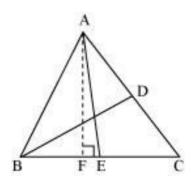

Area and Perimeter of Plane Figure

- **Perimeter** is the length of the boundary of a closed figure.
- The perimeter of a polygon is the sum of the lengths of all its sides.

In case of a triangle ABC, with sides of lengths *a*, *b* and *c* units:


Perimeter of ABC = AB + BC + AC = a + b + c

• The **semi-perimeter** of a triangle is half the perimeter of the triangle.

The semi-perimeter (s) of a triangle with sides a, b and c is $\frac{a+b+c}{2}$.

- The semi-perimeter of a triangle is used for calculating its area when the length of altitude is not known.
- Area of a triangle:
 - Area of a triangle = $\frac{1}{2} \times B$ as $e \times Altitude$
 - All the congruent triangles are equal in area, but the triangles having equal areas may or may not be congruent.

Example: $\triangle ABC$ is isosceles with AC = BC = 6 cm. AE and BD are the medians and AF = 4 cm. What is the area of $\triangle ABD$?

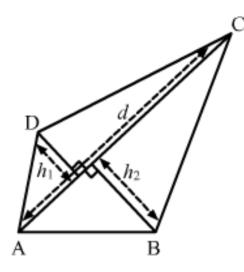
Solution: In $\triangle ABE$ and $\triangle BAD$, we have $BE = AD \qquad [AC = BC \Rightarrow \frac{1}{2}AC = \frac{1}{2}BC]]$ $\angle ABE = \angle BAD \qquad [Angles opposite to equal sides]$ $AB = AB \qquad [Common]$ $\Rightarrow \triangle ABE \cong \triangle BAD \qquad [By SAS congruency criterion]$ $Area (\triangle ABE) = Area (\triangle BAD)$ Now, $Area \triangle ABE = \frac{1}{2} \times Base \times Altitude$ $= \frac{1}{2} \times BE \times AF$ $= \frac{1}{2} \times (\frac{6 \text{ cm}}{2}) \times 4 \text{ cm}$ $= 6 \text{ cm}^2$ $\Rightarrow Area \triangle ABD = 6 \text{ cm}^2$

• Area of triangle using Heron's formula:

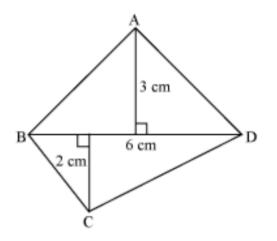
When all the three sides of a triangle are given, its area can be calculated using Heron's formula, which is given by:

Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$

Here, *s* is the semi-perimeter of the triangle and is given by, $s = \frac{a+b+c}{2}$


Example:

Find the area of a triangle whose sides are 9 cm, 28 cm and 35 cm. Solution:


Let a = 9 cm, b = 28 cm and c = 35 cmSemi-perimeter, $s = \frac{a+b+c}{2} = \frac{9+28+35}{2} \text{ cm} = 36 \text{ cm}$ Area of triangle = $\sqrt{36(36-9)(36-28)(36-35)} \text{ cm}^2$

$$= \sqrt{36 \times 27 \times 8 \times 1} \text{ cm}^2$$
$$= 36\sqrt{6} \text{ cm}^2$$

• Area of quadrilateral ABCD = Area of $\triangle ABC$ + Area of $\triangle ACD$

Example: Find the area of the quadrilateral ABCD.

Solution:

Area of the quadrilateral ABCD = Area of $\triangle ABD$ + Area of $\triangle BCD$ Area of triangle =12 × base × corresponding height Area of $\triangle ABD$ = $\frac{1}{2}$ × 6cm × 3cm = 9cm² Area of $\triangle BCD$ = $\frac{1}{2}$ × 6cm × 2cm = 6cm² \therefore Area of quadrilateral ABCD = 9 cm² + 6 cm² = 15 cm²

• Area of rhombus
$$=\frac{1}{2}$$
 (Product of its diagonals)

• Area of a rectangle is given by the formula:

Area of a rectangle = length × breadth

Example: How much carpet is required to cover a rectangular floor of length

25 m and breadth 18 m?

Solution: Area of the carpet required = Area of rectangular floor

$$= 25 \text{ m} \times 18 \text{ m} = 450 \text{ m}^2$$

• Area of a square is given by the formula:

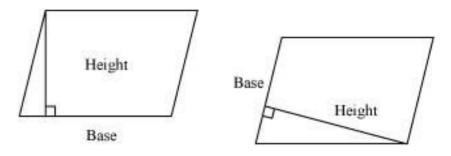
Area of a square = side × side

Example: What is the area of a square park of side 10 m 20 cm?

Solution: Length of park = 10 m 20 cm = 10.2 m

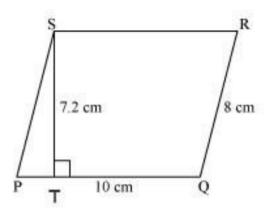
Area of park = $10.2 \text{ m} \times 10.2 \text{ m} = 104.04 \text{ m}^2$

• Perimeter of a rectangle = 2 (length + breadth)


Example:

What is the perimeter of a rectangular field whose length and breadth are 15 m and 8 m respectively?

Solution:


Perimeter of rectangular field = 2 (15 m + 8 m) = (2×23) m = 46 m

- Area of a parallelogram:
 - The perpendicular dropped on a side from its opposite vertex is known as the height and the side is known as the base.
 - Area of a parallelogram = Base × Height

Example:

Find the height of the parallelogram PQRS corresponding to the base RQ.

Solution:

Let the height corresponding to the base RQ be x cm. Area of the parallelogram PQRS = PQ × ST = 10 cm × 7.2 cm = 72 cm² Area of the parallelogram = RQ × x = 8 cm × x cm = 8x cm² $\Rightarrow x = 9$

Thus, the height of the parallelogram corresponding to the base RQ is 9 cm.

• Area and perimeter of various shapes:

Shape	Area	Perimeter
1. Rectangle with adjacent sides <i>a</i> and <i>b</i>	$a \times b$	2(a+b)
2. Square with side <i>a</i>	a ²	4 <i>a</i>

3. Circle with radius <i>r</i>	πr^2	$2\pi r$
4. Triangle with base <i>b</i> and its corresponding height <i>h</i>	$\frac{1}{2} \times b \times h$	Sum of the three sides Sum of the four sides
5. Parallelogram with base <i>b</i> and its corresponding height <i>h</i>	b imes h	

Area of trapezium = $\frac{1}{2}$ (Sum of the lengths of the parallel sides) × (Perpendicular distance between them)

- The distance around a circular region is known as its circumference.
- The circumference of a circle = $\pi \times \text{Diameter} = 2\pi \times \text{Radius}$

The value of pi (π) is $\frac{22}{7}$ or 3.14.

• Area of a circle = $\pi \times (\text{Radius})^2$

Example: What is the area of a circle whose circumference is 44 cm? $\left(\pi = \frac{22}{7}\right)$

Solution:

Circumference =
$$2\pi r = 44$$
 cm
 $\Rightarrow 2 \times \frac{22}{7} \times r = 44$ cm
 $\Rightarrow r = 44 \times \frac{7}{22 \times 2} = 7$ cm
 \therefore Area of the circle = $\pi r^2 = \frac{22}{7} \times 7 \times 7 = 154$ cm²