Oscillations

Periodic and Oscillatory Motions

Periodic motion: A motion which repeats itself after a fixed interval of time
Examples:

Motion of the moon around the earth

Motion of the hands of a clock

Oscillatory motion: A body in oscillatory motion moves to and fro about its mean position
in a fixed time interval.

Examples:
Motion of the pendulum of a wall clock
Motion of the liquid contained in a U-tube when one of its limbs is compressed.

Period (T): It is the interval of time after which a motion is repeated. Its unit is seconds

(s).
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Its unit is (second)™ or Hertz.

Displacement: Change in position
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The figure shows a block attached to a spring.

Here, displacement is x.
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An oscillating simple pendulum’s angular displacement isg.
Displacement variable may take negative values.

Periodic functions can be expressed as a superposition of the sine and cosine
functions.

Simple Harmonic Motion and Uniform Circular Motion

An oscillatory motion is said to be simple harmonic, when the displacement (x) of the
particle from origin varies with time given as,

x(r) = Acos(of + )

Displacement is sinusoidal function of time.

Where, x (t) — Displacement x as function of time t



A — Amplitude
w — Angular frequency
t — Time

® — Phase constant
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Displacement — A continuous function of time for SHM
Non-harmonic oscillation is a combination of two or more harmonic oscillation.

Geometrical interpretation of simple harmonic motion
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Particle P(reference particle) goes around the circle and completes one revolution. The
projection M moves to and fro about the centre O along diameter Y OY

Motion of projection M on a diameter Y'OY s called SHM.

SHM is defined as the projection of uniform circular motion on the diameter of a circle of
reference.

Where,



a — Radius of circle
w — Angular velocity
8 — Angle

t — Time

y — Displacement

In AOPM,

sin[:}:%:l
OP a

Sy =asint = asinot

Consider the particle has some phase (®o) initially.
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Here, 6 = wt + ®o

Sy =asin{mr+¢,)

Amplitude — Maximum displacement on either side of the mean position
Maximum value of y is a.

Velocity and Acceleration in Simple Harmonic Motion and Force Law for
SHM

Velocity



« Velocity is obtained by directly differentiating displacement with respect to time (t).

y(t) = A sin (wt + @o) ...(i)

A = Amplitude
{

v(t) = ‘ (v(1))
dt

v(r) = mAcos(mr +d,)

Acceleration

o Acceleration is obtained by differentiating velocity [v(t)] with respect to time (t).

ait) =;—J:1-‘[f}

{
alt) = £ (mAcos{mf +d,))
dt

alt)=—w’ Asin(cf +¢)

alt)=—w’ y(t) [From(i)]
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SHM can be defined as the periodic motion in which acceleration is directly proportional

to the displacement from the mean position; it is always directed towards the mean
position.

Force Law for SHM

e According to Newton’s second law of motion,



Force, F(t) = ma

m = Mass

a = Acceleration [-w?y(t)]
- F() = -mw?y(t)
=-ky ()

~ k= mw?

3]

Here, Kk is the spring constant.

Force acting in simple harmonic motion is proportional to displacement and is always
directed towards the centre of motion.

Maximum and Minimum Displacement

The displacement of a particle in SHM is a function of time that is given by
x = gsin(er + $y)
s At mean posttion, t =0 and $p=10.
wt by —0
And,
r=1>0
® At extreme positions, t=0and x =+ a.
X 3m
27 2
Lwtta=7Zor &
And,
z:asmg —axl=a
=T =a-sin%T =ax(—1)=-a

t=0and o =

Maximum and Minimum Velocity
A particle performing SHM will have velocity, v = +wy/a? — 22
® Atmean postionx=0, v = :I:L:J‘V'fﬂz — 07 = +wva? = Ltaw.
® The velocity of the particle in SHM will be maximum at the mean position. Thus, Unay = aw.
e At extreme positionx = + a, v = twy/a®? —a? = 0.

® The velocity of the particle in SHM will be minimum at the extreme position. Thus, vy = 0.



Maximum and Minimum Acceleration
Acceleration of a particle performing SHM 1s given by
Acceleration WP
e It is always opposite to displacement in direction and has magnitude «z.
* At mean position x = 0, acceleration = 0. Here, acceleration has the minimum value.

.. N ] - ;
® At extreme position ¥ = + a, acceleration = +w"a. Here, acceleration has the maximum value.

Phase of SHM

Amplitude of SHM

The instantaneous displacement of a particle in SHM is given by

x = Asin(wt + ®o)

Quantity A in the above expression is known as the amplitude of motion.

It is a positive constant that represents the magnitude of the maximum displacement of
the particle in either direction.

For linear SHM, the amplitude has the units same as that of the length, that is, metres
and dimensions [MOL1TO].

Oscillation

The to-and-fro motion of a particle about a certain point is known as oscillation.
Oscillations are performed by a particle periodically in SHM.

Period of SHM

It is the time taken by a particle in SHM to complete one oscillation.
It is the smallest interval of time after which the motion of a particle in SHM is repeated.

If a particle starts from the mean position, the displacement is given by
X = asin(wt + ®o)

The period is the minimum value of time after which the motion repeats.
Let T be the time period of the given SHM.
~asin(w(t + T) + @o) = asin(wt + Po)

If the argument of this function (wt + @o) is increased by an integral multiple of
21 radians, then the value of asin(wt + ®o) will remain the same.

That is,



wl=2rorT = 2=

The particle takes the time T = 2T 10 return to the extreme position from where the motion 1s started.
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According to Newton's second law, % = Q.

T — r _ 2w
o a v/ Acceleration per unit displacement

y

Frequency of SHM
® The number of oscillations performed by a particle in SHM per unit time i1s known as the frequency of SHM.

e Tt is the reciprocal of the time period.

e Frequency is given by f = % = 5 -
1 [E
L f = E .\"Illl ;
® The dimensions of the frequency are [M':'LC'T'I].
Phase of SHM

® The physical quantity that describes the state of oscillation is known as the phase of SHM.

e The time-varying quantity, (er + @p). in x = Asin(cr + D) 15 called the phase of the motion.

e [t describes the state of motion at a given time.

¢ By knowledge of phase, the magnitude and the direction of the displacement of a particle at a given instant can be calculated.

Epoch of SHM

It is the physical quantity that describes the state of oscillation of a particle performing
SHM at the beginning of the motion.

The term ®oin (wt + @o) is known as the epoch of the SHM.
It is also known as the phase constant.
Energy in Simple Harmonic Motion

Kinetic energy (Ex) of a particle is given as



|

E =—mv-
2

v =mAdcos(or+¢,)

- ] ] A o
E, = —mo” 4" cos"(of +,)

I el e
= > kA cos™(wf+¢,)
Potential energy (Ep) of a particle is given as
E =Liy
PS5 v(t)
= %M: sin” (@ +¢,)

Total energy of the system is given as

E=Ex+Ep

1, . . |
=;+’f.~1'cos'{t-}r+¢(,}|+5kf!‘sur{mr+¢,_:,]|

E= ! kA
9

Total mechanical energy of a harmonic oscillator is independent of time.

Oscillations Due to a Spring

Oscillations of a block of mass, m fixed to a spring, which is in turn fixed to a rigid wall,
are shown in the figure.

The block is pulled and released so that it executes to and fro motion (SHM).

Here,



m = Mass of the block

+A, —A = Maximum displacement

(x = 0) = Position of the centre of the block at the equilibrium of the spring

When the block is pushed to the right side, one spring is compressed while the other is
elongated hence the block is subjected to a restoring force of F (x), which is proportional
to the displacement, x (in the opposite direction).

As the block feels twice of restoring force because of two spring system,

~ F (X) = —2kx ...(i) Where k is the spring constant (depends on the property of the
spring)

Using Newton’s law of motion, the force applied to pull the spring is
F = ma(which must be equal and opposite to the restoring force)
Since acceleration in SHM =-w?x

F =—mw?x

On comparing it with equation (i)

2k = mw?

Where w is the angular speed of the spring

» Time period (7) of the oscillator is,

. 2w "'m

\‘lll
Simple Pendulum

A simple pendulum is a heavy point mass suspended by a weightless, inextensible,
flexible string attached to a rigid support from where it moves freely.

The periodic motion of a simple pendulum for small displacements is simple harmonic.



Pl il i A AR AT AN AT

Pivol point

m — Mass of the bob
L - Length of the massless string

Given below is a free body diagram to show the forces acting on the bob.
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6 — Angle made by the string with the vertical

T - Tension along the string

g — Acceleration due to gravity

Radial acceleration = w?L

Net radial force =T - mg cos 6

Tangential acceleration is provided by mg sin 6.
Torque, T = -L (mg sin 6)

According to Newton’s law of rotational motion,



| — Moment of inertia
a — Angular acceleration
~la=-mgsin 6L

If 6 is very small, then
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Ignoring the higher pc.:rwers of 6 we get
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Angular frequency, o= f%"'

Time period, T = 2

LN

mgl.
Angular frequency, [

_Z:rr

T
Time period, @

T=2m [
mgl.

I =ml’

.‘.T:Ert\/E
g

Laws of Simple Pendulum




From the derived equation of the time period of a simple pendulum, we get some basic
laws of a simple pendulum. They are as follows:

Law of length: Time period of the pendulum is directly proportional to the square root of
its length.

Law of acceleration due to gravity: Time period of the pendulum is inversely proportional
to the square root of the acceleration due to gravity of the place.

Law of mass: Time period of the pendulum is independent of the mass of the bob.

Law of isochronous: Time period of the pendulum does not depend upon the amplitude
of oscillations.

Seconds Pendulum

It is a simple pendulum that has time period equal to 2 seconds.

_or. /T
Period of a simple pendulum is given by T QW‘U 9 For a seconds pendulum, the time

period is given by T = 2 seconds.

s 2=27 fj

V g

Length of the seconds pendulum = L = %

It can be seen from the above relation that the length of the seconds pendulum depends
on the acceleration due to gravity g. Thus, at different places on the Earth, the length of
the seconds pendulum has different values.

The length of a seconds pendulum is small at the Equator and large at the poles of the
Earth because the value of g is greater at the Equator than that at the poles.

Damped Simple Harmonic Motion

A simple harmonic system that oscillates with decreasing amplitude with time is called
damped simple harmonic oscillation.

Energy of the system is dissipated; dissipating forces are frictional forces



a— Amplitude —

Damping force (Fq) depends on the nature of the surrounding medium; it is proportional
to the velocity (v) of the bob, and acts opposite to the direction of velocity.

‘F:.' o —v
S F, =<bv

Where,

b = Positive constant (depends on characteristics of the medium such as viscosity, the
shape and size of the bob)

When a mass (m) attached to a spring is released, it settles to a height. When the mass
is pulled up/down, the restoring force (Fs) on the spring is proportional to the
displacement (x) from its equilibrium position.

Rigd support
Spring

. Surrounding
& & medium

According to Newton’s law of motion,



mai(ty=—k x(t)—=bv(t).

= m u"1 +b dx +kx =10,
dt df

The solution of'the equation 1s found to be,

x(t) = Ae """ cos(@'t + )
Where,
A = Amplitude

w' = Angular frequency of the damped oscillator
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X(t) is not periodic because e™"?m decreases continuously with time.

Mechanical energy is represented as,

1) o o
E=—kAge™™
2

For small damping,

b
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Forced Oscillations and Resonance
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Natural frequency: If no external force acts on a system, the system will execute

oscillations of frequency, vo, called natural frequency.

Oscillations produced under the effect of an external periodic force of frequency other
than the natural frequency of the oscillator are called forced oscillations.

If an external force F(t) is applied to a damped oscillator,
F(t) = Fo coswit ...... (1)
Here,

Fo = Amplitude of external force



wqg = Driven frequency

The motion of a particle under the combined action of a linear restoring force, a
damping force and a time-dependent driving force, as represented by equation (i), is
given by

ma(t) = —kx(t) — bv(t) + Fo coswqdt

" mu’;x f b Fhoo=F cosar it .....(ii)
dt’ cr )
The displacement after the natural oscillation dies out,
X(t) = A cos(wdt + ®)

Amplitude, A, is the function of the forced frequency (wq) and the natural frequency, w.
Analysis shows that it is given by

F,
4= . = (iii)
(" — @) +aw b’}
—1
tan ¢ = —
X,
Here,

m = Mass of the patrticle

Vo = Velocity of the particle (at t = 0)

Xo = Displacement of the particle (at t = 0)

w = Natural frequency

Case 1: Small damping; driving frequency far from natural frequency
b << m(e’ — o))

A= | From (7if)]

Case 2: Driving frequency close to natural frequency

Wd is very close to w.



m(w’ — ) << a b

F

coAd=—t [From (iii)]
@b

Resonance

The increase in the amplitude, when the driving force is close to the natural frequency
of the oscillation, is called resonance.

Examples of Resonance

& B[]i'

When pendulums of different lengths are suspended from a horizontal support: If
pendulum A is given some displacement, it is set into oscillation and the other
pendulums begin to oscillate due to this.

However, pendulum C, the length of which is approximate to the length of A, oscillates
with a much greater amplitude than pendulums B and D, the lengths of which are much
different from that of pendulum A. Pendulum D moves the way it does because its
natural frequency is nearly the same as the driving frequency associated with pendulum
A.

Electrical resonance is provided by tuning the radio receiver. Frequency of the
oscillatory circuit is made equal to that of signals from a radio station. Thus, only the
signals of the selected frequency are amplified by the receiver and the other
frequencies are rejected.

Applications of Resonance

The unknown frequency of a vibrating tuning fork can be determined using resonance.



A radio receiver can be tuned to a desired frequency by using the principle of
resonance.

It is used to increase the intensity of sound in musical instruments.
The analysis of a musical instrument is also done by resonance.
Disadvantages of resonance

In an auditorium, if the frequency of clapping of hands by the audience becomes equal
to the natural frequency of the roof, the roof may fall down due to resonance.

If the frequency of the steps of soldiers marching on a bridge becomes equal to the
natural frequency of oscillation of the bridge, it may collapse due to resonance.

In a rough sea, if the natural frequency of the swinging of a ship matches the frequency
of sea waves, then due to resonance, the amplitude of the swinging of the ship
increases and crosses the safety limit, which is dangerous.

Musical Instruments
There are three types of musical instruments :
(A) String instruments
(B) Wind instruments
(C) Percussion instruments

String Instruments

In these instruments, sound is produced by vibrating the strings.
The strings in these instruments are vibrated by plucking them.
Sitar, veena, guitar and tanpura are examples of string instruments.

Wind Instruments

In these instruments, sound is produced due to the vibration of air columns.

Flute, bugle, bassoon and harmonium are examples of wind instruments.

Flute is an instrument that consists of a cylindrical pipe, which is closed at one end. Air
blown at the narrow open end of the flute vibrates the air column inside the tube,
causing standing waves to be formed by the incident wave and the wave reflected at the
closed end. When any of the holes in the flute is closed by the player, the flute acts as a
pipe open at both the ends and various sounds can be produced.

Harmonium is a reed instrument without a pipe. It has a keyboard in which air is set
into vibration by the means of thin metal reeds.

Basson is a pipe instrument without reeds.



Percussion Instruments

These are instruments that produce sound due to vibrations produced in a stretched
membrane.

Mridangam, tabla and drums are examples of percussion instruments.



