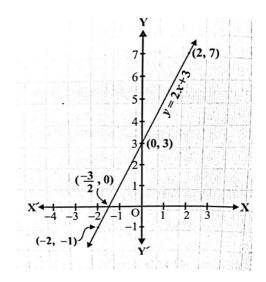
Polynomial

Polynomial

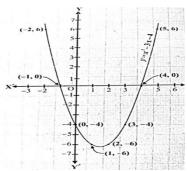
An expression of the form p(x) = $a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ where $a_n \neq 0$ is called a polynomial in one variable x of degree n, where; $a_0, a_1, a_2, \ldots, a_n$ are constants and they are called the coefficients of x_0, x, x^2, \ldots, x^n . Each power of x is a non-negative integer.

Eg: $-2x^2 - 5x + 1$ is a polynomial of degree 2

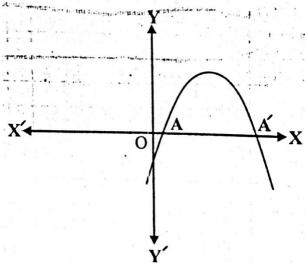
Note: $\sqrt{x} + 3$ is not a polynomial

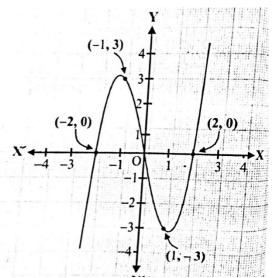

- A polynomial p(x) = ax + b of degree 1 is called a linear polynomial Eg: 5x 3, 2x etc
- A polynomial $p(x) = ax^2 + bx + c$ of degree 2 is called a quadratic polynomial Eg: $2x^2 + x 1$
- A polynomial $p(x) = ax^3 + bx^2 + cx + d$ of degree 3 is called a cubic polynomial. Eg: $\sqrt{3}x^3 - x + \sqrt{5}$, $x^3 - 1$ etc

Zeroes of a polynomial: A real number k is called a zero of polynomial p(x) if p(k)=0. If the graph of y=p(x) intersects the X-axis at n times, the number of zeroes of y=p(x) is n.


- A linear polynomial has only one zero.
- A quadratic polynomial has two zeroes.
- A cubic polynomial has three zeroes.

Graphs of different types of polynomials:


• Linear polynomial:- The graph of a linear polynomial ax+b is a straight line, intersecting X- axis at one point


- Quadratic polynomial:-
 - (i) Graph of a quadratic polynomial $p(x) = ax^2 + bx + c$ is a parabola open upwards like U, if a>0 & intersects x-axis at maximum two distinct points.

(ii) Graph of a quadratic polynomial $p(x)=ax^2+bx+c$ is a parabola open downwards like \cap if a<0 & intersects x-axis at maximum two distinct points

• Cubic polynomial and its graph:- in general a polynomial p(x) of degree n crosses the x-axis at most n points.

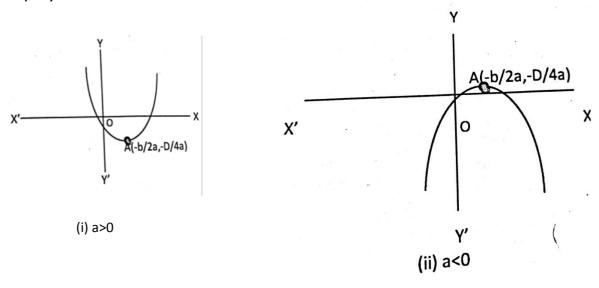
For a quadratic polynomial:- If α , β are zeroes of $p(x) = ax^2 + bx + c$ then,

- 1. Sum of zeroes = $\alpha + \beta = -\frac{b}{a} = \frac{-coefficients\ of\ x}{coefficient\ of\ x^2}$
- 2. Product of zeroes= $\alpha \cdot \beta = \frac{c}{a} = \frac{constant\ term}{coefficient\ of\ x^2}$
- A quadratic polynomial whose zeroes are α and β , is given by:

$$p(x) = x^2 - (\alpha + \beta)x + \alpha\beta$$

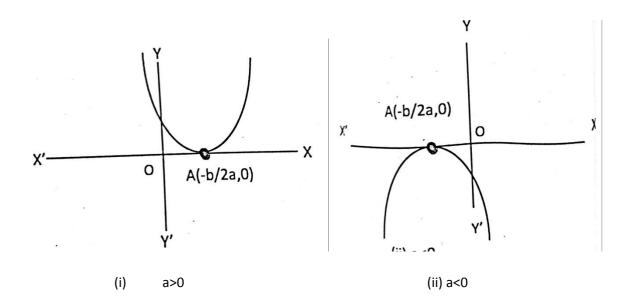
• If α , β and γ are zeroes of the cubic polynomial $ax^3 + bx^2 + cx + d$ then:

$$\alpha + \beta + \gamma = -\frac{b}{a}$$
$$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$$
$$\alpha\beta\gamma = \frac{-d}{a}$$

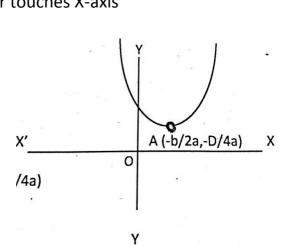

If α , $\beta \& \gamma$ are zeroes of a cubic polynomial p(x),

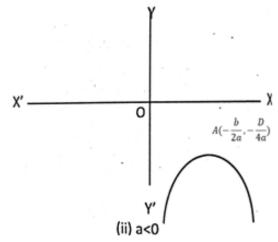
$$p(x) = x^3 - (\alpha + \beta + \gamma)x^2 + (\alpha\beta + \beta\gamma + \gamma\alpha)x - \alpha\beta\gamma$$

Division algorithm for polynomials: If p(x) and g(x) are any two polynomials with $g(x) \neq 0$, then we have polynomials q(x) and r(x) such that $P(x) = g(x) \times g(x) + r(x)$, where r(x) = 0 or degree of r(x) < 0 degree of g(x).

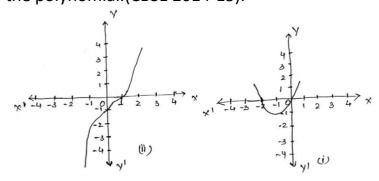

Nature of graph of polynomial $P(x) = ax^2 + bx + c$:
Case-1 When polynomial $ax^2 + bx + c$ is factorable in two distinct linear factors.

In this case, curve cuts X- axis at two distinct points. The co-ordinate of the vertex of parabola are(-b/2a, -D/2a) where D= b^2-4ac . The x co-ordinates of these points are the two zeroes of the polynomial.




Case 2:- When Polynomial $ax^2 + bx + c$ is factorisable into two equal factors.

In this case, curve touches X-axis at the point (-b/2a, 0). The x- Co-ordinates of the point gives two equal zeroes of the polynomial.


Case- 3 When Polynomial $ax^2 + bx + c$ is not factorizable. In this case, the curve doesn't cut or touches X-axis

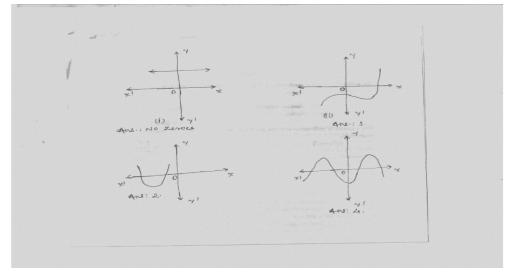
Level -I

1. Find the value of zeroes of the polynomials p(x) as shown in the graph and hence find the polynomial. (CBSE 2014-15).

2. Let α and β are the zeroes of a quadratic polynomial $2x^2-5x-6$ then form a quadratic polynomial whose zeroes are $\alpha+\beta$ and $\alpha\beta$. (CBSE 2011)

- 3. Check whether $x^2 + 3x + 1$ is a factor of $3x^4 + 5x^3 7x^2 + 2x + 2$? (CBSE 2010)
- 4. Can (x-7) be the remainder on division of a polynomial p(x) by (7x + 2)? Justify your answer(CBSE 2010)
- 5. What must be subtracted from the polynomial $f(x) = x^4 + 2x^3 13x^2 12x + 21$, so that the resulting polynomial is exactly divisible by $x^2 4x + 3$? (CBSE 2013)
- 6. Write the degree of zero polynomial?
- 7. Find the zeroes of a quadratic polynomial $6x^2 7x 3$ and verify the relationship between the zeroes and the coefficients? (CBSE 2014-15
- 8. Find the quadratic polynomial sum of whose zeroes is 2V3 and their product is 2?(CBSE 2008)

Level II


- 9. If the sum of squares of the zeroes of the polynomials $6x^2 + x + k$ is $\frac{25}{36}$. find the value of k?(CBSE 2014-15)
- 10. If one zero of the quadratic polynomial $f(x) = 4x^2 8kx 9$ is negative of the other, then find the value of k?(CBSE 2014-15)
- 11. Find the values of k for which the quadratic equation $9x^2 3kx + k = 0$ has equal roots. (CBSE 2014)
- 12.On dividing $3x^3 2x^2 + 5x + 5$ by the polynomial p(x), the quotient and remainder are $x^2 x + 2$ and -7 respectively. Find p(x)?(CBSE 2013)
- 13. Find all the zeroes of the polynomial $x^4 + x^3 9x^2 3x + 18$, if two of its zeroes are $\sqrt{3}$ $and\sqrt{-3}$. (CBSE 2010,13)
- 14. If α , β are zeroes of the quadratic polynomial $p(x)=x^2-(k-6)x+(2k+1)$. Find the value of k if $\alpha+\beta=\alpha\beta$. (CBSE 2010)
- 15.If the zeroes of the polynomial $x^2 5x + k$ are the reciprocal of each other, then find the value of K? (CBSE 2011)
- 16. If α and β are zeroes of the quadratic polynomial x^2-6x+a , find the value of a'. If $3\alpha+2\beta=20$.(CBSE 2010)

LEVEL III

- 17.On dividing $3x^3 + 4x^2 + 5x 13$ by a polynomial g(x), the quotient and remainder are 3x + 10 and 16x 43 respectively. Find the polynomial g(x). (CBSE 14-15)
- 18.If -5 is a root of quadratic equation $2x^2 + px 15 = 0$ and the quadratic equation $p(x^2 + x)k = 0$ has equal roots, find the value of k. (CBSE 2106)
- 19.If α , β and γ are zeroes of the polynomial $6x^3 + 3x^2 5x + 1$, then find the values of $\alpha^{-1} + \beta^{-1} + \gamma^{-1}$. (CBSE 2010)
- 20. Form a cubic polynomial whose zeroes are 3, 2 and -1. Hence find
 - (i) Sum of its zeroes
 - (ii) Sum of the product, taken two at a time
 - (iii) Product of its zero.

(SELF EVALUATION QUESTIONS)

21. Find the number of zeroes of p(x) in each case, for some polynomials p(x).

- 22.If α and β are the zeroes of the equation $6x^2 + x 2 = 0$, find $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$
- 23.If one of the zeroes of the polynomial $2x^2 + px + 4 = 0$ is 2, find the other zero, also find the value of p
- 24.If one zero of the polynomial $(a^2 + 9)x^2 + 13x + 6a$ is reciprocal of the other. Find the value of a. (All India)

Value Based Questions

- 25.If α be the number of person who take junk food, β be the person who take food at home and α and β be the zeroes of quadratic polynomial $f(x) = x^2 3x + 2$, then find a quadratic polynomial whose zeroes are $\frac{1}{2\alpha + \beta}$ and $\frac{1}{2\beta + \alpha}$, which way of taking food you prefer and why?
- 26.If the number of apples and mangoes are the zeroes of the polynomial $3x^2 = 8x 2k + 1$ and the number of apples is 7 times the number of mangoes, then find the number of zeroes and value of k. What are benefits of fruits in our daily life?