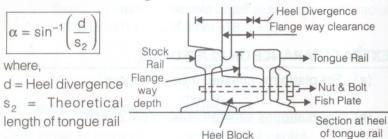
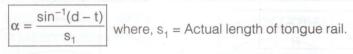
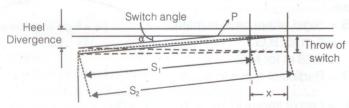
HEEL DIVERGENCE OR HEEL CLEARANCE

For B.G \rightarrow 13.7 cm to 13.3 cm


For M.G \rightarrow 12.1 cm to 11.7 cm.

For N.G \rightarrow 9.8 cm


SWITCH ANGLE (α)


$$\alpha = \frac{\text{Heel divergence}}{\text{Length of tongue rail}}$$

(a) When thickness of tongue rail at toe, t = 0

(b) When thickness of tongue rail at toe = t

FLANGEWAY CLEARANCE

For 1 in 12 crossing: Flange way clearance = 6.3 cm. For 1 in 8½ crossing: Flange way clearance = 6.6 cm.

MINIMUM LENGTH OF TONGUE RAIL (S)

$$S = R \tan \frac{\alpha}{2}$$

where, S = Theoretical length of tongue rail

R = Radius of curve at turnout.

DISTANCE BETWEEN TNC & ANC

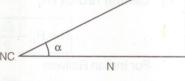
$$d_{ta} = N \cdot t$$

where, d_{ta} = Distance between TNC & ANC

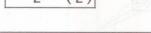
N = Number of crossing

t = Thickness of nose of crossing.

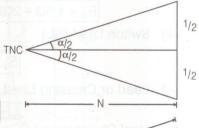
NUMBER & ANGLE OF CROSSING


 $N = \frac{\text{Spread at the leg of crossing}}{\text{Length of crossing from T} \cdot \text{NC}}$

(a) Right Angle Method, or Cole's Method

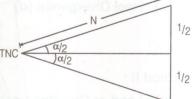

where, α = Angle of crossing

and N=Number of crossing TNC <



b) Centre Line Method

$$N = \frac{1}{2} \cot \left(\frac{\alpha}{2} \right)$$



For 1 in 12 crossing, N = 12

(c) Isosceles Triangle Method

$$N = \frac{1}{2} \operatorname{cosec}\left(\frac{\alpha}{2}\right)$$

DESIGN OF TURNOUT

$$CL = L + SL$$

where, CL = Curve lead

L = Lead

SL = Switch lead

Method I:

$$CL = \sqrt{2R_0G}$$

CL ~2GN

where.

 α = Angle of crossing.

d = Heel divergence.

R₀ = Radius of outer curve of turnout.

G = Gauge of track.

N = Number of crossing.

R = Radius of centre line of turnoff.

D = Distance between T.N.C & Tangent point of curve.

 β = Angle of switch.

(ii) Central radius (R)

$$R = R_0 - \frac{G}{2}$$
 $R_0 = G + 2GN^2$

For Indian Railway

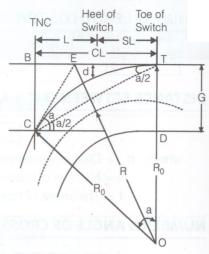
$$R_0 = 1.5G + 2GN^2$$
 $R_0 = CL \csc \alpha$

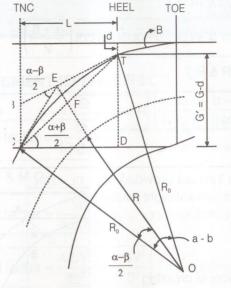
(iii) Switch Lead (SL)

$$SL = \sqrt{2R_0d}$$

(iv) Lead or Crossing Lead

$$L = CL - SL$$

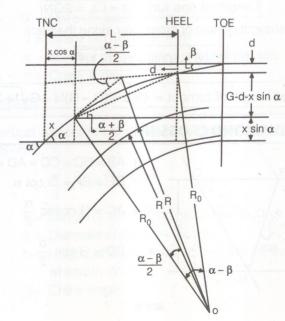

(v) Heel Divergence (d)


$$d = \frac{SL^2}{2R_0}$$

Method II:

(i) Lead or Crossing Lead (L)

$$L = (G - d) \cot \left(\frac{\alpha + \beta}{2} \right)$$



(ii) Radius (R)

$$R = R_0 - \frac{G}{2}$$

$$R_0 = \frac{G - d}{\cos \beta - \cos \alpha}$$

Method III:

(i) Crossing Lead (L)

$$L = x \cos \alpha + (G - d - x \sin \alpha) \cot \left(\frac{\alpha + \beta}{2}\right)$$

(ii) Radius (R & R₀)

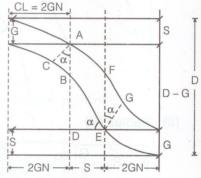
$$R_0 = \frac{G - d - x \sin \alpha}{\cos \beta - \cos \alpha} R = R_0 - \frac{G}{2}$$

$$R = R_0 - \frac{G}{2}$$

CROSS OVER

Type (I): Two turn out provided on two tracks joint with a straight portion between two turnoffs.

$$N = \cot \alpha$$

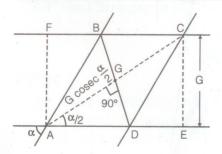

where,

N = Number of crossing

 α = Crossing angle

D = Centre to centre distance between two tracks

G = Gauge.



Length of straight portion of cross over along the track

$$S = (D - G)N - G\sqrt{1 + N^2}$$

Overall length of turnout =
$$4NG + (D - G)N - G\sqrt{1 + N^2}$$

DESIGN OF DIAMOND CROSSING

(i)
$$AB = BC = CD = AD = G \csc \alpha$$

(ii)
$$DE = BF = G \cot \alpha$$

(iii) AC = G cosec
$$\frac{\alpha}{2}$$

(iv) BD = G sec
$$\frac{\alpha}{2}$$
.