Chapter 15. Mid-point and Intercept Theorems

Ex 15.1

Answer 1.

In ΔABC,

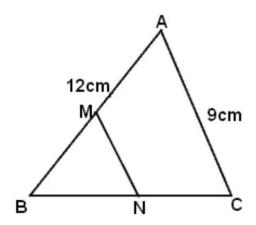
Since D and E are the mid-points of AB and BC respectively

Therefore, by mid-point theorem DE || AC and DE = $\frac{1}{2}$ AC

(i) DE =
$$\frac{1}{2}$$
AC = $\frac{1}{2}$ x 8.6 cm = 4.3 cm

(ii)
$$\angle DEB = \angle C = 72^{\circ}$$
 (corresponding angles, since DE || AC)

Answer 2.

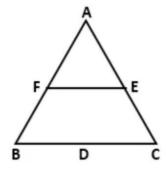


MN || AC and M is mid-point of AB

Therefore, N is mid-point of BC

Hence, MN =
$$\frac{1}{2}$$
AC = $\frac{9}{2}$ cm = 4.5cm

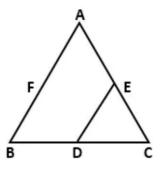
Answer 3A.



F is the mid-point AB and E is the mid-point of AC.

∴ FE =
$$\frac{1}{2}$$
BC(Mid-point Theorem]
= $\frac{1}{2} \times 14$
= 7 cm

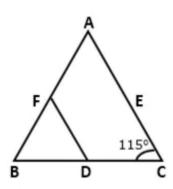
Answer 3B.



D is the mid-point BC and E is the mid-point of AC.

$$\therefore DE = \frac{1}{2}AB \qquad \dots (Mid-point Theorem)$$
$$= \frac{1}{2} \times 8$$
$$= 4 cm$$

Answer 3C.



Answer 4.

In ANSR

$$MQ = \frac{1}{2}SR$$

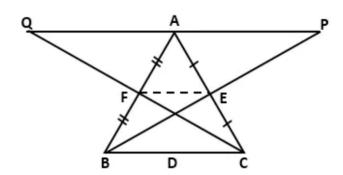
But L is the mid-point of SR and SR = PQ (sides of a parallelogram)

$$MQ = \frac{1}{2}PQ$$

$$MQ = PM = LS = LR$$

Therefore, M is the mid-point of PQ.

Answer 5.



Since BE and CF are medians, F is the mid-point of AB and E is the mid-point of AC. Now, the line joining the mid-points of any two sides is parallel and half of the third side, we have In \triangle ACQ,

EF || AQ and EF =
$$\frac{1}{2}$$
AQ(i)
In \triangle ABP,

EF || AP and EF =
$$\frac{1}{2}$$
AP(ii)

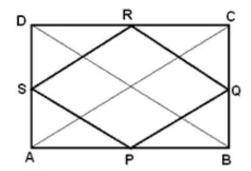
- a) From (i) and (ii), we get AP || AQ (both are parallel to EF)
 As AP and AQ are parallel and have a common point A,
 this is possible only if QAP is a straight line.
 Hence, proved.
- b)From (i) and (ii),

EF =
$$\frac{1}{2}$$
AQ and EF = $\frac{1}{2}$ AP

$$\Rightarrow \frac{1}{2}$$
AQ = $\frac{1}{2}$ AP

 \Rightarrow A is the mid-point of QP.

Answer 6.



Join AC and BD.

In \triangle ABC, P and Q are the mid-points of AB and BC respectively.

$$PQ = \frac{1}{2}AC....(i)$$
 and $PQ \parallel AC$

In \triangle BDC, R and Q are the mid-points of CD and BC respectively.

$$QR = \frac{1}{2}BD....(ii)$$
 and $QR \parallel BD$

But AC = BD (diagonals of a rectangle)

From (i) and (ii)

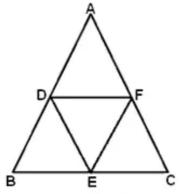
$$PQ = QR$$

Similarly, QR = RS, RS = SP and $RS \parallel AC$, $SP \parallel BD$

Hence,
$$PQ = QR = RS = SP$$

Therefore, PQRS is a rhombus.

Answer 7.



E and F are mid-points of BC and AC

Therefore, EF =
$$\frac{1}{2}$$
AB.....(i)

D and F are mid-points of AB and AC

Therefore, DF =
$$\frac{1}{2}$$
BC.....(ii)

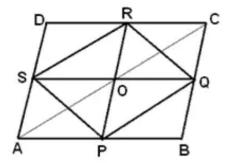
But AB = BC

From (i) and (ii)

EF = DF

Therefore, $\Delta \, {\sf DEF}$ is an isosceles triangle.

Answer 8.



Join AC.

P and Q are mid-points of AB and BC respectively.

: PQ || AC, PQ =
$$\frac{1}{2}$$
AC....(i)

S and R are mid-points of AD and DC respectively.

: SR | | AC, SR =
$$\frac{1}{2}$$
AC(ii)

From (i) and (ii)

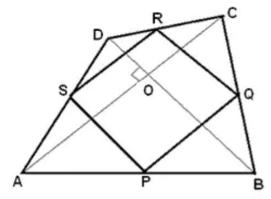
$$PQ = SR$$

Therefore, PQRS is a parallelogram.

Since, diagonals of a parallelogram bisect each other

Therefore, PQ and QS bisect each other.

Answer 9.



P and Q are mid-points of AB and BC.

:. PQ || AC and PQ =
$$\frac{1}{2}$$
 AC.....(i)

S and R are mid-points of AD and DC.

: SR || AC and SR =
$$\frac{1}{2}$$
AC(ii)

From (i) and (ii)

Therefore, PQRS is a parallelogram.

Further AC and BD intersect at right angles

∴ SP||BD and BD ⊥ AC

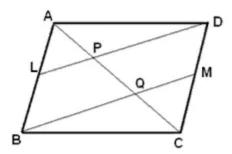
: SP ± AC

 \Rightarrow SP \perp SR

⇒∠RSP = 90°

Therefore, PQRS is a rectangle.

Answer 10.



Since L and M are the mid-points of AB and DC respectively.

$$BL = \frac{1}{2}AB \text{ and } DM = \frac{1}{2}DC....(i)$$

But ABCD is a parallelogram

Therefore, AB = CD and AB || DC

$$\Rightarrow$$
BL = DM and BL || DM (from (i))

⇒BLDM is a parallelogram.

It is known that the segment drawn through the mid-point of one side of a triangle and parallel to the other side bisects the third side.

In ∆ABQ, L is the mid-point of AB and MQ || PD

Therefore, P is mid-point of AQ

Similarly, in \triangle CPD, M is the mid-point of CD and LP || BQ

Therefore, Q is mid-point of CP

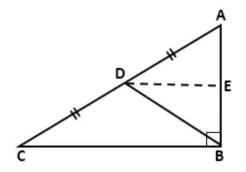
From (iii) and (iv)

$$AP = PQ = QC$$

Therefore, P and Q trisect AC

Thus, DL and BM trisect AC.

Answer 11.



Draw line segment DE || CB, which meets AB at point E.

Now, DE∥CB and AB is the transversal,

$$\angle ABC = 90^{\circ}$$
(given)

Also, as D is the mid-point of AC and DE || CB,

DE bisects side AB,

In ΔAED and ΔBED,

$$\angle AED = \angle BED$$
(Each 90°)

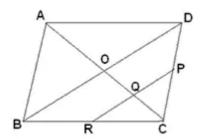
$$AE = BE$$
[From (i)]

$$\Rightarrow$$
 AD = BD(C.P.C.T.C)

$$\Rightarrow$$
 BD = AC

⇒BD =
$$\frac{1}{2}$$
AC

Answer 12.



(i) Join B and D. Suppose AC and BD cut at O. Then,

$$OC = \frac{1}{2}AC$$

Now,
$$CQ = \frac{1}{4}AC \Rightarrow CQ = \frac{1}{2}OC$$

In ΔDCO , P and Q are the mid-points of DC and OC respectively.

Also, in \triangle COB, Q is the mid-point of OC and PQ || OB

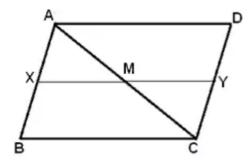
Therefore, R is the mid-point of BC, R being PQ produced.

(ii) In \triangle BCD, P and R are the mid-points of DC and BC respectively.

Also PR || BD

Therefore, PR = $\frac{1}{2}$ BD

Answer 13.



(i) Join XM and MY.

In AAXM and ACYM

$$AX = CY$$
 (given)

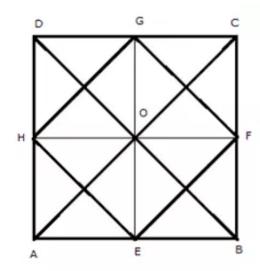
$$\angle XAM = \angle YCM$$
 (alternate angles)

Therefore, $\triangle AXM \cong \triangle CYM$

(ii) $\angle AMX = \angle CMY$ (Vertically opposite angles)

Therefore, XMY is a straight line.

Answer 14.



Join AC and BD

In $\Delta\,\text{ACD}$, G and H are the mid-points of DC and AD respectively.

Therefore, GH || AC and GH = $\frac{1}{2}$ AC(i)

In ΔABC, E and F are the mid-points of AB and BC respectively.

Therefore, EF || AC and EF =
$$\frac{1}{2}$$
AC(ii)

From (i) and (ii)

EF || GH and EF = GH =
$$\frac{1}{2}$$
AC(iii)

Similarly it can be proved that-

EH || GF and EH = GF =
$$\frac{1}{2}$$
BD(iv)

But AC = BD (diagonals of a square are equal)

Dividing both sides by 2,

$$\frac{1}{2}BD = \frac{1}{2}AC$$
 (iv)

From (iii) and (iv)

EF = GH = EH = GF

Therefore, EFGH is a parallelogram.

Now in AGOH and AGOF

OH = OF (diagonals of a parallelogram bisect each other)

GH = GF

∴ ΔGOH ≅ ΔGOF

NOW,

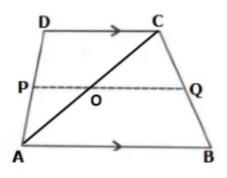
$$\angle$$
GOH + \angle GOF = 180°

Therefore, diagonals of parallelogram EFGH bisect each other and are perpendicular to each other.

Thus, EFGH is a square.

Answer 15A.

Let us draw a diagonal AC which meets PQ at O as shown below:



a) Given AB = 12 cm and DC = 10 cm In \triangle ABC.

$$OQ = \frac{1}{2}AB$$
(Mid-point Theorem)

$$\Rightarrow$$
 OQ = $\frac{1}{2}$ x 12 = 6 cm

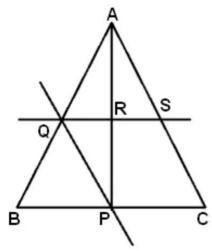
In ΔADC,

$$OP = \frac{1}{2}DC$$
(Mid-point Theorem)

$$\Rightarrow$$
 OP = $\frac{1}{2} \times 10 = 5$ cm

Now,
$$PQ = OP + OQ = 6 + 5 = 11 \text{ cm}$$

Answer 16.



(i) In ΔABC,

P is the mid-point of BC and PQ is parallel to AC

Therefore, Q is the mid-point of AB.

In ΔABP,

Q is the mid-point of AB and QR is parallel to BP

Therefore, R is the mid-point of AP.

$$AR = RP$$

$$But AR + RP = AP$$

$$\Rightarrow AR + AR = AP$$

$$\Rightarrow$$
2AR = AP or AP = 2AR

(ii) In ∆ABC,

 ${\sf Q}$ and ${\sf S}$ are the mid-points of AB and AC respectively. Also ${\sf QS}$ is parallel to BC

Therefore, QS =
$$\frac{1}{2}$$
BC(i)

Now, AP is the median, hence it bisects BC and QS

Therefore

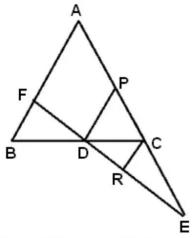
$$\frac{1}{2}$$
QS = QR \Rightarrow QS = 2QR

Substituting in (i)

$$\Rightarrow$$
 2QR = $\frac{1}{2}$ BC

$$\Rightarrow$$
 BC = 4QR

Answer 17.



(i) In ΔBDF and ΔDRC,

$$BD = DC$$
 (D is the mid-point of BC)

$$\angle BFD = DRC$$
 (alternate angles)

Therefore,

$$\Rightarrow$$
DF = DR(i)

```
In ΔABC,
```

D is the mid-point of BC and DP || AB

Therefore, P is the mid-point of AC.

In ADEP,

C is the mid-point of PE and DP || RC || AB (CE = $\frac{1}{2}$ AC and P is the mid-point of AC)

Therefore, R is the mid-point of DE.

$$ButEF = DF + DR + RE$$

$$EF = DF + DF + DF$$

$$EF = 3DF$$

(ii) In ΔDEP,

C and R are the mid-points of PE and DE respectively.

Also, DP || RC

:
$$CR = \frac{1}{2}DP$$
(i)

In ΔABC,

D and P are the mid-points of BC and AC respectively.

Also, DP || AB

: DP =
$$\frac{1}{2}$$
AB(ii)

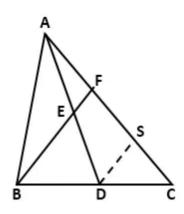
Substituting the value of DP from (ii) in (i)

$$\Rightarrow$$
 CR = $\frac{1}{2}(\frac{1}{2}AB)$

$$\Rightarrow$$
 CR = $\frac{1}{4}$ AB

Answer 18.

Construction: Draw DS || BF, meeting AC at S.



Proof:

In \triangle BCF, D is the mid-point of AC and DS || BF.

 \therefore S is the mid-point of CF.

$$\Rightarrow$$
 CS = SF(i)

In \triangle ADS, E is the mid-point of AD and EF \parallel DS.

.: F is the mid-point of AS.

From (i) and (ii), we get

$$AF = FS = SC$$

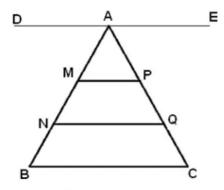
$$\Rightarrow$$
 AC = AF + FS + SC

$$\Rightarrow$$
 AC = AF + AF + AF

$$\Rightarrow \frac{AF}{AC} = \frac{1}{3}$$

$$\Rightarrow$$
 AF : AC = 1:3

Answer 19.



Draw DE || BC through A

AM=MN=NB (given)

MP||BC; NQ||BC (given)

DE||BC

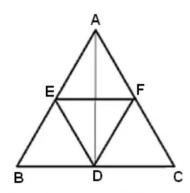
i.e. AM, MN and NB are equal intercepts made on transversal AB.

AC is also a transversal; intercepts made on AC are AP, PQ and QC.

Hence, AP=PQ=QC

Therefore, P and Q divide AC in three equal parts.

Answer 20.



Since the segment joining the mid-points of two sides of a triangle is parallel to third side and is half of it,

Therefore,

DE || AB, DE =
$$\frac{1}{2}$$
 AB

Also,

$$DF \parallel AC, DF = \frac{1}{2}AC$$

ButAB = AC

$$\Rightarrow \frac{1}{2}AB = \frac{1}{2}AC$$

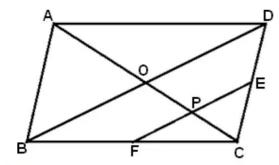
$$DE = \frac{1}{2}AB \Rightarrow DE = AF \dots(ii)$$

From (i), (ii) and (iii)

$$DE = AE = EF = DF$$

- ⇒DEAF is a rhombus.
- ⇒Diagonals AD and EF bisect each other at right angles.
- ⇒AD perpendicular to EF and AD is bisected by EF.

Answer 21.



(i) Join B and D. Suppose AC and BD cut at O. Then,

$$OC = \frac{1}{2}AC$$

Now, PC =
$$\frac{1}{4}$$
AC \Rightarrow PC = $\frac{1}{2}$ OC

In $\triangle DCO$, E and P are the mid-points of DC and OC respectively.

Also, in $\triangle COB$, P is the mid-point of OC and PF || DO || BD

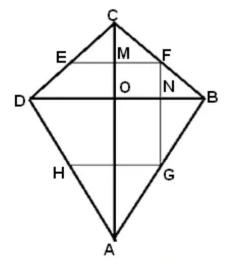
Therefore, F is the mid-point of BC, F being EP produced.

(ii) In ΔBCD, E and F are the mid-points of DC and BC respectively.

Therefore, EF =
$$\frac{1}{2}$$
BD

$$\Rightarrow$$
 2EF = BD

Answer 22.



(i) Diagonals of a kite intersect at right angles

In ΔBCD,

E and F are mid-points of CD and BC respectively.

Therefore, EF || DB and EF =
$$\frac{1}{2}$$
DB(ii)

-point of DA. through G and parallel to FE bisects DA

EF | DB ⇒ MF | ON

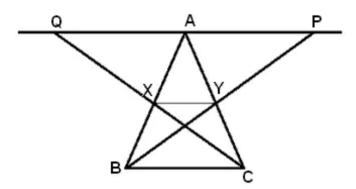
(ii) In ∆ABD,

G is the mid-point of AE

Therefore, HG||DB

Therefore, H is the mid Hence, the line drawn

Answer 23.



Join X and Y

In AABP,

X and Y are the mid-points of AB and AC respectively

Therefore, XY||BC

Since BC||AP

⇒XY||AP and XY||AQ

$$\therefore XY = \frac{1}{2}AP.....(i)$$

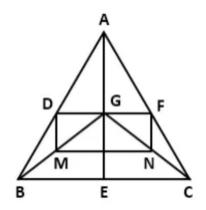
$$XY = \frac{1}{2}AQ....(ii)$$

From (i) and (ii)

$$\Rightarrow \frac{1}{2}AP = \frac{1}{2}AQ$$

$$\Rightarrow$$
 AP = AQ

Answer 24.



a. Since D and F are mid-points of AB and AC, by Mid-point theorem,

BC = 2DF

Now, BC = BE + EC

DF = DG + GF

But E is the mid-point of BC,

 \Rightarrow BE = EC(i)

Also, AG = GE(G is the mid-point of AE)

Consider $\triangle ABE$ and $\triangle ACE$, by mid-point theorem,

BE = 2DG and EC = 2GF

 \Rightarrow 2DG = 2GF[From (i)]

 \Rightarrow DG = GF

Hence, AE and DF bisect each other.

b. Consider AABC and AGBC, by mid-point theorem,

2DF = BC and 2MN = BC

 \Rightarrow DF = MN(i)

Consider AABG and AACG, by mid-point theorem,

2DM = AG and 2FN = AG

⇒DM = FN(ii)

From (i) and (ii), it is clear that DMNF is a parallelogram.