 0	(d) None of these
26.	The equation of pair of	straight lines perpendicular to	the pair $ax^2 + 2hxy + by^2 = 0$ is	[MP PET 1989]
	(a) $ax^2 - 2hxy + by^2 = 0$	(b) $bx^2 + 2hxy + ay^2 = 0$	(c) $ay^2 - 2hxy + bx^2 = 0$	(d) $ay^2 - bx^2 = 0$
27.	If the equation $ax^2 + 2h$	$xy + by^2 = 0$ represents two lines	s $y = m_1 x$ and $y = m_2 x$, then	[Kurukshetra CEE 1993;
	- MP PET 1988]			
	(a) $m_1 + m_2 = \frac{-2h}{b}$ and $m_1 + m_2 = \frac{-2h}{b}$	$a_1m_2 = \frac{a}{b}$	(b) $m_1 + m_2 = \frac{2h}{b}$ and $m_1 m_2$	$a_2 = \frac{-a}{b}$
	(c) $m_1 + m_2 = \frac{2h}{b}$ and m_1	$m_2 = \frac{a}{b}$	(d) $m_1 + m_2 = \frac{2h}{b}$ and $m_1 m_2$	$_2 = -ab$
28.	Difference of slopes of t	the lines represented by equation	on $x^2(\sec^2\theta - \sin^2\theta) - 2xy\tan\theta$	$+y^2\sin^2\theta = 0$ is
	(a) 4	(b) 3	(c) 2	(d) None of these
29.	If the ratio of gradient	ts of the lines represented by	$ax^{2} + 2hxy + by^{2} = 0$ is 1 : 3	, then the value of the ratio
	h^2 : ab is	[MP PET 1998]		
	(a) $\frac{1}{3}$	(b) $\frac{3}{4}$	(c) $\frac{4}{3}$	(d) 1
30.	If the sum of slopes of	the pair of lines represented by	$4x^2 + 2hxy - 7y^2 = 0$ is equal	l to the product of the slopes,
	then the value of <i>h</i> is			
	(a) -6	(b) -2	(c) -4	(d) 4
31.	The gradient of one of t	he lines of $ax^2 + 2hxy + by^2 = 0$ i	s twice that of the other, the	en [MP PET 2000]

	(a) $h^2 = ab$	(b) $h = a + b$	(c) $8h^2 = 9ab$	(d) $9h^2 = 8ab$				
32.	If the slope of one line o	If the slope of one line of the pair of lines represented by $ax^2 + 4xy + y^2 = 0$ is 3 times the slope of the other than a in						
	(a) 1	[DCE 1999] (b) 2	(c) 3	(d) 4				
33.	If the slope of one of the	lines given by $ax^2 + 2hxy + by^2 =$	= 0 is 5 times the other, then					
	(a) $5h^2 = ab$	(b) $5h^2 = 9ab$	(c) $9h^2 = 5ab$	(d) $h^2 = ab$				
34.	The value of k such that	$3x^2 - 11xy + 10y^2 - 7x + 13y + k = 0$) may represent a pair of str	aight lines, is				
	(a) 3	(b) 4	(c) 6	(d) 8				
35.	If $x^2 - kxy + y^2 + 2y + 2 = 0$) denotes a pair of straight lines	, then <i>k</i>	=				
	(a) 2	(b) $\frac{1}{\sqrt{2}}$	(c) $2\sqrt{2}$	(d) $\sqrt{2}$				
36.	The equation $4x^2 + mxy$ –	$-3y^2 = 0$ represents a pair of real	l and distinct lines if					
	(a) $m \in R$	(b) $m \in (3,4)$	(c) $m \in (-3,4)$	(d) $m > 4$				
37.	Lines represented by $9x$	$x^{2} + y^{2} + 6xy - 4 = 0$ are		[EAMCET 1988]				
	(a) Coincident	(b) Parallel but not coincident	(c) Not parallel	(d) Perpendicular				
38.	If $kx^2 + 10xy + 3y^2 - 15x - $	21y + 18 = 0 represents a pair of	straight lines, then <i>k</i> =	[Kurukshetra CEE 1982]				
	(a) 3	(b) 4	(c) -3	(d) None of these				
39.	Equation of pair of $3x^2 - 7xy - 2y^2 = 0$ is	straight lines drawn throug	h (1, 1) and perpendicu	llar to the pair of lines				
				[Roorkee 1984: MNR 1988]				
	(a) $2x^2 + 7xy - 11x + 6 = 0$)	(b) $2(x-1)^2 + 7(x-1)(y-1) - $	$3y^2 = 0$				
	(c) $2(x-1)^2 + 7(x-1)(y-1)$	$(y-1)^2 = 0$	(d) None of these					
40.	If the lines represented l	by the equation $2x^2 - 3xy + y^2 = 0$	0 make angles α and β with	<i>x</i> -axis, then $\cot^2 \alpha + \cot^2 \beta =$				
	(a) 0	(b) $\frac{3}{2}$	(c) $\frac{7}{4}$	(d) $\frac{5}{4}$				
41.	If one of the lines given	by $6x^2 - xy + 4cy^2 = 0$ is $3x + 4y =$	0, then c equals	[AIEEE 2004]				
	(a) -3	(b) -1	(c) 3	(d) 1				
42.	If $ax^2 - y^2 + 4x - y = 0$ rep	presents a pair of lines, then $a =$		[Karnataka CET 2004]				
	(a) -16	(b) 16	(c) 4	(d) - 4				
43.	The value of λ , for whic	h the equation $x^2 - y^2 - x + \lambda y - 2$	a = 0 represent a pair of stra	ight lines, are				
	(a) 3, -3	(b) -3, 1	(c) 3, 1	(d) -1, 1				
		Advance I	Level					

The equation $\sqrt{(x-2)^2 + y^2} + \sqrt{(x+2)^2 + y^2} = 4$ represents a 44. (d) Ellipse (a) Circle (b) Pair of straight lines (c) Parabola The locus of the point P(x, y) satisfying the relation $\sqrt{(x-3)^2 + (y-1)^2} + \sqrt{(x+3)^2 + (y-1)^2} = 6$ is a 45. (a) Straight line (b) Pair of straight lines (c) Circle (d) Ellipse If the equation $12x^2 + 7xy - py^2 - 18x + qy + 6 = 0$ represents a pair of perpendicular straight lines, then 46. (c) p = -1, q = 12(d) p = 1, q = -12(a) p = 12, q = 1(b) p = 1, q = 12The equation of the pair of straight lines parallel to x-axis and touching the circle $x^2 + y^2 - 6x - 4y - 12 = 0$ is[Kerala (En 47.

(b) $y^2 + 4y - 21 = 0$ (c) $y^2 - 4y + 21 = 0$ (d) $y^2 + 4y + 21 = 0$ (a) $y^2 - 4y - 21 = 0$ Two pairs of straight lines have the equations $y^2 + xy - 12x^2 = 0$ and $ax^2 + 2hxy + by^2 = 0$. One line will be 48. common among them if (a) a = -3(2h + 3b)(b) a = 8(h - 2b)(c) a = 2(b+h)(d) a = -3(b+h)If $u \equiv a_1x + b_1y + c_1 = 0$, $v \equiv a_2x + b_2y + c_2 = 0$ and $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$, then curve u + kv = 0 is 49. [MNR 1987] (a) A line represented by u (b) A different line (c) Not a line (d) If one of the line represented by the equation $ax^2 + 2hxy + by^2 = 0$ is coincident with one of the line represented 50. by $a'x^2 + 2h'xy + b'y^2 = 0$, then (a) $(ab'-a'b)^2 = 4(ah'-a'h)(hb'-h'b)$ (b) $(ab'+a'b)^2 = 4(ah'-a'h)(hb'-h'b)$ (c) $(ab'-a'b)^2 = (ah'-a'h)(hb'-h'b)$ (d) None of these Angle between the Pair of Lines **Basic** Level The angle between the lines represented by the equation $ax^2 + 2hxy + by^2 = 0$ is given by 51. (a) $\tan \theta = \frac{2(h^2 - ab)}{(a+b)}$ (b) $\tan \theta = \frac{2\sqrt{(h^2 - ab)}}{(a+b)}$ (c) $\tan \theta = \frac{2(h^2 - ab)}{\sqrt{a+b}}$ (d) $\tan \theta = \frac{2\sqrt{h^2 + ab}}{(a+b)}$ The angle between the pair of straight lines $x^2 - y^2 - 2y - 1 = 0$, is 52. (a) 90° (b) 60° (d) 36° (c) 75° If the angle 2θ is acute, then the acute angle between $x^2(\cos\theta - \sin\theta) + 2xy\cos\theta + y^2(\cos\theta + \sin\theta) = 0$ is **[EAMCET 2002]** 53. (d) $\frac{\theta}{2}$ (b) $\frac{\theta}{2}$ (a) 2θ (c) θ The angle between the pair of lines $2x^2 + 5xy + 2y^2 + 3x + 3y + 1 = 0$ is [EAMCET 1994] 54. (c) 0 (a) $\cos^{-1}\left(\frac{4}{5}\right)$ (b) $\tan^{-1}\left(\frac{4}{5}\right)$ (d) $\frac{\pi}{2}$ The equation $x^2 - 3xy + \lambda y^2 + 3x - 5y + 2 = 0$ when λ is a real number, represents a pair of straight lines. If θ is 55. the angle between the lines, then $\csc^2\theta$ = (c) 10 (d) 100 (a) 3 (b) 9 The equation $12x^2 + 7xy + ay^2 + 13x - y + 3 = 0$ represents a pair of perpendicular lines. Then the value of 'a' is[Karnataka CE' 56. (a) $\frac{7}{2}$ (b) -19 (c) -12 (d) 12 The angle between the lines $x^2 + 4xy + y^2 = 0$ is [Karnataka CET 2001] 57. (a) 60° (b) 15° (c) 30° (d) 45° If the angle between the two lines represented by $2x^2 + 5xy + 3y^2 + 6x + 7y + 4 = 0$ is $\tan^{-1} m$, then m = [MNR 1993]58. (c) $\frac{7}{5}$ (a) $\frac{1}{5}$ (b) 1 (d) 7 Pair of straight lines perpendicular to each other represented by 59. (a) $2x^2 = 2y(2x + y)$ (b) $x^2 + y^2 + 3 = 0$ (c) $2x^2 = y(2x + y)$ (d) $x^2 = 2(x - y)$ The angle between the pair of straight lines $x^2 + 4y^2 - 7xy = 0$, is 60. [MNR 1983; Kurukshetra CEE 1999]

(c) $\tan^{-1}\left(\frac{\sqrt{33}}{5}\right)$ (a) $\tan^{-1}\left(\frac{1}{3}\right)$ (d) $\tan^{-1}\left(\frac{5}{\sqrt{33}}\right)$ (b) $\tan^{-1}(3)$ The angle between the pair of straight lines $y^2 \sin^2 \theta - xy \sin^2 \theta + x^2 (\cos^2 \theta - 1) = 1$, is 61. [MNR 1985; UPSEAT 2000] (c) $\frac{2\pi}{3}$ (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{4}$ (d) None of these The angle between the pair of lines given by equation $x^2 + 2xy - y^2 = 0$, is 62. [MNR 1990] (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{6}$ (c) $\frac{\pi}{2}$ (d) 0 Acute angle between the lines represented by $(x^2 + y^2)\sqrt{3} = 4xy$ is 63. (a) $\pi/6$ (b) $\pi/4$ (c) $\pi/3$ (d) None of these The angle between the lines given by $x^2 - y^2 = 0$ is 64. [MP PET 1999] (a) 15° (b) 45° (c) 75° (d) 90° The angle between the lines xy = 0 is 65. [MP PET 1990, 92] (b) 60° (a) 45° (c) 90° (d) 180° The angle between the lines represented by the equation $4x^2 - 24xy + 11y^2 = 0$ are 66. (a) $\tan^{-1}\left(\frac{3}{4}\right), \tan^{-1}\left(-\frac{3}{4}\right)$ (b) $\tan^{-1}\left(\frac{1}{3}\right), \tan^{-1}\left(\frac{-1}{3}\right)$ (c) $\tan^{-1}\left(\frac{4}{3}\right), \tan^{-1}\left(-\frac{4}{3}\right)$ (d) $\tan^{-1}\left(\frac{1}{2}\right), \tan^{-1}\left(-\frac{1}{2}\right)$ Condition that the two lines represented by the equation $ax^2 + 2hxy + by^2 = 0$ to be perpendicular is 67. [Kurukshetra CEE 1998; MP PET 2001] (a) ab = -1(b) a = -b(c) a = b(d) ab = 1The straight lines represented by the equation $9x^2 - 12xy + 4y^2 = 0$ are 68. (a) Coincident (b) Perpendicular (c) Parallel (d) Inclined at an angle of 45° The nature of straight lines represented by the equation $4x^2 + 12xy + 9y^2 = 0$ is [MP PET 1988] 69. (a) Real and coincident (b) Real and different (c) Imaginary and different (d) None of these The equation $x^2 + ky^2 + 4xy = 0$ represents two coincident lines, if k =70. (a) 0 (b) 1 (c) 4 (d) 16 The straight lines joining the origin to the points of intersection of the line 2x + y = 1 and curve 71. $3x^2 + 4xy - 4x + 1 = 0$ include an angle (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{2}$ (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{6}$ If the acute angles between the pairs of lines $3x^2 - 7xy + 4y^2 = 0$ and $6x^2 - 5xy + y^2 = 0$ be θ_1 and θ_2 respectively, 72. then (b) $\theta_1 = 2\theta_2$ (d) None of these (a) $\theta_1 = \theta_2$ (c) $2\theta_1 = \theta_2$ The point of lines represented by $3ax^2 + 5xy + (a^2 - 2)y^2 = 0$ and perpendicular to each other for 73. (c) For one value of a (a) Two values of a (b) For all values of a (d) For no values of a **Advance** Level

74. The figure formed by the lines $x^2 + 4xy + y^2 = 0$ and x - y = 4, is (a) A right angled triangle (b) An isosceles triangle (c)

(c) An equilateral triangle(d)

Pair of Straight Lines 73

75.	5. The equation of the pair of straight lines, each of which makes an angle α with the line $y = x$, is										
	(a) $x^2 + 2xy \sec 2\alpha + y$	$^{2} = 0$	(b) $x^2 + 2xy \operatorname{cosec} 2\alpha + y^2 = 0$								
	(c) $x^2 - 2xy \csc 2\alpha + y$	$v^2 = 0$	(d)	$x^2 - 2xy \sec 2\alpha + y^2 = 0$							
76.	The combined equation the angle between l_1	ion of the lines l_1, l_2 is $2x^2 + 6xy$ and m_2 be α then the angle betw	$+y^2 = 0$ and that of the live l_2 and m_1 will be	ines m_1, m_2 is $4x^2 + 18xy + y^2 = 0$. If							
	(a) $\frac{\pi}{2} - \alpha$	(b) 2 <i>α</i>	(c) $\frac{\pi}{4} + \alpha$	(d) α							
77.	• If θ_1 and θ_2 are the angles which the lines $x^2(\tan^2\theta + \cos^2\theta) - 2xy \tan\theta + y^2 \sin^2\theta = 0$ make with the axis of x, then $\tan \theta_1 - \tan \theta_2$ is equal to										
	(a) $\cos 2\theta$	(b) $2\cos\theta\sin\theta$	(c) 2	(d) 1							
			Bisectors of t	he Angles between the Lines							
		Basic	Level								
78.	The combined equati	on of bisectors of angles betwee	n coordinate axes, is								
	(a) $x^2 + y^2 = 0$	(b) $x^2 - y^2 = 0$	(c) $xy = 0$	(d) $x + y = 0$							
7 9 .	The equation of the b	oisectors of the angle between th	ne lines represented by the	e equation $x^2 - y^2 = 0$, is							
	(a) $x = 0$	(b) $y = 0$	(c) $xy = 0$	(d) None of these							
80.	If $y = mx$ be one of th	e bisectors of the angle between	the lines $ax^2 - 2hxy + by^2$	= 0, then							
	(a) $h(1+m^2) + m(a-b)$	= 0 (b) $h(1-m^2) + m(a+b) = 0$	(c) $h(1-m^2) + m(a-b)$	= 0 (d) $h(1+m^2) + m(a+b) = 0$							
81.	The combined equati	on of the bisectors of the angle l	between the lines represe	nted by $(x^2 + y^2)\sqrt{3} = 4xy$ is [MP PET 1992							
	(a) $y^2 - x^2 = 0$	(b) $xy = 0$	(c) $x^2 + y^2 = 2xy$	(d) $\frac{x^2 - y^2}{\sqrt{3}} = \frac{xy}{2}$							
82.	One bisector of the bisector is	angle between the lines giver	h by $a(x-1)^2 + 2h(x-1)y + b^2$	$by^2 = 0$ is $2x + y - 2 = 0$. The other							
	(a) $x - 2y + 1 = 0$	(b) $2x + y - 1 = 0$	(c) $x + 2y - 1 = 0$	(d) $x - 2y - 1 = 0$							
		Advand	ce Level								
83.	If the equation ax^2 +	$2hxy + by^2 = 0$ has the one line as	the bisector of angle bet	ween the coordinate axes, then [Bihar CEE 1990; Roorkee							
1992]	2 2	2 2								
	(a) $(a-b)^2 = h^2$	(b) $(a+b)^2 = h^2$	(c) $(a-b)^2 = 4h^2$	(d) $(a+b)^2 = 4h^2$							
84.	If the bisectors of $ax^2 + 2hxy + by^2 + \lambda(x^2)$	the angles between the pairs $(x^2 + y^2) = 0$ be coincident, then $\lambda =$	s of lines given by the	equation $ax^2 + 2hxy + by^2 = 0$ and							
	(a) <i>a</i>	(b) <i>b</i>	(c) h	(d) Any real number							
85.	If the bisectors of the the angle made by th	e angles of the lines represented e lines represented by first with	by $3x^2 - 4xy + 5y^2 = 0$ and the second, is	$1 5x^2 + 4xy + 3y^2 = 0$ are same, then							
	(a) 30°	(b) 60°	(c) 45°	(d) 90°							
86.	If pairs of straight li the other pair, then a 2001]	nes $x^{2} - 2mxy - y^{2} = 0$ and $x^{2} - 2mxy - y^{2} = 0$	$xy - y^2 = 0$ be such that each that each that each that each the such that each the such that each the such that that that that that that that th	ach pair bisects the angle between [MP PET 1991;UPSEAT							

				Pair of Straight Lines 75
	(a) 1	(b) -1	(c) 0	(d) $-\frac{1}{2}$
87.	If the lines represented direction and other in lines in the new posit	ed by $x^2 - 2pxy - y^2 = 0$ are ro a anti -clockwise direction , ion is	tated about the origin through then the equation of the bised	an angle $ heta$, one in clockwise ctors of the angle between the
	(a) $px^2 + 2xy - py^2 = 0$	(b) $px^2 + 2xy + py^2 = 0$	(c) $x^2 - 2pxy + y^2 = 0$	(d) None of these
88.	If $r(1-m^{2}) + m(p-q)$ $px^{2} - 2rxy + qy^{2} = 0$ is	= 0, then a bisector of the	e angle between the lines i	represented by the equation
	(a) $y = x$	(b) $y = -x$	(c) $y = mx$	(d) $my = x$
			Point of	intersection of the Lines
		Bas	ric Level	
89.	If the pair of lines ax^2	$+2hxy + by^{2} + 2gx + 2fy + c = 0$	intersect on the <i>y</i> -axis, then	[AIEEE 2002]
	(a) $2fgh = bg^2 + ch^2$	(b) $bg^2 \neq ch^2$	(c) $abc = 2fgh$	(d) None of these
90.	The point of intersecti	on of the lines represented b	y equation $2(x+2)^2 + 3(x+2)(y-1)^2 + 3(x+2)$	$(-2) - 2(y-2)^2 = 0$ is
	(a) (2,2)	(b) (-2,-2)	(c) (-2,2)	(d) (2,-2)
		Adva	nce Level	
91.	The equations to a pair to its diagonals are (a) $x + 4y = 13$ and $y = 13$	r of opposite sides of a paral $4x - 7$	(b) $4x + y = 13$ and $4y = x^{2}$	d $y^2 - 6y + 5 = 0$. The equations
	(c) $4x + y = 13$ and $y =$	4x - 7	(d) $y-4x = 13$ and $y+4x$	= 7
92.	The circumcentre of th	ne triangle formed by the line	es $xy + 2x + 2y + 4 = 0$ and $x + y + 4 = 0$	2 = 0 is
-	(a) (0,0)	(b) (-2,-2)	(c) (-1,-1)	(d) (-1,-2)
93.	If the equations of opp its one diagonal is	posite sides of a parallelogra	m are $x^2 - 7x + 6 = 0$ and $y^2 - 14$	4y + 40 = 0, then the equation of
	(a) $6x + 5y + 14 = 0$	(b) $6x - 5y + 14 = 0$	(c) $5x + 6y + 14 = 0$	(d) $5x - 6y + 14 = 0$
94.	The limiting position	of the point of intersection o	f the straight lines $3x + 5y = 1$ a	nd $(2+c)x + 5c^2y = 1$ as $c \to 1$ is
	(a) $\left(\frac{2}{5}, \frac{-1}{25}\right)$	(b) $\left(\frac{1}{2}, -\frac{1}{10}\right)$	(c) $\left(\frac{3}{8}, \frac{-1}{40}\right)$	(d) None of these
95.	If two sides of a trian third side is	igle are represented by x^2 –	$7xy + 6y^2 = 0$ and the centroid i	s (1, 0), then the equation of
	(a) $2x + 7y + 3 = 0$	(b) $2x - 7y + 3 = 0$	(c) $2x + 7y - 3 = 0$	(d) $2x - 7y - 3 = 0$
96.	If the lines $ax^2 + 2hxy$ diagonal if one is $lx + r$	$+by^{2} = 0$ represents the adja ny = 1, will be	acent sides of a parallelogram	, then the equation of second
	(a) $(am + hl)x = (bl + hm)$	y (b) $(am - hl)x = (bl - hm)y$	(c) $(am - hl)x = (bl + hm)y$	(d) None of these
E	quation of lines joining	g the origin to the point of i	ntersection of a curve and a L	ine, Distance between the
		Basi	ic Level	
		Dasi		

- 97. The lines joining the origin to the points of intersection of the line 3x 2y = 1 and the curve $3x^2 + 5xy 3y^2 + 2x + 3y = 0$, are (a) Parallel to each other (b) Perpendicular to each other (c) Inclined at 45° to each other (d) None of these 98. The distance between the parallel lines $9x^2 - 6xy + y^2 + 18x - 6y + 8 = 0$ is [EAMCET 1994] (a) $\frac{1}{\sqrt{10}}$ (b) $\frac{2}{\sqrt{10}}$ (c) $\frac{4}{\sqrt{10}}$ (d) $\sqrt{10}$
- **99.** The equation $8x^2 + 8xy + 2y^2 + 26x + 13y + 15 = 0$ represents a pair of straight lines. The distance between them is **[UPSEAT 2001]**

(a)
$$\frac{7}{\sqrt{5}}$$
 (b) $\frac{7}{2\sqrt{5}}$ (c) $\frac{\sqrt{7}}{5}$ (d) None of these

100. The equation of second degree $x^2 + 2\sqrt{2}xy + 2y^2 + 4x + 4\sqrt{2}y + 1 = 0$ represents a pair of straight lines. The distance between them is

(a) 4 (b)
$$\frac{4}{\sqrt{3}}$$
 (c) 2 (d) $2\sqrt{3}$

101. If the straight lines joining origin to the points of intersections of the line x + y = 1 with the curve $x^2 + y^2 + x - 2y - m = 0$ are perpendicular to each other, then the value of *m* should be (a) 0 (b) 1/2 (c) 1 (d) - 1

102. The lines joining the points of intersection of the curve $(x - h)^2 + (y - k)^2 - c^2 = 0$ and the line kx + hy = 2hk to the origin are perpendicular, then

(a)
$$c = h \pm k$$
 (b) $c^2 = h^2 + k^2$ (c) $c^2 = (h+k)^2$ (d) $4c^2 = h^2 + k^2$

103. The equation of pair of lines joining origin to the points of intersection of $x^2 + y^2 = 9$ and x + y = 3 is

(a)
$$(x+y)^2 = 9$$
 (b) $x^2 + (3-x)^2 = 9$ (c) $xy = 0$ (d) $(3-x)^2 + y^2 = 9$

104. The acute angle formed between the lines joining the origin to the points of intersection of the curves $x^2 + y^2 - 2x - 1 = 0$ and x + y = 1, is

(a)
$$\tan^{-1}\left(-\frac{1}{2}\right)$$
 (b) $\tan^{-1}(2)$ (c) $\tan^{-1}\left(\frac{1}{2}\right)$ (d) 60°

(b) $\pi/4$

105. The lines joining the origin to the points of intersection of the line y = mx + c and the circle $x^2 + y^2 = a^2$ will be mutually perpendicular, if

(a)
$$a^2(m^2+1) = c^2$$
 (b) $a^2(m^2-1) = c^2$ (c) $a^2(m^2+1) = 2c^2$ (d) $a^2(m^2-1) = 2c^2$

106. The angle between lines joining the origin to the points of intersection of the line $x\sqrt{3} + y = 2$ and the curve $x^2 + y^2 = 4$ is

(c) $\pi/3$

[Roorkee 1998]

```
(a) \pi/6
```

(d) $\pi/2$

Advance Level

107. The pair of lines joining the origin to the points of intersection of the curves $ax^2 + 2hxy + by^2 + 2gx = 0$ and $a'x^2 + 2h'xy + b'y^2 + 2g'x = 0$ will be at right angles to one another if

(a)
$$g(a'+b') = g'(a+b)$$
 (b) $g(a+b) = g'(a'+b')$ (c) $gg' = (a+b)(a'+b')$ (d) None of these

- **108.** The square of distance between the point of intersection of the lines represented by the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ and origin, is
 - (a) $\frac{c(a+b)-f^2-g^2}{ab-h^2}$ (b) $\frac{c(a-b)+f^2+g^2}{\sqrt{ab-h^2}}$ (c) $\frac{c(a+b)-f^2-g^2}{ab+h^2}$ (d) None of these

109. If the portion of the line lx + my = 1 falling inside the circle $x^2 + y^2 = a^2$ subtends an angle of 45° at the origin, then

(b) $4[a^2(l^2 + m^2) - 1] = a^2(l^2 + m^2) - 2$

(d) None of these

(a)
$$4[a^2(l^2+m^2)-1] = a^2(l^2+m^2)$$

(c)
$$4[a^2(l^2+m^2)-1] = [a^2(l^2+m^2)-2]^2$$

Miscellaneous problems

Basic Level

110. The product of perpendiculars drawn from the origin to the lines represented by the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ will be

(a)
$$\frac{ab}{\sqrt{a^2 - b^2 + 4h^2}}$$
 (b) $\frac{bc}{\sqrt{a^2 - b^2 + 4h^2}}$ (c) $\frac{ca}{\sqrt{a^2 + b^2} + 4h^2}$ (d) $\frac{c}{\sqrt{(a-b)^2 + 4h^2}}$

111. A curve with equation of the form $y = ax^4 + bx^3 + cx + d$ has zero gradient at the point (0,1) and also touches the *x*-axis at the point (-1,0). Then the values of *x* for which the curve has negative gradients are

(a)
$$x > -1$$
 (b) $x < 1$ (c) $x < -1$ (d) $-1 \le x \le 1$

Advance Level

112. Two of the lines represented by the equation $ay^4 + bxy^3 + cx^2y^2 + dx^3y + ex^4 = 0$ will be perpendicular, then [Kurukshetra Caracterization of the lines represented by the equation $ay^4 + bxy^3 + cx^2y^2 + dx^3y + ex^4 = 0$ will be perpendicular, then [Kurukshetra Caracterization of the lines represented by the equation $ay^4 + bxy^3 + cx^2y^2 + dx^3y + ex^4 = 0$ will be perpendicular, then [Kurukshetra Caracterization of the lines represented by the equation $ay^4 + bxy^3 + cx^2y^2 + dx^3y + ex^4 = 0$ will be perpendicular, then [Kurukshetra Caracterization of the lines represented by the equation $ay^4 + bxy^3 + cx^2y^2 + dx^3y + ex^4 = 0$ will be perpendicular, then [Kurukshetra Caracterization of the lines represented by the equation $ay^4 + bxy^3 + cx^2y^2 + dx^3y + ex^4 = 0$ will be perpendicular, then [Kurukshetra Caracterization of the lines represented by the equation $ay^4 + bxy^3 + cx^2y^2 + dx^3y + ex^4 = 0$ will be perpendicular.

- (a) $(b+d)(ad+be)+(e-a)^2(a+c+e)=0$ (b) $(b+d)(ad+be)+(e+a)^2(a+c+e)=0$
- (c) $(b-d)(ad-be)+(e-a)^2(a+c+e)=0$ (d) $(b-d)(ad-be)+(e+a)^2(a+c+e)=0$

113. Let *PQR* be a right angled isosceles triangle, right angled at P(2,1). If the equation of the line *QR* is 2x + y = 3, then the equation representing the pair of lines *PQ* and *PR* is

- (a) $3x^2 3y^2 + 8xy + 20x + 10y + 25 = 0$ (b) $3x^2 3y^2 + 8xy 20x 10y + 25 = 0$
- (c) $3x^2 3y^2 + 8xy + 10x + 15y + 20 = 0$ (d) $3x^2 3y^2 8xy 10x 15y 20 = 0$

114. The area (in square units) of the quadrilateral formed by the two pairs of lines $l^2x^2 - m^2y^2 - n(lx + my) = 0$ and $l^2x^2 - m^2y^2 + n(lx - my) = 0$ is [EAMCET 2003]

(a) $\frac{n^2}{2|lm|}$ (b) $\frac{n^2}{|lm|}$ (c) $\frac{n}{2|lm|}$ (d) $\frac{n^2}{4|lm|}$

115. Two lines represented by the equation $x^2 - y^2 - 2x + 1 = 0$ are rotated about the point (1, 0), the line making the bigger angle with the positive direction of the *x*-axis being turned by 45° in the clockwise sense and the other line being turned by 15° in the anticlockwise sense. The combined equation of the pair of lines in their new positions is

(a)
$$\sqrt{3x^2 - xy + 2\sqrt{3x - y} + \sqrt{3}} = 0$$

- (c) $\sqrt{3}x^2 xy 2\sqrt{3}x + \sqrt{3} = 0$
- (b) $\sqrt{3}x^2 xy 2\sqrt{3}x + y + \sqrt{3} = 0$
- (d) None of these

- **116.** The combined equation of three sides of a triangle is $(x^2 y^2)(2x + 3y 6) = 0$. If (-2, a) is an interior point and (*b*, 1) is an exterior point of the triangle, then
 - (a) $2 < a < \frac{10}{3}$ (b) $-2 < a < \frac{10}{3}$ (c) $-1 < b < \frac{9}{2}$ (d) -1 < b < 1

117. The diagonals of a square are along the pair of lines whose equation is $2x^2 - 3xy - 2y^2 = 0$. If (2, 1) is a vertex of the square, then another vertex consecutive to it can be (a) (1,-2) (b) (1,4) (c) (-1,2) (d) (-1,-4)

- **118.** The equation $x^3 6x^2y + 11xy^2 6y^3 = 0$ represent three straight lines passing through the origin, the slopes of which form an
- (a) A.P. (b) G.P. (c) H.P. (d) None of these **119.** If P_1, P_2 denote the length of the perpendiculars from the point (2,3) on the lines given by $15x^2 + 31xy + 14y^2 = 0$ then

(a)
$$P_1 + P_2 = \frac{31}{14}$$
 (b) $|P_1 - P_2| = \frac{31}{\sqrt{74}} - \frac{12}{\sqrt{13}}$ (c) $P_1 P_2 = \frac{372}{\sqrt{962}}$ (d) $P_1 P_2 = \frac{15}{14}$

120. The equation of the locus of feet of perpendicular drawn from the origin to the line passing through a fixed point (*a*, *b*) is

(a)
$$x^2 + y^2 - ax - by = 0$$
 (b) $x^2 + y^2 + ax + by = 0$ (c) $x^2 + y^2 - 2ax - 2by = 0$ (d) None of these

Assianment (Basic and Advance Level)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
а	С	а	d	d	а	b	С	b	d	b	d	а	d	а	С	а	С	b	а
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
С	а	b	b	d	С	а	С	С	b	С	С	b	b	d	а	b	а	d	d
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
а	b	а	b	b	а	а	a,b	а	а	b	а	С	а	С	С	а	а	а	С
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
d	С	а	d	С	С	b	а	а	С	а	а	а	С	d	d	С	b	С	С
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
а	d	d	d	d	b	а	С	а	С	С	С	b	а	d	b	b	b	b	С
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
b	b	С	b	С	С	а	а	С	d	С	а	b	а	b	a,d	a,c	С	b,c	а