PRACTICE PAPER

Time allowed: 45 minutes Maximum Marks: 200

General Instructions: Same as Practice Paper-1.

Choose the correct option.

I	 Given 	below	are two	statements	labelled	as.	Assertion	and	Reason:

Assertion (A): o-Nitrophenol is less soluble in water than the m- and p-isomers.

(R): m- and p- Nitrophenols exist as associated molecules.

- (a) Assertion and reason both are correct statements and reason is correct explanation for assertion.
- (b) Assertion and reason both are correct statements but reason is not correct explanation for assertion.
- (c) Assertion is correct statement but reason is wrong statement.
- (d) Assertion is wrong statement but reason is correct statement.

2. A photochemical reaction is

(a) catalysed by light

- (b) initiated by light
- (c) accompanied with emission of light
- (d) none of these
- 3. If 'x' is the initial concentration of reactants undergoing chemical change following zero order kinetic, and 'k' is the rate constant, then the time required for the reaction to go completion is
 - $(a) \frac{x}{b}$

4. Given below are two statements labelled as Assertion and Reason:

Assertion (A): If the activation energy of a reaction is zero, temperature will have no effect on the rate constant.

(R): Lower the activation energy, faster is the reaction.

- (a) Assertion and reason both are correct statements and reason is correct explanation for assertion.
- (b) Assertion and reason both are correct statements but reason is not correct explanation for assertion.
- (c) Assertion is correct statement but reason is wrong statement.
- (d) Assertion is wrong statement but reason is correct statement.
- 5. The formula of determination of pH value of a solution by using hydrogen electrode is

(a) pH =
$$\frac{-E}{0.0591}$$

(b) $E = E^{\circ} + 0.0591 \text{ pH}$

(c)
$$E_{\text{cell}} = E_{\text{cell}}^{\circ} + 0.0591$$

(d) pH =
$$\frac{0.4574 - E_{\text{cell}}}{0.0591}$$

6. The value of $\log K_c$ for the given reaction is

$$\operatorname{Fe}(s) + \operatorname{Cd}^{2+}(aq) = \operatorname{Fe}^{2+}(aq) + \operatorname{Cd}(s)$$

[Given,
$$E_{\text{Fe}^{2+}/\text{Fe}}^{\text{o}}$$
 = - 0.44 V, $E_{\text{Cd}^{2+}/\text{Cd}}^{\text{o}}$ = - 0.40 V]
(a) 28.93 (b) 1.354

(d) 13.53

7.	7. At a given temperature, osmotic pressure of a concentrated solution of a substance (a) is higher than that of a dilute solution (b) is lower than that of a dilute solution (c) is same as that of a dilute solution										
	(d) cannot be compared with osmotic p										
8.	Molal elevation constant is calculated from the enthalpy of vapourisation $(\Delta_{\text{vap}}H)$ and boiling point of the pure solvent (T°) using the relation:										
	$(a) \ K_b = \frac{M_A R T^{\circ 2}}{1000 \Delta_{vap} H} \qquad (b) \ K_b = \frac{10}{M}$	$\frac{00 RT^2}{A \Delta_{vap} H}$	(c) $K_b = \frac{\Delta_{vap} H}{1000 M_A R T^{\circ 2}}$	$(d)~~K_b = \frac{1000~M_A T^{\circ 2}}{\Delta_{vap} HR}$							
9.	In a face centred cubic lattice, atom		•								
	positions. If one atom of B is missing	from or	_								
	(a) AB ₂ (b) A ₂ B ₃		(c) A ₂ B ₅	(d) A ₂ B							
10.	Which one of the following is an amo	_		(A) Cl							
	(a) Diamond (b) Graphit		(c) Common salt	(d) Glass							
11.	If the specific conductance and cond	uctance									
	(a) 1 (b) 0		(c) 10	(d) 100							
12.	Match the cells given in Column I wi	th the in	nformation given in Column II.								
	Column I		Column II								
	A. Leclanche cell	(i)	cell reaction $2H_2 + O_2 \rightarrow 2H_2O$								
	B. Ni-Cd cell	(ii)	does not involve any ion in solution and is used in hearing aids.								
	C. Fuel cell	(iii)	rechargeable								
	D. Mercury cell	(iv)	reaction at anode, $Zn \rightarrow Zn^{2+} + 2e^{-}$								
	(c) A (in) B (iii) C (i) D (ii)		(b) A (iii) P (iv) C (i) D								
	(a) A-(iv), B-(ii), C-(i), D-(ii)		(b) A-(iii), B-(iv), C-(i), D-(,							
	(c) A-(ii), B-(i), C-(iii), D-(iv)		(d) A-(i), B-(ii), C-(iii), D-(iii)	(v)							
13.	The unit of rate constant of a zero ord (a) litre second ⁻¹	ler reac	(b) litre mol ⁻¹ second ⁻¹								
	(c) mol litre ⁻¹ second ⁻¹		(d) mol second ⁻¹								
14		t	* *								
14.	The contribution of an atom at the ed	ge centi	re of a unit cell is								
	(a) $\frac{1}{8}$ (b) $\frac{1}{4}$		(c) $\frac{1}{2}$	(d) 1							
15.	The relative lowering of vapour press	ure is e	qual to the mole fraction of solute.	The law is known as							
	(a) Henry's law		(b) Raoult's law								
	(c) Ostwald's dilution law		(d) Van't Hoff law								
16.	Given below are two statements label	ed as A	ssertion and Reason:								
	Assertion (A) : Mercury cell does not give steady potential.										
	Reason (R): In the cell reaction, ions are not involved in solution.										
	(a) Assertion and reason both are correct statements and reason is correct explanation for assertion.										
	(b) Assertion and reason both are correct statements but reason is not correct explanation for assertion.										
	(c) Assertion is correct statement but reason is wrong statement.										
	(d) Assertion is wrong statement but re										
17.	Which of the following ion has the la										
•••	(a) Co ³⁺ (b) Mn ³⁺	igest rac	(c) Fe ³⁺	(d) Cr^{3+}							
18.	Which of the following compounds c	an show	n show optical isomerism?								
	(a) trans-[Co(en) ₂ Cl ₂]Br		(b) [Co(en) ₃]Cl ₃								
	(c) trans-[Co(NH ₃) ₄ Cl ₂]Cl		(d) [Co(NH ₃) ₅ Cl]Cl ₂								

19. Which of the following is an organometallic compound?											
	(a) $Ti(C_2H_4)_4$ (b) $Ti(OC_2H_5)$	(c) Ti(OCOCH ₃) ₄	(d) $Ti(OC_6H_5)$								
20.	Slag is formed by the reaction between										
	(a) ore and reducing agent	(b) ore particles									
	(c) ore and flux	(d) impurities in the ore a	and flux								
21.	Which of the following statement is not true for l										
	(a) He is used in gas-cooled nuclear reactors (GCR										
	(b) He is used as cryogenic agent for carrying out										
	(c) He is used to fill gas balloons instead of hydroge	,	urogen and non-innammable.								
	(d) He is used as a diluent for oxygen in modern of	0 11									
22.	When HCl gas is treated with propene in present		es								
	(a) 2-chloropropane (c) no reaction	(b) allyl chloride(d) n-propyl chloride									
99											
23.	Which reagent will you use for the following rea										
	$CH_3CH_2CH_2CH_3 \longrightarrow CH_3CH_2CH_2CH_2CH_3$	· CH ₃ CH ₂ CHClCH ₃									
	(a) Cl ₂ / UV light	(b) NaCl + H_2SO_4									
	(c) Cl ₂ gas in dark	(d) Cl ₂ gas in the presence	e of iron in dark								
24.	Elements of group-15 form compounds in +5		ismuth forms only one well								
	characterised compound in +5 oxidation state. T		(A) D; C								
	(a) Bi ₂ O ₅ (b) BiF ₅	(c) BiCl ₅	(d) Bi_2S_5								
25.	Which of the following reaction is incorrect?										
	$(a) 2Na_2CrO_4 + 2H^+ \longrightarrow Na_2Cr_2O_7 + 2Na^+ + H_2O$										
	$(b) \ 2\mathrm{MnO}_2 \ + \ 4\mathrm{KOH} \ + \ \mathrm{O}_2 \ \longrightarrow \ 4\mathrm{KMnO}_4 \ + \ 2\mathrm{H}_2\mathrm{O}$										
	(c) $MnO_4^- + 8H^+ + 5Fe^{2+} \longrightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$										
	(d) $MnO_4^- + 5C_2O_4^{2-} + 16H^+ \longrightarrow 2Mn^{2+} + 16H^{2-}$	$0CO_2 + 8H_2O$									
26.	Transition metals are often paramagnetic owing										
	(a) high m.p. and b.p.		(b) the presence of vacant d-orbitals.								
	(c) the presence of unpaired electrons.	(d) malleability and ducti	,								
27.	During the process of electrolytic refining of cop										
00	(a) Pb and Zn (b) Sn and Ag	(c) Fe and Ni	(d) Ag and Au								
28.	Which of the isomerism is shown by the complex (a) Ionisation (b) Linkage	(c) Coordination	(d) Optical								
90											
49.	A solution of (+)-2-chloro-2-phenylethane in tol SbCl ₅ due to the formation of	uene racemises slowly in the	presence of small amount of								
	(a) carbanion (b) carbene	(c) free radical	(d) carbocation								
30.	Which one of the following has O—O bond?										
	(a) Sulphurous acid	(b) Sulphuric acid									
	(e) Peroxodisulphuric acid	(d) Pyrosulphuric acid									
31.	In which case, order of acidic strength is not cor	rect?									
	$(a) \text{ HClO}_4 > \text{HClO}_3 > \text{HClO}_2$	(b) HI $>$ HBr $>$ HCl									
	(c) HF > H_2O > NH_3	(d) $HIO_4 > HBrO_4 > HO$	ClO ₄								
32.	The protein which maintains blood sugar level is										
	(a) haemoglobin	(b) oxytocin									
	(c) insulin	(d) ptylin									

33.											
	The linkage between two carbohydrate moiety in amylopectin is:										
			(b) β -D glucose, C_1 - C_4 and C_2 - C_6								
	(c) α –D glucose, C ₁ –C ₄ and C ₁ –C ₆	(d) β-D glucose, C ₁ -	$-C_4$ and C_1-C_6								
34.	Given below are two statements labelled as	Statement P and Statement Q:									
	Statement P: Sucrose is a reducing sugar.										
	Statement Q: The molecule of sucrose is c (a) P is true, but Q is false	omposed of D-glucose and D-f (b) P is false, but Q is									
	(c) Both P and Q are true	(d) Both P and Q are	false								
35.	In the reaction										
	NH_2										
	$ \xrightarrow{\text{Ac}_2\text{O}} [A] \xrightarrow{\text{Br}_2} $ $ \xrightarrow{\text{CH}_3\text{COOH}} $	$[B] \xrightarrow{H_2O}$									
	The final product [C] is										
	NH ₂ COCH ₃	NH_2	NHCOCH ₃								
	(a) COCH ₃ (b) Br	Br	Br								
	(a) COCH ₃ (b) Br	(1)	(")								
	ĊH ₃ ĊH ₃	ĊH₃	ĊH₃								
36.	The IUPAC name of NH ₂ —CH ₂ —CH=CH ₂ is										
	(a) Prop-2-en-1-amine	(b) Prop-3-en-1-amin	ie								
	(c) Allylmethylamine	(d) Allylamine									
37.	The side products formed with primary amine in the Hofmann bromamide degradation reaction is										
	(a) Na ₂ CO ₃ + NaBr	(b) NaBr + H_2O + N									
193	(c) NaBr + H_2O + Na_2CO_3	(d) $Na_2CO_3 + Br_2 +$									
38.	An organic compound (X) on treatment with acidified $K_2Cr_2O_7$ gives a compound (Y) which reacts with I and sodium carbonate to form trijodomethane. The compound (X) is										
		no The compound (V) is									
	and sodium carbonate to form triiodometha		(d) CH_CH(OH)CH								
20	and sodium carbonate to form triiodometha (a) CH ₃ OH (b) CH ₃ COCH ₃	(c) CH ₃ CHO	$(d)~\mathrm{CH_3CH(OH)CH_3}$								
39.	and sodium carbonate to form triiodometha (a) CH ₃ OH (b) CH ₃ COCH ₃ Allergy is caused by the production of	(c) CH ₃ CHO in the body.	1745.00 00000 18 0000 100000 100000								
	and sodium carbonate to form triiodometha (a) CH ₃ OH (b) CH ₃ COCH ₃ Allergy is caused by the production of (a) Hormones (b) Enzymes	(c) CH ₃ CHO	(d) CH ₃ CH(OH)CH ₃ (d) Histamines								
	and sodium carbonate to form triiodometha (a) CH ₃ OH (b) CH ₃ COCH ₃ Allergy is caused by the production of	(c) CH ₃ CHO in the body.	(d) Histamines								
	and sodium carbonate to form triiodometha (a) CH ₃ OH (b) CH ₃ COCH ₃ Allergy is caused by the production of (a) Hormones (b) Enzymes Buna-S is a polymer of:	(c) CH ₃ CHO in the body. (c) Vitamins	(d) Histamines								
40.	and sodium carbonate to form triiodometha (a) CH ₃ OH (b) CH ₃ COCH ₃ Allergy is caused by the production of (a) Hormones (b) Enzymes Buna-S is a polymer of: (a) Butadiene	(c) CH ₃ CHO in the body. (c) Vitamins (b) Butadiene and St (d) Butadiene and ch	(d) Histamines syrene nloroprene								
40.	and sodium carbonate to form triiodometha (a) CH ₃ OH (b) CH ₃ COCH ₃ Allergy is caused by the production of (a) Hormones (b) Enzymes Buna-S is a polymer of: (a) Butadiene (c) Styrene Which of the following reactions is expected	(c) CH ₃ CHO in the body. (c) Vitamins (b) Butadiene and St (d) Butadiene and ch	(d) Histamines syrene nloroprene								
40.	and sodium carbonate to form triiodometha (a) CH ₃ OH (b) CH ₃ COCH ₃ Allergy is caused by the production of (a) Hormones (b) Enzymes Buna-S is a polymer of: (a) Butadiene (c) Styrene	(c) CH ₃ CHO in the body. (c) Vitamins (b) Butadiene and St (d) Butadiene and ch	(d) Histamines syrene nloroprene on product in good yield?								
40.	and sodium carbonate to form triiodometha (a) CH ₃ OH (b) CH ₃ COCH ₃ Allergy is caused by the production of (a) Hormones (b) Enzymes Buna-S is a polymer of: (a) Butadiene (c) Styrene Which of the following reactions is expected (a) RCOOK Electrolysis	(c) CH ₃ CHO in the body. (c) Vitamins (b) Butadiene and St (d) Butadiene and ch d to readily give a hydrocarbo (b) RCOOAg (d) (CH ₃) ₂ CCl ₂ C ₂	(d) Histamines Eyrene hloroprene on product in good yield?								
40.	and sodium carbonate to form triiodometha (a) CH ₃ OH (b) CH ₃ COCH ₃ Allergy is caused by the production of (a) Hormones (b) Enzymes Buna-S is a polymer of: (a) Butadiene (c) Styrene Which of the following reactions is expected (a) RCOOK Electrolysis (c) CH ₃ CH ₃ Cl ₂ , hv	(c) CH ₃ CHO in the body. (c) Vitamins (b) Butadiene and St (d) Butadiene and ch d to readily give a hydrocarbo (b) RCOOAg (d) (CH ₃) ₂ CCl ₂ C ₂	(d) Histamines Eyrene hloroprene on product in good yield?								
40.	and sodium carbonate to form triiodometha (a) CH ₃ OH (b) CH ₃ COCH ₃ Allergy is caused by the production of (a) Hormones (b) Enzymes Buna-S is a polymer of: (a) Butadiene (c) Styrene Which of the following reactions is expected (a) RCOOK Electrolysis (c) CH ₃ CH ₃ Cl ₂ , hv Which one of the following aldehdyes gives	(c) CH ₃ CHO in the body. (c) Vitamins (b) Butadiene and St (d) Butadiene and ch d to readily give a hydrocarbo (b) RCOOAg — I ₂ (d) (CH ₃) ₂ CCl ₂ — C ₂ (c) Cannizzaro reaction when he	(d) Histamines Eyrene hloroprene on product in good yield?								
40. 41. 42.	and sodium carbonate to form triiodometha (a) CH ₃ OH	(c) CH ₃ CHO in the body. (c) Vitamins (b) Butadiene and St (d) Butadiene and ch d to readily give a hydrocarbo (b) RCOOAg — L2 (d) (CH ₃) ₂ CCl ₂ — C2 (c) Cannizzaro reaction when he (b) Acetaldehyde (d) All the above	(d) Histamines Eyrene hloroprene on product in good yield?								
40. 41. 42.	and sodium carbonate to form triiodometha (a) CH ₃ OH	(c) CH ₃ CHO in the body. (c) Vitamins (b) Butadiene and St (d) Butadiene and ch d to readily give a hydrocarbo (b) RCOOAg — L2 (d) (CH ₃) ₂ CCl ₂ — C2 (c) Cannizzaro reaction when he (b) Acetaldehyde (d) All the above	(d) Histamines Eyrene hloroprene on product in good yield?								
40. 41. 42.	and sodium carbonate to form triiodometha (a) CH ₃ OH	(c) CH ₃ CHO in the body. (c) Vitamins (b) Butadiene and St (d) Butadiene and ch d to readily give a hydrocarbo (b) RCOOAg — L2 (d) (CH ₃) ₂ CCl ₂ — C2 (c) Cannizzaro reaction when he (b) Acetaldehyde (d) All the above	(d) Histamines Eyrene hloroprene on product in good yield?								

44. Heating of rubber with su	lphur is	known a	is:
-------------------------------	----------	---------	-----

- (a) Galvanisation
- (b) Bessemerisation
- (c) Vulcanisation
- (d) Sulphonation

45. Benzoic acid reacts with conc.HNO3 and conc.H2SO4 to give.

(a) o-nitrobenzoic acid

(b) p-nitrobenzoic

(c) m-nitrobenzoic acid

(d) o, p-dinitrobenzoic acid

46. Which of the following is most acidic?

(a) Phenol

(b) Benzyl alcohol

(c) o-chlorophenol

(d) cyclohexanol

47. The refluxing of (CH₃)₂ NCOCH₃ with acids gives:

(a) $2CH_3NH_2 + CH_3COOH$

(b) 2CH₃OH + CH₃CONH₉

(c) (CH₃)₂ NH+ CH₃COOH

(d) $(CH_3)_2$ $NCOOH + CH_4$

48. The ionization constant of phenol is higher than ethanol because

- (a) phenoxide ion is stronger base than ethoxide ion.
- (b) phenoxide ion is stabilized through delocalization.
- (c) phenoxide ion is less stable than ethoxide ion.
- (d) phenoxide ion is bulkier than ethoxide ion.

49. The Cannizzaro reaction given below:

$$2\text{Ph}\text{--}\text{CHO} \xrightarrow{\text{OH}^{-}} \text{Ph}\text{--}\text{CH}_2\text{OH} + \text{PhCO}_2^{-}$$

the slowest step is

- (a) the attack of OH⁻ at the carbonyl group.
- (b) the transfer of hydride ion to the carbonyl group.
- (c) the abstraction of proton from the carboxylic acid.
- (d) the deprotonation of Ph —CH₂OH.

50. IUPAC name of the compound having the formula Cl3CCH2CHO is :

(a) 3, 3, 3-Trichloropropanal

(b) 1, 1, 1-Trichloropropanal

(c) 2, 2, 2-Trichloropropanal

(d) Chloral

Ш

Answers

PRACTICE PAPER — 7													
1.	(b)	2.	(b)	3.	(a)	4.	(b)	5.	(a)	6.	(b)	7.	(a)
8.	(a)	9.	(c)	10.	(<i>d</i>)	11.	(a)	12.	(a)	13.	(c)	14.	(b)
15.	(b)	16.	(d)	17.	(d)	18.	(b)	19.	(a)	20.	(<i>d</i>)	21.	(c)
22.	(a)	23.	(a)	24.	(b)	25.	(b)	26.	(c)	27.	(d)	28.	(a)
29.	(d)	30.	(c)	31.	(d)	32.	(c)	33.	(c)	34.	(b)	35.	(c)
36.	(a)	37.	(c)	38.	(d)	39.	(d)	40.	(b)	41.	(a)	42.	(a)
43.	(a)	44.	(c)	45.	(c)	46.	(c)	47.	(c)	48.	(b)	49.	(b)
50.	(a)												

Solutions

PRACTICE PAPER — 7

- 1. (b) The correct reason is due to intramolecular H-bonding, o-nitrophenol is less soluble in water in comparison with p-nitrophenol.
- 2. (b) A photochemical reaction is initiated by the absorption of energy in the form of light by a reactant molecule.
- 4. (b) The correct reason is, According to Arrhenius

$$k = Ae^{-E_a/kt}$$

If
$$E_a = 0$$
, $k = Ae^{\circ}$

Now,
$$e^{\circ} = 1$$

Hence, k = A i.e., independent of temperature.

(a) For hydrogen electrode

$$H^+ + e^- \longrightarrow \frac{1}{2}H_2$$

$$E_{\text{H}^+/\frac{1}{2}\text{H}_2} = E_{\text{H}^+/\frac{1}{2}\text{H}_2}^{\text{o}} - \frac{0.0591}{n} \log \frac{1}{[\text{H}^+]}$$

Here,
$$n = 1$$

$$\log \frac{1}{[H^+]} = pH$$

$$E_{H^{+}/\frac{1}{2}H_{2}}^{o} = 0$$

$$E_{H^{+}/\frac{1}{2}H_{2}} = 0 - \frac{0.0591}{1} pH$$

$$pH = -\frac{E_{H^{+}/\frac{1}{2}H_{2}}}{0.0591}$$

6. (b) $E_{\text{cell}}^{\text{o}} = E_{\text{cathode}}^{\text{o}} - E_{\text{anode}}^{\text{o}}$

$$E_{\text{cell}}^{o} = E_{\text{Cd}^{2+}/\text{Cd}}^{o} - E_{\text{Fe}^{2+}/\text{Fe}}^{o}$$

$$\Rightarrow E_{cell}^{o} = -0.40 \text{ V} - (-0.44 \text{ V}) = 0.04 \text{ V}$$

Now,
$$E_{\text{cell}} = E_{\text{cell}}^{\text{o}} - \frac{0.0591}{n} \log K_e$$

or,
$$E_{\text{cell}}^{0} = \frac{0.0591}{n} \log K_{c}$$

$$\log K_{\epsilon} = \frac{2 \times 0.04}{0.0591} = 1.354$$

7. (a) Osmotic pressure is directly proportional to

3. (a) For zero order reaction, $k = \frac{1}{t} \{ [R]_0 - [R] \}$ Here, $[R]_0 = a$

Here,
$$[R]_0 = a$$

$$\therefore [R] = a - x$$

Thus,
$$t = \frac{1}{k} [a - (a - x)]$$

$$\Rightarrow t = \frac{x}{k}$$

- 10. (d) Glass is an amorphous solid due to its short range order and irregular arrangement of constituent particles.
- 11. (a) Conductivity, κ = Conductance (G) × Cell constant (G^*)

Given,
$$\kappa = G$$

$$G^* = \frac{\kappa}{G} = 1$$

13. (c) The unit of rate constant for nth order is $k = (\text{conc.})^{1-n} \text{ time}^{-1}$

.. For zero order reaction,

$$k = (\text{mol/l})^{1-0} \text{ sec}^{-1}$$

$$\therefore k = \text{mol } 1^{-1} \text{ sec}^{-1}$$

- 14. (b) An atom that lies on the edge of a unit cell is shared by four adjacent unit cells, so the contribution of each edge atom is $\frac{1}{4}$
- 15. (b) Raoult's law states that the partial pressure of each component of an ideal mixture of liquid is equal to the vapour pressure of the pure component multiplied by its mole fraction in the mixture. On adding non-volatile solute to the volatile, the vapour pressure of the solution decreases. Mathematically, it can be represented as

$$p_A = p_A^0 x_A$$
 or $\frac{p_A^0 - p}{p_A^0} = x_B = \frac{n_B}{n_A + n_B}$

- 16. (d) The correct assertion is, mercury cell has a constant cell potential throughout its life.
- 17. (d) Ionic radius decreases from left to right in a period. Thus,

the concentration of solution. So, concentrated solution has more osmotic pressure than dilute solution.

9. (c) In a face centered cubic lattice, atom (A) occupies the corner positions. There are 8 corner positions and each position contributes one eighth to the unit cell. Hence, total number of (A) atoms per unit cell = 8 × 1/8 = 1. Atom (B) occupied the face centre positions. There are six face centre positions. One atom of (B) is missing from one of the face centered points. Thus, there are 5 face centre positions that are occupied with (B). Each such position contributes one half to the unit cell.

Hence, total number of (B) atoms per unit cell= $5 \times 1/2 = 2.5$.

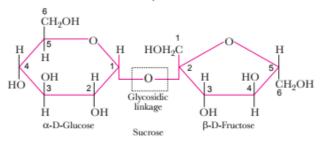
Hence the formula of compound is

 $\begin{array}{ccc} A & B \\ 1 & 2.5 \\ A_2 & B_5 \end{array}$

[: Peroxide effect is not observed with HF, HCl and HI]

- 24. (b) F₂ being the strongest oxidising agent, oxidises Bi to its highest oxidation-state of +5 in BiF₅.
- **25.** (b) Permanganate ion (MnO₄) oxidises Fe²⁺ to Fe³⁺ and oxalate ions to CO₂. Thus (c) and (d) are correct. Chromates are converted into dichromates in acidic medium. Thus A is correct.

The correct form of reaction (b) is $2\text{MnO}_2 + 4\text{KOH} + \text{O}_2$ Pyrolusite ore


- 26. (c) Paramagnetism in transition metals is due to the presence of unpaired electrons in their (n - 1) d-subshell.
- 27. (d) The common elements present in the anode mud in electrolytic refining of copper are antimony, selenium, tellurium, silver, gold and platinum. These elements, being less reactive, are not affected by CuSO₄ + H₂SO₄ solution and hence settle down under anode as anode mud.
- 28. (a) Ionisation isomerism arises when the counter ion in a complex salt is itself a potential ligand and can displace a ligand which can then become the counter ion.
- 29. (d) Formation of carbocation occurs:

$$Cr^{3+} > Mn^{3+} > Fe^{3+} > Co^{3+}$$

 $Cr(Z=24), Mn(Z=25), Fe(Z=26), Co(Z=27)$

- 18. (b) [Co(en)₈]Cl₈ shows optical isomerism. This type of isomerism is exhibited by chiral molecules. Optical isomers are mirror images that cannot be superimposed on one another.
- 19. (a) Organometallic Compounds are those chemical compounds which contain at least one bond between a metallic element and a carbon atom belonging to an organic molecule. Among the given compounds, Ti(C₂H₄)₄ is an organometallic compound.
- 20. (d) Slag is an easily fusible material which is formed when gangue still present in the roasted or the calcined ore combines with the flux.

22. (a)

 (b) Sucrose is a non-reducing sugar with limited chemical reactivity.

35. (c)

$$\begin{array}{c} \operatorname{NH}_2 \\ & \stackrel{\longrightarrow}{\longleftarrow} \\ \operatorname{CH}_3 \\ p\text{-toluidine} \end{array} \begin{array}{c} \operatorname{NHCOCH}_3 \\ & \stackrel{\longleftarrow}{\longleftarrow} \\ \operatorname{CH}_3 \\ p\text{-methylacetanilide} \end{array}$$

$$\begin{array}{c} H \\ C_6H_5 - C - Cl + SbCl_5 \longrightarrow C_6H_5 - C - H + SbCl_6 \\ CH_3 \\ (+) - 2 - chloro - 2 - phenylethane \\ \hline \\ \textbf{30.} \ \ (c) \\ \hline \\ \textbf{9} \\ \textbf{Peroxodisulphuric acid} \\ (H_9S_2O_8) \\ \end{array}$$

- (d) The correct order will be HClO₄ > HBrO₄ > HIO₄.
- 32. (c) Insulin hormone (protein by chemical nature) helps to maintain the balance of biological activities in the body. The role of insulin in keeping the blood glucose level within the narrow limit is an example of this function.
- 33. (c) It is a branched chain polymer of α-D-glucose units in which chain is formed by C1–C4 glycosidic linkage whereas branching occurs by C1–C6 glycosidic linkage.
 - 39. (d) Histamine is involved in the inflammatory response and has a central role as a mediator of itching.

40. (b)

CH=CH

$$n$$
CH₂=CH—CH=CH₂+

1,3-Butadiene Styrene

-

 $+$ CH₂—CH=CH—CH₂—CH—CH₂-

Butadiene-styrene copolymer (Buna-S)

41. (a) $\begin{array}{ccc}
2 & \text{RCOOK} \\
+ & 2 & \text{H}_2 & \text{O}
\end{array}$ $\begin{array}{c}
\text{Electrolysis} \\
+ & 2 & \text{CO}_2 + \text{H}_2 & \text{O}_2
\end{array}$

Kolbe's electrolysis reaction involves the formation of hydrocarbon product in good yield.

42. (a) Aldehydes which do not have an α-hydrogen, undergo self oxidation and reduction (disproportionation) reaction on treatment with concentrated alkali. In this reaction, one molecule of the aldehyde is reduced to alcohol while another is oxidised to carboxylic acid salt.

37. (c) In Hofmann bromamide degradation reaction, amine (containing one carbon less than amide) with side products Na₂CO₃, NaBr and H₂O is formed

$$R-C-NH_2 + Br_2 + 4NaOH \longrightarrow$$
 \parallel
 O
 $R-NH_2 + Na_9CO_3 + 2NaBr + 2H_9O$

38. (d) The compound Y must contain CH₃—CH—

or CH₃CO— as it is responding to iodoform test.

Among the given compounds, $CH_3CHOHCH_3$ (a secondary alcohol) on treatment with acidified $K_2Cr_2O_7$ gives CH_3 —C— CH_3 (a

ketone with -CH3CO group).

Therefore, X and Y respectively are CH₃CHOHCH₃ and CH₃COCH₃.

$$\begin{array}{cccc} CH_3 - CH - CH_3 & \xrightarrow{\text{actdiffed}} & CH_3 - C - CH \\ & & & | & & | \\ OH & & & O \\ & & & Protan^2 - ol & & Propanone \\ (X) & & & (Y) \end{array}$$

- **45.** (c) —COOH group is deactiving m-directing group.
- 46. (c) Due to the presence of Chlorine atom in a compound such as σ-chlorophenol, it is considered as most acidic than phenol, benzyl alcohol, and cyclohexanol.

It is because, as chlorine is an electron loving element it facilitates delocalization of negative charge in phenoxide ion.

47. (c) The reaction is as follow:

$$CH_3CON \xrightarrow{CH_3} \xrightarrow{HCI/H_2O} CH_3COOH + (CH_3)_2NH$$

- 48. (b) Phenoxide ion is more stable than ethoxide ion due to resonance. Therefore, the ionisation constant of phenol is higher than ethanol.
- 49. (b) The slowest step in the cannizaro reaction is

Ph—C—H + Na OH

(fast) Nucleophilic attack

ONA

Ph—C—H + Ph—CH=O
Hydride transfer
OH (slow)

PhCOOH + PhCH₂ONa

$$\xrightarrow{H^{+} \text{ from} \atop H_{2}O}$$
 PhCOONa + PhCH₂OH

i.e., the transfer of hydride ion to the carboxyl group.

44. (c) Vulcanisation is a process of heating a mixture of raw rubber with sulphur and an appropriate additive at a temperature range between 373 K to 415 K. On vulcanisation, sulphur forms cross links at the reactive sites of double bonds and thus the rubber gets stiffened.

IUPAC name: 3, 3, 3-Trichloropropanal

ш